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Abbreviations and Acronyms 

Acronym Description 

AC Alternating Current 

BMS Battery Management System 

BRP Balance Responsible Party 

C&I Commercial and Industrial 

CC Constant Current 

CC-CV Constant-Current–Constant-Voltage  

CHP Combined Heat and Power 

CV Constant Voltage 

DOD Depth Of Discharge 

DSO Distribution System Operator 

ECM Equivalent Circuit Model 

EEC Electrical Equivalent Circuit 

EMS Energy Management System 

EOL End Of Life 

EV Electric Vehicle 

FO Flexibility Operator 

kWmax Maximum Load  

LFP Lithium Iron Phosphate 

LIB Lithium Ion Battery 

LMO Lithium Manganese Oxide 

LNO Lithium Nickel Oxide 

LTO Lithium Titanate Oxide 

MPC Model Predictive Control 

NCA Nickel Cobalt Aluminium 

NMC Nickel Manganese Cobalt 

OCV Open Circuit Voltage 

PCS Power Conversion System 

PV Photovoltaic 

RUL Remaining Useful Life 

SCADA System Control and Data Acquisition 

SEI Solid Electrolyte Interphase 

SOC State of Charge 
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Acronym Description 

SOE State of Energy 

SOH State of Health 

SOS2 Special Ordered Sets of type 2 

USABC US Advanced Battery Consortium 
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Symbols 
 

Symbol Description 

a Slope of efficiency curve 

c Degradation unit cost of a battery 

c0 Specific investemnt cost of a battery 

Cb Procurement cost of a battery [€] 

Cdeg
 Degradation cost of a battery [€] 

Ech Charged energy [kWh] 

Edch Discharged energy [kWh] 

En Energy capacity of a battery [kWh] 

I Current [A] 

Ispec Specified current at which the nominal efficiency is obtained [A] 

K Investment cost of a battery [€] 

Pb Terminal power of a battery [W] 

Pch Maximum charging power limit [W] 

Pdch Maximum discharging power limit [W] 

R Internal resistance of a battery [Ω] 

S2 Special ordered sets of type 2 

Ts Time step [h] 

U Voltage [V] 

Uoc Open-circuit voltage [V] 

Vt Binary variable  

δ Depth of discharge [%] 

Δδ Cycle depth [%] 

Φ Cycle life 

η Efficiency [%] 

ηb Efficiency of a battery [%] 

ηch Efficiency during charging [%] 

ηdch
 Efficiency during discharging [%] 

ηrt Roundtrip efficiency [%] 

𝜂spec
rt  Roundtrip efficiency at a specified rate [%] 

ρ Inverse of a cycle life 
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Symbol Description 

σ Power [W] 

𝜃  State of charge [%]  

Θ State of charge [Ah] 

𝜓 State of energy [%]  

Ψ State of energy [kWh] 
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Glossary 
 

C-rate A measure of the rate at which a battery is discharged 
relative to the manufacturer’s rated capacity in ampere-
hours. It is also related to the discharge time. For example, 
if the battery’s rated capacity is 40 Ah, then 1C rate is 40 A 
and the battery is empty after a 1-hour discharge, 2C rate 
is 80 A and the battery is empty after a 0.5-hour discharge, 
and C/4 rate is 10 A and the battery is empty after a 4-hour 
discharge. 

Calendar life The length of time a battery can undergo some defined 
operation before failing to meet its specified end-of-life 
criteria. 

Capacity The capacity of a battery expresses the maximum available 
ampere-hours when a full battery is discharged at a certain 
C-rate until the cut-off voltage is reached. 

Cycle A sequence of a discharge followed by a charge, or a 
charge followed by a discharge under specified conditions. 

Cycle life The number of cycles, each to specified discharge and 
charge termination criteria under a specified charge and 
discharge regime, that a battery can undergo before failing 
to meet its specified end-of-life criteria. 

Cycle depth Cycle depth (ΔDOD or ΔSOC) describes the depth of a 
discharge-charge cycle. Cycle depth is usually expressed 
in percentage. 

Degradation stress factor Degradation stress factors are all the operation practices 
or circumstances that accelerate the degradation in battery 
and thus shorten the lifetime of the cell. Also known as the 
state of health stress factors. 

Depth of discharge The depth of discharge is a measure of how much charge 
has been discharged from a full battery. It is usually 
expressed in percents, but is sometimes expressed also in 
amperehours. 

Discharge rate See C-rate. 

E-rate Similar to C-rate, but in terms of power against energy 
capacity. That is, E-rate describes the rate of discharge 
power relative to the manufacturer’s rated energy capacity 
in kilowatt-hours. For example, a battery that is discharged 
at a rate of 1E is fully discharged in an hour.  

End of life The stage at which a battery is not anymore capable to 
meet its performance criteria regarding capacity or power.  

Internal impedance Opposition to the flow of an alternating current at a 
particular frequency at a specified state of charge and 
temperature. 

Internal resistance Opposition to direct current flow in a battery. It is the sum 
of the ionic and electronic resistances of a battery. 
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Nominal operating voltage The average voltage of a battery, as specified by the 
manufacturer, during discharging at a specified rate and 
temperature. 

Open-circuit voltage The equilibrium voltage of a battery at a specified state of 
charge and temperature when there is no current flowing. 

Polarization The voltage deviation from the equilibrium voltage under 
loading, i.e., when current is flowing. 

Self discharge The process by which the available capacity of a battery 
decreases spontaneously due to undesirable chemical side 
reactions or short circuits within a cell. 

State of charge The state of charge is a measure of how much charge is 
left in a battery. It is a ratio of the present charge and the 
full charge, and it is usually expressed in percents. 

State of energy The state of energy is a measure of how much energy is 
left in a battery. It is a ratio of the available stored energy 
and the nominal energy capacity. It can be expressed in 
kilowatt-hours and in percents. 

State of health The state of health is a measure of aging. It can be defined 
for capacity fade and power fade. Typically a battery is 
considered to be at its end of life when the state of health 
has decreased to 80%. 

Tapering Tapering refers to the reduction of current and power when 
the battery approaches fully-charged or fully-discharged 
state. The high and low cut-off voltages at cell level shall 
not be exceeded, and hence, the current needs to be 
reduced when the first cell reaches the cut-off voltage.  

Thermal runaway Thermal runaway occurs in Li-ion batteries when the rate 
of internal heat generation caused by the exothermic 
reactions exceeds the rate at which the heat can be 
expelled. Eventually, the temperature rises rapidly and the 
battery catches fire and burns at a very high temperature. 
The fire may catch nearby cells, and eventually, the whole 
battery may burn down.  
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Executive summary 

Batteries are capable of providing high flexibilty due to their inherent fast dynamics 

combined with fast power-electronic-converter based control. Even though batteries can 

be used in relatively wide temperature range and deep-discharged without permanent 

damage, the rate of degradation varies depending on the usage and operating 

conditions. This rate of degradation has a high effect on the operating cost of the storage, 

and consequently, to the total cost of ownership of the storage and profitability of the 

business case.  

This deliverable presents a simplified battery techno-economic model that will be 

included in the flexibility management allocation and operation algorithm developed in 

Task 5.4 Design and program the flexibility management operation algorithm. The basic 

battery modelling principles were already included in D5.3 Simplified battery operation 

and control algorithm, whereas this deliverable adds several functionalities such as 

additional power constraints and the cost of degradation, which are essential for the 

flexibility management operation algorithm to work properly. If the cost of degradation is 

not taken into account in the optimization algorithm, the battery will often be used in such 

cases that are not economically profitable. Moreover, this deliverable addresses the 

technical and economical aspects of energy storage systems such as the performance 

and lifetime characteristics as well as the past and future cost estimates. Furthermore, 

the parameter extraction process is described in detail and methods to evaluate key 

model parameters such as efficiency based on the data sheets are provided.  

The updated, final version of the battery techno-economics tool will be exposed in D6.5 

Advanced battery techno-economics tool (M24). 
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1 Introduction 

This deliverable presents a simplified battery techno-economic model that will be 

included in the flexibility management allocation and operation algorithm, which is 

developed in Task 5.4 Design and program the flexibility management operation 

algorithm. A simplified version of this flexibility management allocation and operation 

algorithm is described in detail in D5.3 Simplified battery operation and control algorithm 

[1]. The basic battery modelling principles were already included in D5.3, whereas this 

deliverable adds several functionalities such as additional power constraints and the cost 

of degradation. If the cost of degradation is not taken into account in the optimization 

algorithm, the battery will often be used in such cases that are not economically profitable 

once the battery degradation is valued into the costs. Therefore, it has a high impact on 

the usage and lifetime of a battery, and hence, the overall profitability of a business case. 

Moreover, this deliverable addresses in detail the performance and lifetime 

characteristics of different lithium-ion (Li-ion) battery chemistries and the parameter 

extraction process. The implementation of these algorithms is performed in Task 8.3 

Implementation of the Flexibility Cloud flexibility management algorithms, functions, and 

monitoring & control dashboards, and the simplified algorithms will be described in detail 

in D8.2 Cloud based flexibility management system: Flexibility Cloud, phase 2 (M18): 

Simplified Flexibility management operation.   

The background for this document is presented in deliverables D5.3 Simplified battery 

operation and control algorithm [1], D5.2 Methods for assessing the flexibility in 

distribution grids [2], D6.1 Storage system dimensioning and design tool [3], D4.1 Overall 

INVADE architecture [4], D4.2 INVADE architecture of pilots [5], and D10.1 Pilot 

specifications [6]. 

The objective of this deliverable is to provide a tool that optimizes the battery operation 

in such a way that the maximum economic value can be obtained. In order to achieve 

this, the degradation mechanisms and phenomenons that are affecting the performance 

need to be identified and characterized. Batteries have very complex ageing 

characteristics with many stress factors and interdependencies that affect the rate of 

ageing. These stressors need to be characterized in order to be able to provide limits 

and constraints for battery operation to ensure long lifetime. This identification and 

characterization of degradation stress factors is performed in Task 6.2 and reported in 

D6.3 Simplified state of health diagnostics tool [7]. The main findings are utilized in this 

report. Together with the proposed modelling methods for the cost of degradation, the 
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optimal operation in terms of performance, lifetime, and economic value can be obtained. 

Moreover, battery system modelling methods and parameter extraction methodology are 

proposed that can be used in the flexibility management operation algorithm.  

The updated, final version of the battery techno-economics tool will be exposed in D6.5 

Advanced battery techno-economics tool (M24). In D6.5, the parameter extraction 

methodology will be adapted to the pilots and the tool integration to Task 5.4 and D5.4 

Advanced optimal battery operation and control algorithm (M24) will be described. In 

addition, more advanced modelling methods will be included, e.g., more stress factors 

could be included into the model, which would likely improve the control of battery life 

cycle economics. Furthermore, currently all battery models are defined as open-loop 

systems, i.e., they take no feedback from the process. Instead, they rely on knowledge 

available beforehand over the entire planning horizon. Model predictive control (MPC) is 

capable of taking feedback from the real world and still utilize optimization as a method 

of making operational plans. The use of MPC looks promising, and it is being considered 

to be included in D6.5. 
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2 Lithium-ion batteries 

Lithium-ion batteries (LIBs) are electrochemical energy storages with complex nonlinear 

characteristics and interdependencies. The fundamental operation of LIBs is based on a 

reversible process, in which lithium ions transfer from a positive electrode to a negative 

electrode during charging, and vice versa during discharging. There are several 

electrode compositions for anode and cathode with different characteristics regarding 

performance, lifetime, and cost. These materials and compositions are discussed in 

more detail in D6.1 Storage system dimensioning and design tool [3].  

In this chapter, generic performance characteristics of LIBs are presented to provide 

information for the control and optimization of use, which is addressed in Chapter 4. This 

chapter is organized as follows. Characteristics and performance are presented in 

Section 2.1.  degradation processes and safety characteristics are presented in Section 

2.2, and the degradation stress factors are presented in Section 2.3. The end of life 

(EOL) criteria are discussed in Section 2.4, and the use of batteries in second-life 

applications are discussed in Section 2.5. These topics are discussed only briefly in this 

report, and they are addressed in more detail in D6.3 Simplified state of health 

diagnostics tool [7].  

2.1 Characteristics and performance 

Active anode and cathode material composition and characteristics dictate the capacity 

and open-circuit voltage (OCV) of a battery, and thus, they also determine the baseline 

for the energy density and inherent safety features. Other inherent characteristics of a 

battery cell are the internal impedance, entropy change, and heat capacity. Besides 

these, the internal structure, geometry, and casing affect the thermal performance, and 

thus, the current rating of a cell. All these characteristics together dictate the energy 

capacity, efficiency and power capability of a battery.  

Depending on the desired performance characteristics, the battery cell can be optimised 

for either energy or power. Energy-optimised cells have high energy density and 

moderate or low power capability, while power-optimised cells have high power capability 

and moderate or low energy density. In battery-electric vehicles, plug-in electric vehicles, 

and stationary energy storage applications typically energy-optimised cells are used, 

while in hybrid electric vehicles and in some stationary power-buffering applications 

power-optimised cells are typically used. Power-optimised cells have very small internal 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.2 - Battery techno-economics tool Page 16 of 68 

impedance, which results in low heat generation and high power capability as well as 

high efficiency when loaded with medium power.  

Each battery chemistry has a unique OCV curve and a voltage window. The specified 

maximum and minimum voltages should not be exceeded in any case as it may cause 

increased rate of degradation and even cell decomposition and permanent damage. 

Therefore, high and low cut-off voltage are specified for each cell to ensure safe 

operation and long lifetime. The controller algorithm must be capable to prevent the 

voltage to reach these cut-off voltages during use. This can be implemented by setting 

limitations for the usable state of charge (SOC) window as well as discharge power when 

approaching fully discharged state and charge power when approaching fully charged 

state.  

Ideally, all stored chemical energy would be converted to electrical energy. However, 

polarization losses occur when a load current passes through the electrodes. These 

polarization losses consist of ohmic polarization, activation polarization, and 

concentration polarization. Ohmic polarization is caused by the resistivity of the actual 

materials such as metal plates and contacts, activation polarization drives the 

electrochemical reaction at the electrodes, and concentration polarization is caused by 

the concentration differences of the reactants and products at the electrode surface and 

in the bulk as a result of mass transfer [8].  Polarization effects consume part of the total 

energy as heat losses and thus reduce the efficiency of the conversion.  

Internal impedance has a strong effect on the performance of a cell. Because of internal 

impedance, a voltage drop is present during discharging. This voltage drop is typically 

called ohmic polarization or IR drop, and it follows the Ohm’s law, i.e., it is proportional 

to the magnitude of the load current. The total internal impedance of a cell is the sum of 

the ionic resistance of the electrolyte, the electronic resistances of the active mass, the 

current collectors and electrical tabs of the electrodes, and the contact resistance 

between the active mass and the current collector [8]. 

Example charge–discharge voltage profiles of commercial lithium manganese oxide 

(LMO), lithium nickel manganese cobalt (NMC), lithium iron phosphate (LFP), and lithium 

nickel cobalt aluminum (NCA) cells using constant-current–constant voltage (CC–CV) 

charging and constant-current (CC) discharging at a rate of 1C1 are shown in Figure 1, 

                                                

1 Definition of C-rate as well as other battery-specific definitions can be found in the 
Glossary (beginning of the document). 
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where the x-axis shows the capacity in mAh and the y-axis the associated voltage. The 

upper curves are charging profiles and the lower curves are discharging profiles. It 

should be noted that the cells have different nominal capacities. In order to make a proper 

comparison, the capacities should be normalised. The area between the charge and 

discharge curves represents the energy losses during a full cycle. These losses reduce 

the efficiency of the conversion and are converted to heat that needs to be dissipated.  

 

Figure 1: Voltage profile examples for different LIB chemistries. [9] 

The presence of polarization losses can be seen as a difference between the OCV and 

the terminal voltage during loading. As the polarization effects increase with increasing 

current, the low cut-off voltage is reached earlier when discharging with higher rates. 

This is known as the rate effect. However, the capacity is not lost, but is usable once the 

voltage has recovered. Full relaxation takes hours to complete. 

Batteries are very sensitive to temperature. Too low temperature results in poor 

performance and low efficiency, while too high temperature results in increased rate of 

degradation and even decomposition and safety risks. All these characteristics cause 

constraints and limitations for the usage in order to achieve safe operation and long 

lifetime.  

A summary of the performance characteristics of the most common LIB technologies are 

given in [10] and shown in Table 1. Performance of different LIB chemistries were 

compared in [11] and [12], and the results are summarised in Table 2 and Table 3, 

respectively. In general, the technology choice depends on the application-specific 

requirements and constraints, and hence, on the weighing of different characteristics.  
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Table 1. Characteristics of different LIB chemistries. [10] 

 

Table 2. Comparison of performance of different LIB chemistries from [11]. 

 

Table 3. Comparison of performance of different LIB chemistries from [12]. 

 

2.1.1 Capacity 

Battery cell specification provides a nominal or rated capacity expressed in ampere-

hours at specified conditions, typically at around 25 °C and 1C or lower rate. It expresses 

the maximum available ampere-hours when a full battery is discharged at the specified 
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C-rate until the cut-off voltage is reached. The real usable capacity depends on the 

temperature, rate, and state of health (SOH).   

In grid-storage applications, the capacity is typically defined in terms of energy, i.e., 

kilowatt-hours (kWh). In some cases, the installed capacity might differ from the usable 

capacity. In these cases, the SOC range or voltage range have been constrained for one 

or the other end or for both ends. The reason for this might be, e.g., to increase the 

expected lifetime, to avoid certain operation areas, to provide reserve capacity to cope 

with capacity fade due to ageing, or to comply with the hardware specification of the 

power conversion system (PCS) or other equipment.  

The rate effect and the temperature effect on the discharge characteristics are illustrated 

in Figure 2. It can be seen that in these test conditions the rate effect is notable but not 

very significant for low and medium C-rates. In Figure 2, the difference in capacity 

between C/2 and 2C rates is approximately 5%. Moreover, the temperature effect is 

small too for temperature range of 25–40 °C. For higher temperatures, the usable 

capacity increases, but it comes at the expense of a higher rate of degradation, and 

hence, reduced lifetime.  

 

Figure 2: Discharge characteristics of a commercial Kokam 17 Ah NMC cell. (a) Characteristics 
at different rates and room temperature. (b) Characteristics at different temperatures at a rate of 
C/2. [13] 

The effect of the C-rate on the maximum surface temperature of high-energy and high-

power cells were studied in [14]. The results for cylindrical 18650 cells are shown in 

Figure 3. A linear relation between the C-rate and the maximum surface temperature can 

be observed. Similar behaviour was found for pouch cells [14]. The cell form factors are 

described in more detail in D6.1 [3]. 
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Figure 3. a) Maximum temperatures on the surface of high-power (type C and D) and high-energy 
(type E and F) 18650 cells without heat sink. b) Data from (a) normalized to cell capacity. All high-
energy and high-power cells are indicated in blue and red, respectively. [14] 

2.1.2 Impedance 

The internal impedance of a battery changes as a function of temperature, rate, and 

ageing. Nominal values are typically given at room temperature. At colder temperatures, 

the impedance increases and the efficiency decreases, and at higher temperatures, the 

impedance decreases and the efficiency increases. The effects of temperature and SOC 

on the dynamic resistance of a commercial 40-Ah NMC cell are illustrated in Figure 4. 

  

Figure 4: Dynamic resistance rd characteristics of a Kokam 40-Ah NMC cell [15]. In the right panel, 
the resistances are normalized to 50% SOC to better illustrate the effect of SOC at different 
temperatures and SOH. That is, all impedances have unity magnitude at 50% SOC. 
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2.1.3 Rate capability and power capability 

The rate capability of a battery cell is mainly determined by the internal impedance and 

thermal properties of the battery. Internal resistance opposes current flow and causes 

voltage drop and irreversible heat generation. The continuous and peak current ratings 

are typically determined based on heating. When discharging a full battery with a rated 

continuous discharge rate at rated temperature, the battery temperature should stay 

within the specified range. However, after discharging at a rated current, the battery 

needs time to cool down, or at least the consecutive charging must be done at a low rate, 

in which case the heat generation must be lower than the heat dissipation in order for 

the battery to cool down. The rate at which a battery cell can be discharged and charged 

repetitively without rest times for several hours is typically much lower than the rated 

continuous current. The use of the specified peak current or power typically results in a 

high rate of heating, and therefore, the use of peak power is strictly limited for short 

periods.  

Manufacturers of grid-storage batteries as well as grid integrators often use a different 

way than cell manufacturers to define the rated continuous current or power for their 

energy storages. These ratings may be lower than the ratings of the cell manufacturer in 

order to resemble better the more continuous use of grid storages and to ensure long 

lifetime and stable thermal behaviour through the whole lifetime.  

2.1.4 Efficiency 

The instantaneous efficiency of a battery is dictated by the current, the internal 

resistance, and the OCV, as follows:  

 
oc

1
R

I
U

     (1) 

where Uoc is the OCV, R is the internal resistance, and I is the discharge current. 

However, because the OCV cannot be measured directly during loading, roundtrip 

energy efficiency is typically used in determining efficiency. The roundtrip energy 

efficiency ηrt is defined as the ratio of the discharged energy Edch to the charged energy 

Ech: 
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E

E
    (2) 
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Because of the complex and nonlinear impedance and OCV characteristics of LIBs, the 

actual energy efficiency depends on the rate and duration of the loading, the SOC, the 

temperature, and the ageing of the battery.  

The roundtrip energy efficiency can be approximated with the following equation: 

 
rt oc
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  (3) 

where R and Uoc are average values of the internal resistance and OCV, respectively, 

during discharge and charge. Therefore, the efficiency can be represented as a function 

of rate, as follows: 

 
rt 1

1

a I

a I


 


 
  (4) 

where a is the slope of the one-way efficiency during discharge and charge. A base value 

for a  can be calculated based on the battery’s data sheet, where the roundtrip efficiency 

at a specified rate is typically provided, as follows:  
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where rt

spec  is the specified roundtrip efficiency and specI  is the corresponding current. 

The average one-way efficiency as a function of current during charging or discharging 

is then the square-root of the roundtrip efficiency: 
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This methodology can be used to roughly estimate the roundtrip efficiency of a battery 

at different rates purely based on the data provided by the battery specification. The 

method is very much simplified, and hence, it does not take into account the effect of 

temperature and other factors that influence the internal resistance of a battery. The 

method provides fairly accurate results for low rates, which do not heat up the battery 

significantly. However, for high rates, this model provides too low efficiency grades, 

mainly because the internal heating and temperature-dependency of the internal 

resistance is not taken into account.  
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The rate has a high impact on the efficiency. Typically the roundtrip energy efficiency of 

a full discharge–charge cycle of a large Li-ion battery at room temperature is higher than 

97% for low rates less than or equal to C/3. The extrapolated roundtrip energy efficiency 

curves based on the above equations for specified efficiency values from 99% to 95% 

and a specified rate of C/3 are shown in Figure 5.  

 

Figure 5: Extrapolated roundtrip energy efficiency curves specified at a rate of C/3. Red circles 
mark the specified efficiency at the specified rate. 

Impedance curves are typically almost flat in the mid-SOC area from 20-80%. Therefore, 

in that area, the SOC affects the efficiency mostly via the OCV slope, which is dependent 

on the battery chemistry. As the OCV decreases with decreasing SOC, the efficiency 

decreases with decreasing SOC as well. Outside the mid-SOC range, especially below 

20% SOC, the impedance characteristics rise significantly, which reduces the efficiency 

directly. Furthermore, the efficiency may decrease as a result of ageing. This is a 

consequence of the tendency of the impedance to increase due to ageing.  

Roundtrip energy efficiencies of different LIB technologies were reported by Peters et al. 

in [16]. They have gathered efficiency grades of batteries from manufacturers’ data 

sheets and research articles. The obtained efficiency grades for different LIB 

technologies are shown in Figure 6. The segment labelled Li-ion represents the results 

from papers that did not disclose the exact cell chemistry. The results show large 

variation even within same chemistries. However, the rate and temperature at which the 

efficiency is reported is different among the data sources, which is likely the main reason 

for this large variation. Nevertheless, the reported median values (91–95%) represent 

fairly typical values for LIBs under real-life use and conditions. However, these median 

efficiencies should not be used as typical or representative values of each technology in 

technology comparisons.    
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Figure 6: Comparison of battery efficiencies from different studies. [16] 

2.2 Degradation processes and performance degradation  

The degradation process in LIB is a complex combination of electrochemical and 

mechanical processes, which lead to capacity decrease and power fading. Most of these 

processes cannot be studied independently as they occur simultaneously at similar 

timescales and interact with each other. Ageing processes can be divided into two 

groups: ageing during use and aging during storage. In other words: ageing related to 

cycle life and ageing related to calendar life. 

Degradation processes take place in the battery’s electrolyte, especially at the interfaces 

with the anode and the cathode. The ageing mechanisms strongly depend on electrodes 

composition. The origins of the degradation mechanisms can be either chemical or 

mechanical, and the mechanisms can induce for example changes in the chemical 

composition of the electrolyte or loss of active materials at the electrodes. The key factor 

in Li-ion battery ageing is the formation of the solid electrolyte interphase (SEI) layer on 

graphite anode. [17] 

The wide range of degradation mechanism can be clustered into three degradation 

modes: loss of lithium inventory, loss of active anode material and loss of active cathode 

material [18]. A list of degradation mechanism with their causes, effects and relations to 

the degradation modes is presented in Figure 7. 
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Figure 7: Causes and effects of different degradation mechanisms in Li-ion batteries. [18] 

Figure 8 illustrates the temperature range of the safe temperature window for LIBs as 

well as the temperature grades at which the detrimental processes start to happen, 

possibly leading to irreversible damage of a cell and even hazardous events.  

 

Figure 8: Safe temperature window for LIBs. [19] 

2.3 Degradation stress factors  

Degradation stress factors are all the operation practices or circumstances that 

accelerate the degradation in battery and thus shorten the lifetime of the cell. By 

identifying the stress factors the battery operating conditions and practices can be 

optimized within the application limits so that the degradation of the battery is minimized. 

Reference [20] identified five stressors; the environmental temperature, SOC window, 
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cut-off voltages, current (C-rate), and time. The SOC window can be further divided into 

cycle depth (ΔDOD, i.e., equivalent to ΔSOC) and average SOC.   

The degradation processes in lithium-ion batteries can be divided into two groups: 

degradation during cycling and degradation during storage. The degradation stress 

factors can be divided correspondingly: stress factors related to cycle ageing and stress 

factors related to calendar ageing. 

Battery lifetime data has been extensively gathered from the literature in INVADE T6.2, 

and the main findings are exposed in D6.3 [7]. As a summary of the findings, both the 

battery duty cycle and the environmental conditions during operation affect the 

degradation rate. For different lithium ion battery chemistries the impact of different 

stress factors slightly varies, but the underlying degradation mechanisms are the same. 

The list of degradation stress factors addressed in the literature lifetime tests are shown 

in Table 4. These are in principle the same stressors as in [20].  

Table 4. Summary of the degradation stress factors addressed in the lifetime tests of the reviewed 
articles in [7]. Results varied widely depending on the chemistry and even among different studies 
regarding the same chemistry. The values in the low-stress and optimal-range columns are very 
coarse generalisations based on the results.  

Stressor High stress Low stress Optimal range 

Cycle depth (ΔDOD) High ΔDOD < 50% < 30% 

Temperature High and low temperature 10–35 °C 15–30 °C 

Current (C-rate) High rate < 1C < C/2 

SOC / voltage High SOC / voltage < 4 V < 70% SOC  

 

For most grid-storage applications, and especially for all INVADE pilots, low C-rates are 

employed. The P/E factor of the energy storage system (ESS) is in the order of 1 for all 

pilots. These low C-rates cause only low heating of the battery. Moreover, the ESSs are 

typically installed in temperature-controlled facilities or they include a thermal 

management system. Therefore, the effect of temperature can be managed, and hence, 

it can be regarded as having only a low impact on the lifetime of a battery. Therefore, the 

cycle depth can be regarded as the most important stressor for the INVADE pilots [7].  

The battery manufacturers typically have a chart that includes the expected cycle lifetime 

as a function of ΔDOD. However, these charts are typically confidential, and therefore, 

they cannot be easily obtained from public sources. Some results based on experimental 
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research in universities and research institutes are available (e.g. [21]), though, but they 

typically do not have very many data points. Recently, Peters et al. [16] published charts 

for several LIB chemistries. The charts were based on a mathematical function combined 

with battery manufacturers’ data. However, these charts were calculated from low 

number of data points and by assuming a specific shape of the curve, and hence, there 

is not much experimental evidence on the quality and reliability of these curves. 

To obtain comprehensive understanding on the effect of cycle depth on battery cycle life, 

data from different literature sources were gathered in D6.3 Simplified battery state of 

health diagnostics tool [7], and the results are combined in Figure 9. To be able to 

compare the results, the data sets were normalised based on the cycle life with 100% 

ΔDOD. In practice, the cycle life ( ) at a given ΔDOD (  ) is first multiplied by ΔDOD 

to obtain the cycle life in equivalent full cycles (FCE). The FCE is then divided by the 

cycle life at 100% ΔDOD ( fc ) to obtain the normalised cycle life: 

 normalised

fc


 


  (7) 

Unity in y-axis represents the case in which no lifetime extension can be found, i.e., 

ΔDOD cannot be regarded as a stress factor. It can be seen that the results vary 

significantly. However, a common finding is that the cycle lifetime is extended if the 

ΔDOD is less than 50%. Moreover, most results from the literature indicate also fair 

extension between 50–80% DOD.  

 

Figure 9. Normalized cycle life of different types of Li-ion cells as a function of ΔDOD. The data 
were gathered from the following sources: [22], [23], [24], [25], [26], [21], [27], [16]. 
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A generic model for the effect of ΔDOD on the cycle life was derived in D6.3 [7]. The 

NMC-LMO data set from Wang et al. [28] was selected to be a basis for the model, 

because it is close to average among all the included data sets and a representative set 

as NMC-LMO and NMC batteries will be used in the pilots (Section 3.7). It is also close 

to the curves utilized by Peters et al. [29]. An exponential function was fit to the data. 

The data fitting is shown in Figure 10, and the resulting exponential fit is presented in 

Equation (8):  

 .  2 438

normalized 2.371 e 0.7929       (8) 

where Φnormalized is the normalised cycle life of the battery and Δδ is the cycle depth. 

 

Figure 10. An exponential model fit to ΔDOD - cycle life data from Wang et al. [28]. 

2.4 End of life 

When the battery can no longer meet its performance requirements, it has reached its 

EOL, and it has to be removed from the application. Being able to properly define this 

point is important, because it affects both the system performance and safety. If the 

battery has degraded too much, it may not be able to respond to the requirements set 

by the application where the battery is used. Also the risk of a critical failure happening 

in the battery pack will increase when the battery degrades. 

For electric vehicle (EV) batteries a typical definition for EOL is when 70–80% of the 

original energy capacity is remaining [30] [31]. This originates to a standard established 

by the US Advanced Battery Consortium (USABC) in 1996. According to this standard 

the EOL has been reached when either the net delivered capacity of a cell, module or 
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battery is less than 80% of its rated capacity or the peak power capability is less than 

80% of the rated power at 80% DOD [32]. Also a more recent standard for electric road 

vehicle batteries, IEC 62660 [33], defines 80% as the test termination criteria for all 

performance indicators, including capacity and power.  

For industrial applications—including stationary energy storages—the IEC 62620 [34] 

standard defines that the battery is at the end of its life when the remaining capacity has 

dropped to 60% of the rated capacity. Similar EOL criterion is defined in IEC 61960 [35] 

for portable applications. According to [34], the battery should last at least 500 cycles 

before reaching its EOL. 

2.5 Second-life batteries 

When EV batteries have reached their EOL criteria (80% of nominal capacity) they still 

retain significant amount of energy that could be used in e.g. stationary applications (EOL 

criteria 60% of nominal capacity). These applications include both residential and 

industrial applications as well as energy utility and off-grid storages. Battery history and 

SOH are considerable determinants in the life cycle performance of second-life battery 

packs. Safety of second-life batteries strongly relates to the main aging mechanism and 

to the history of operating parameters during the lifetime of the cell [36]. The usage profile 

of the second-life application is important due to their impact on the degradation and 

safety of the second-life battery pack. The nominal capacity drop from 80% to 60% can 

be within years if ∆DOD is high, whereas cycling between small ∆DOD can lead to 

second life time of decades [37]. However, it is still unknown if cells after a less 

demanding first life use are capable of showing good performance in demanding second 

life applications; and if batteries aged with severe first life conditions are able to provide 

a stable second life performance in less demanding applications. For this reason, it can 

be suggested that stress factors addressed in Section 2.3 should be minimised in the 

case of second-life batteries, thus using optimal or at least low stress operation 

conditions.  
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3 Battery storage systems 

3.1 System description 

Figure 11 illustrates a typical ESS including the main subsystems, whereas Figure 12 

shows only the most important functional blocks, i.e., the energy storage (ES), the PCS, 

and the energy management system (EMS).  Large batteries are typically installed in 

racks and placed together with PCS and other hardware in cabinets or in containers. The 

EMS controls the battery and the PCS based on the provided input by the user and the 

subsystems. 

 

Figure 11: Energy storage system. [38] 

 

Figure 12. System-level layout of an ESS. 

Batteries are equipped with a battery management system (BMS), which monitors the 

voltage of each cell as well as the system current and temperature as well as balances 

the cells to be in equal SOC. Other typical tasks of a BMS are the estimation of the SOC, 

SOH, and remaining useful life (RUL), and they typically also provide limitations for the 

maximum allowed current or power and give warning signals in case these limits are 

violated. Depending on the severity of the violation, the BMS may stop the operation to 

prevent permanent damage to the battery. 
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3.2 Energy capacity 

Installed energy capacity is specified in the data sheet. Energy capacity is expressed in 

kWh and refers to the available energy at specified ambient temperature and power or 

current. Less capacity may be available at lower temperatures or at higher rates. 

Delivered energy at the alternating current (AC) side differs from the installed energy 

storage capacity.  

3.3 Maximum power 

Maximum charging and discharging power refers to the maximum continuous charging 

and discharging power at AC side. It is typically specified in the data sheet and expressed 

in kW. For storage applications with low P/E ratio, the maximum power is typically limited 

by the PCS. Some ESS data sheets provide separate specifications for the PCS and the 

ES. Moreover, the data sheet may specify maximum continuous current instead of 

power. In these cases, the system integrator should specify the maximum power at the 

AC side for the complete ESS.  

Data sheet often provides also a peak-power rating, which may be considerably higher 

than the continuous rating. The battery is typically capable of providing short-time peak 

power of several times the nominal power, but the duration is only in the order of tens of 

seconds or a few minutes. For example, the data sheet of TESVOLT TS HV 70 [39] 

specifies a rate of 1C for continuos power and a rate of 4C for peak-power for a maximum 

duration of 20 s. The specified duration shall not be exceeded. In general, the loading at 

peak power may cause rapid heating and additional stress to the battery, and hence, it 

should only be used intermittently when necessary. In practice, the peak-power is often 

limited by the PCS, which may not be capable of such high overloads. For example, the 

data sheet of BYD B-Box 13.8 [40] specifies 12.8 kW continuous output power and 

13.2 kW peak output power for 60 s. The overloading is so low that the peak-power rating 

is likely limited by the PCS.  

3.4 Efficiency 

The efficiency of LIBs was addressed in Section 2.1.4. When determining the energy 

efficiency of a storage system, one must take into account also the losses that occur in 

the power electronic converters and grid interface. The efficiency of the power electronic 

converters depends on the operating point. The efficiency is low at very low power and 
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high (>95%) for the most of the operating range [41]. The maximum efficiency is typically 

obtained in the vicinity of the nominal operating point, i.e., full power. The maximum point 

of the combined inverter and battery efficiency depends on the matching of the battery 

and the inverter, and specifically, on the nominal continuous power of the battery. The 

inverter is typically matched to provide the nominal power of the battery.  

The efficiency characteristics of an ESS with a P/E ratio of 1:1 are illustrated in Figure 

13, where the x-axis is normalised to the rated power, and hence, is represented in per 

unit (p.u.) values. The characteristics of the inverter were obtained from [41], in which a 

192 kWh / 248 kW grid-storage system was modelled in detail and validated with 

experimental data. It is evident that in this case the efficiency is poor at low power, and 

consequently, that long-term operation at low power should be avoided.  

 

Figure 13: Typical discharge efficiency curves for an energy storage system with a P/E ratio of 
1:1. The same curves apply for charging as well. The average efficiency was calculated for full 
range and for a limited power range from 0.06 p.u. to 1 p.u, in which the efficiency is higher than 
85%. 

The efficiency characteristics of a commercial SMA Sunny Tripower STP 60 inverter are 

and the  shown in Figure 14. This state-of-the-art inverter has higher peak efficiency and 

average efficiency, and especially, its efficiency characteristics at low power are far 

superior to the former case shown in Figure 13. The corresponding efficiency curves for 

an ESS are shown in Figure 15.  
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Figure 14: Efficiency chart of a SMA Sunny Tripower STP 60 inverter. [42] 

 

Figure 15: Efficiency curves for a SMA Sunny Tripower STP 60 inverter combined with a battery 
of P/E factor of 1.  

3.5 Costs 

Prices of battery packs for EVs and grid storage applications are declining rapidly [43]. 

In 2015, a decline of 8% for market leaders and 14% for others for EV battery packs was 

estimated in [44]. The data for these estimates and the price projections are shown in 

Figure 16. However, it was pointed out in [43] that the decline has been faster. Evolution 

of system cost made by Deutsche Bank is shown in Figure 17. Deutsche Bank estimated 

in 2016 in a report [45] that the average cell cost and the average stationary energy 

storage system cost would be 160 $/kWh and 944 $/kWh in 2018 and 150 $/kWh and 

825 $/kWh in 2020, respectively. The difference between the EV battery pack cost and 

stationary system cost is mainly caused by the inclusion of the PCS, EMS, switches, 

supervisory control and data acquisition (SCADA), etc. in the stationary systems that are 

not present in the EVs, as well as different scales in the volumes. IRENA reported the 
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prices of different lithium-ion technogies for grid storage applications in 2014 and cost 

estimates for 2017 and 2020 in [38]. The costs are shown in Figure 18. The data and 

cost projections by the Deutsche Bank are considered up-to-date and useful, as it 

includes also the stationary storage costs. The cost of cells is converging, but the cost 

of ESS is still projected to be declining at an annual rate of 5–8%.   

 

Figure 16: Forecasted battery pack prices for EVs. [44] 

 

Figure 17: Evolution of LIB cell and system cost for EV and stationary storage applications. [45] 
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Figure 18: Cost estimates of different LIB technologies for grid storage applications. [38] 

3.6 Modelling of battery storage systems 

Battery characteristics are conventionally expressed in current/voltage/SOC (I/U/SOC) 

domain, in which electrical quantities and are used to model the system. Current is 

regarded as an input, and other quantities are then regarded as outputs. The SOC (Θ in 

Ah and θ in p.u. values), terminal voltage (Ub), terminal power (Pb), and SOE (Ψ) can be 

estimated by using electrical equivalent circuits: 

 ( ) ( 1)t t I dt       (9) 

 
nQ




   (10) 

 b ocU U RI    (11) 

  b ocP I U RI    (12) 

 
oc( ) ( 1)t t U I dt       (13) 

where the current was defined positive for discharge, which is typical for battery 

modelling, although opposite to the conventions used in power systems. Also power and 

energy losses and instantaneous efficiency can be calculated. The above equations 

represent the battery operation. This kind of modelling is accurate, but the model is 

complex and highly nonlinear. Moreover, for modelling of a complete ESS, the PCS 

needs to be modelled separately, which adds complexity.  
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In power systems, the level of abstraction is higher, and linear or piecewise-linear models 

are used to ensure high performance in numerical optimisation. The variables of interest 

are the applied power and the state of energy (SOE), i.e., P/SOE domain is used. Here, 

the applied power is regarded as an input, and the SOE is regarded as an output. 

However, because the terminal voltage, current, and internal resistance are not involved, 

the connection between the applied AC discharging or charging power (Pdch and Pch) and 

the SOE (Ψ) is made through the efficiency:  

 

dch

dch

ch ch

1
( ) ( 1) ,  for discharging

( ) ( 1) ,  for charging

t t P dt

t t P dt






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  (14) 

 
nE




   (15) 

This efficiency is the total efficiency of the power conversion, i.e., it includes also the 

efficiency of the inverter. Examples of the efficiency characteristics were shown in Figure 

13 and Figure 15. In general, a look-up table or a mathematical function in respect to the 

SOE and power can be used. However, these would result in a nonlinear model, which 

is undesirable. A linear model can be obtained by using piecewise-linear efficiency curve 

or a constant efficiency. As was discussed in Section 3.2 and illustrated in Figure 13 and 

Figure 15, the total efficiency curve is fairly flat for the most of the operating area. The 

use of constant efficiency will result in fairly high accuracy, if the low-efficiency regime at 

very low power can be avoided and low E-rates are used.  

The relationship between the SOE and the SOC can be represented as 

 ocU    (16) 

The OCV is a nonlinear function of the SOC, and hence, also the SOE is a nonlinear 

function of the SOC. As an illustration, the OCV vs SOC as well as the SOE vs SOC 

curves for a commercial Kokam 40-Ah NMC cell are shown in Figure 19. The OCV curve 

was obtained from [46]. The nonlinearity of the OCV curve is clearly seen at the inflection 

points at approximately 5% SOC and 65% SOC, where the slope changes significantly. 

Also the effect of cut-off voltages can be evaluated here. The cell datasheet specified 

2.7 V as the minimum voltage and 4.2 V as the maximum voltage, while the module 

datasheet specified 3.0 V as the minimum voltage and 4.15 V as the maximum voltage. 

The nominal capacity was 40 Ah, while the measured capacity for the module-specified 

cut-off voltages was almost 43 Ah [46]. For grid storage applications, it is common to 
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specify a low cut-off voltage in the order of 3.2–3.3 V, which further narrows the voltage 

range, and consequently, reduces the useable energy. However, as a trade-off, it 

provides more stable voltage and likely a longer lifetime.  

 

Figure 19. Interdependencies between OCV, SOC, and SOE for a commercial Kokam 40 Ah NMC 
cell. Left panel: OCV vs SOC. Right panel: SOE vs SOC. A linear curve was drawn to guide the 
eye. 

3.7 Pilots’ storage systems and duty cycles 

Battery systems in the INVADE pilot sites are different and they are used in various 

applications. Brief descriptions of the pilots are given in [6]. The offered flexibility services 

are provided in [5], and some preliminary information about the storage requirements are 

gathered in [3].  

Some basic information of each pilot site and their storages is presented in Table 5. Even 

though only the Norwegian pilot has decided the storage supplier, the preliminary 

choices indicate that two pilots will use similar second-life batteries of LMO–NMC 

technology and two pilots will use NMC technology. The P/E ratio is in the order of 1:1 

for the Bulgarian, the Spanish, and the Netherlands pilots, and approximately 3:2 for the 

Norwegian pilot. These ratios are fairly low, but continuous use at a rate of 1C may result 

in moderate heating. Furthermore, the typical power levels will be lower than the rated 

power capacity. For example, the typical cycle for the Spanish pilot is 100 kW discharge 

for 30 min, which equals to approximately 25% cycle depth at a rate of C/2. These ratios 

are low, which ensures good electrical and thermal performance and long lifetime. 

Furthermore, the low ratios also minimise the effect of rate and temperature stressors. 
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Table 5. Applications and characteristics of the batteries used in the INVADE pilot sites. 

Pilot Application Total capacity Battery type 

Bulgaria Centralized battery for hotel and restaurant, 
connected to PVs. 

200 kWh / 200 kW* NMC* 

Norway 30 residential batteries connected to PVs, 
EV-chargers and smart heating systems. 
One battery connected to PV and 11 smart 
EV-chargers.  

30 x 4,2 kWh / 6 kW 
(residential) 

LMO+NMC  

(Nissan 2nd life) 

The Netherlands Centralized battery next to an office building. 
Local balancing: solar panels, windmills, EV 
charging. 

138 kWh / 140 kW* NMC* 

Spain Backup battery storage system connected to 
the grid. Secures electricity supply for critical 
buildings. Can also be used to balance 
production and consumption in the area. 

200 kWh / 200 kW* 
(100 kWh for backup, 
100 kWh for balancing) 

LMO+NMC* 

(Nissan 2nd life) 

* Preliminary information, definitive selection and purchase process not yet concluded. 
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4 Optimal operation and control of storages 

4.1 Objective functions 

The objective functions for the flexibility management controller algorithm for prosumers 

and distribution system operators (DSOs) were defined in [2] and [1]. These objective 

functions are described and represented in this section to illustrate the complexity of the 

optimization problem. Original notation is used in the equations of this section. As the 

notation used in the equations of [2] and [1] was totally different than the notation used 

in this report, the notation of this section is totally different than in rest of this report. The 

reader should refer to the original reports for the notation and for more details regarding 

the objective functions.  

4.1.1 Prosumer objective function 

The value of flexibility for prosumers is dependent on the tariff/contract setup, capacity 

limitation, cost for different types of flexibility and other parameters. For these reasons, 

the objective function for prosumers will vary from case to case, including from pilot to 

pilot, but also within pilots. However, in general terms, we can state that the objective is 

a cost minimization function, subject to a set of constraints, where some are technical 

and some more related to commercial/contractual terms.  

For prosumers the objective is to minimize the total expected costs, consisting of costs 

for the electricity retail contract (energy related fee), electricity taxes, grid contract 

(energy and peak demand charge), and minus revenues from selling surplus electricity 

back to the grid. Finally, the costs for activating flexibility are included. This is formulated 

in Equation (17). 

 
   retail-buy grid-buy tax buy VAT retail-sell grid-sell sell

peak peak VAT flexibility

min t t t t t t t

t T

z P P P P P P

P P

 

 



     
 

 


  (17) 

This objective function includes the flexibility operator (FO) activation cost for executing 

flexibility and the minimization cost for prosumers during periods without DSO or balance 

responsible party (BRP) requests. Other prosumer’s economic compensations like the 

availability fee should be considered in the settlement process but they are not included 

in the operation phase.  
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Furthermore, the objective function reflects the total cost per period (t) that a prosumer 

has during each scenario. Scenarios represent a possible realization of the uncertain 

parameters.  

The objective function can be different in each country or even region according to the 

electricity tariff structure. According to D4.1 Overall INVADE architecture [4], the 

prosumer services covered in this document are defined as:  

ToU optimization is based on load shifting from high-price intervals to low-price intervals 

or even complete load shedding during periods with high prices. This optimization 

requires that tariff schedules are known in advance (e.g., day-ahead) and will lower the 

Prosumer’s energy bill.  

kWmax control is based on reducing the maximum load (peak shaving) that the 

prosumer consumes within a predefined duration (e.g., month, year), either through load 

shifting or shedding. Current tariff schemes, especially for commercial and industrial 

(C&I) customers, often include a tariff component that is based on the prosumer’s 

maximum load (kWmax). By reducing this maximum load, the prosumer can save on 

tariff costs. For the DSO, this kWmax component is a rudimentary form of demand-side 

management.  

Self-balancing is typical for prosumers who also generate electricity, e.g., through solar 

photovoltaic (PV) or combined heat and power (CHP) systems. Value is created through 

the difference in the prices of buying, generating, and selling electricity (including taxation 

if applicable). Note that solar PV self-balancing is not meaningful where national 

regulations allow for administrative balancing of net load and net generation. 

4.1.2 DSO objective function 

The DSO objective function is a service that will be utilized in the Spanish pilot. DSO 

flexibility mainly refers to avoiding thermal overload of system components by reducing 

peak loads where failure due to overloading may occur. This is seen as an alternative 

approach to installation of larger, more expensive transformers and cables. When a DSO 

requests flexibility, the FO delivers the requested flexibility by a portfolio of prosumers 

with flexible resources. By assessing the cost and availability of the different resources 

in the flexibility portfolio, the FO schedules and activates the resources correspondingly. 

The objective functions for the DSO and the FO are shown in Equations (18) and (19), 

respectively. They are further discussed in D5.3 [1]. 
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    (19) 

In a case where the forecasted demand in a local distribution grid is higher than what the 

local cable or transformer can handle, a pre-charged battery can discharge and provide 

power in the local node. The battery has to be placed on the other side of the critical 

component in order to solve the problem. As batteries are always available, they provide 

stable, valuable flexibility to the FO. 

4.2 Modelling of storage systems  

4.2.1 State of energy 

The SOE is dictated by the cumulative net energy of the battery, i.e, the difference 

between the charged and discharged energy, and it needs to stay within the specified 

minimum ( min ) and maximum ( max ) limits: 
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 min max( )t     (21) 

where   is the SOE, sT  is the time step, 
ch  is the charging power, 

dch  is the 

dischaging power, 
ch  is the total ESS efficiency during charging, and 

dch  is the total 

ESS efficiency during discharging.  

Upper bounds for charging and discharging power are defined as 
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  (22) 

where 
chP  and 

dchP  are the power constraints regarding charging and discharging, 

respectively, and the variable V(t) is a binary variable which ensures that charging and 
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discharging cannot take place during the same time step. This can happen if charging 

and discharging are either zero or limited to a specific range between lower and upper 

bounds. This kind of constraint is relevant due to the fact that the inverter efficiency 

decreases rapidly at low power levels and in practise these low charging or discharging 

are never applied. If the time step is long enough (like one hour), then this constraint is 

hardly needed as the low power level can be interpreted as an average value over the 

whole time step and simultaneous charging and discharging will not appear. The power 

constraints will be addressed in more detail in Section 4.2.7. 

All the equations above are applicable for any storage process, like a hot water heat 

storage. What makes battery storages different is the nature of ageing of the storage 

caused by the way charging and discharging are carried out. This degradation is a real 

cost of the use of the battery storage and it has to be taken into account in designing the 

operational policy and calculating the costs of the storage. The cost of degradation is 

addressed in Section 4.3.  

4.2.2 Energy capacity 

Constant energy capacity will be used in the model. That is, the rate effect and the 

temperature effect will not be taken into account.  

4.2.3 Maximum charge and discharge power 

Continuous power ratings will be used in the model, i.e., peak-power operation is not 

modelled. The power variable represents the average power during a time step.  

4.2.4 Efficiency 

A constant efficiency will be used in the first phase. The use of constant efficiency is 

expected to cause only a small modelling error in most cases. However, in case of high 

share of operation in the low-efficiency regime of the PCS is expected, a piecewise linear 

model may be adapted to improve the accuracy.  

4.2.5 Self-discharge 

Self-discharge is not taken into account in the model, because LIBs have very low self-

discharge rates. Self-discharge characteristics are in the order of few percent in a month. 

Typical characteristics for different chemistries were shown in Table 1. These rates are 

insignificant from the point-of-view of modelling.  
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4.2.6 Performance degradation due to ageing 

The useable energy capacity is impacted by the performance degradation due to ageing. 

The time-scale of ageing is much longer than the prediction horizon of the optimisation 

algorithm. Therefore, the energy-capacity parameter can be a constant. However, the 

parameter needs to be adapted once in a while to the measured or estimated capacity. 

In case diagnostic capacity check-up tests are being performed periodically, as was 

proposed in D6.3 [7] for centralised storages, the parameter shall be adapted to the 

measured value after each check-up test, which is performed approximately once in a 

month. For distributed storages at homes, a linear relationship between cumulative 

discharged energy and the SOH shall be assumed. 

The energy efficiency may be impacted by the performance degradation due to ageing. 

However, this effect is not taken into account in the model.  

4.2.7 Limitations and constraints of operation 

Manufacturer-specified limits regarding current, voltage, and temperature should not be 

violated in any case. The BMS monitors these values and reduces maximum charging 

and discharging current in case these limits are approached. As a consequence, tapering 

of current is activated when a battery approaches fully-charged or fully-discharged state, 

and when the operating temperature is high or low. When approaching fully-charged 

state, tapering of current is initiated when the highest-voltage cell reaches the specified 

maximum voltage. The current is then tapered to avoid the voltage to exceed the 

specified maximum cell voltage until a cut-off current is reached. When approaching low 

cut-off voltage, the tapering is initiated when the lowest-voltage cell reaches the specified 

minimum voltage. The current is then tapered to avoid the voltage to exceed the specified 

minimum cell voltage until a cut-off current is reached. However, all BMSs or EMSs do 

not have this kind of tapering implemented when approaching fully-discharged state. 

Instead, they may abruptly interrupt the current to zero when the minimum voltage is 

reached.  

During charging, the boundary between the normal operation and the voltage-limited 

operation depends on the rate, the internal impedance, and the OCV characteristics. 

Typical SOC values for the boundary at C/3, 1C, and 2C rates are 95%, 90%, 80%. 

However, these numbers vary and depend especially on the cell chemistry. During 

discharging, the actual boundary between the constant-current or constant-power 

operation and the current-tapered or voltage cut-off operation is typically close to 0% 

SOC for discharging with rates of less than 3C. Nevertheless, the power limiting region 
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should start at around 10% SOC to prevent abrupt ending of the discharge due to 

accidentally reaching the cutoff voltage. Also the efficiency starts to reduce significantly 

already before that, and the heat generation rate increases rapidly as the SOC 

approaches 0%.  

For full utilization of the battery performance without voltage-based limitations, a SOE 

range that allows full-power operation can be defined. Moreover, this region can be 

further reduced in order to take into account other aspects such as increased rate of 

aging at high SOE and lower efficiency at low SOE. 

Different charging and discharging power constraints can be used to avoid unfavourable 

operating points. Linear charging and discharging power constraints can be used to 

implement tapering due to the need to strictly avoid exceeding the specified maximum 

cell voltage during charging and to avoid abrupt ending of discharge due to exceeding 

the specified minimum cell voltage during discharging, respectively. Moreover, the 

detrimental effects caused by high-rate charging at high cell voltage are reduced too. 

However, the linear constraint works optimally only for very short time steps, for which 

the SOE cannot change much during a time step. For longer time steps, another linear 

constraint needs to be defined: maximum average power for a given time step. This 

constraint defines the power that fully charges or discharges the storage up to the 

defined maximum or minimum SOE during a time step, respectively. The applied power 

is also limited by the manufacturer-specified rated discharging power and rated charging 

power. Additionally, minimum SOE and maximum SOE may be constrained to avoid 

certain operating points, which might, e.g., be detrimental to the lifetime.  

Constraint to avoid current tapering: 
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Constraint to limit average power due to long time step: 
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In addition to constraints on the maximum charging and discharging power, a constraint 

on the minimum power during operation can be defined as well to avoid operation in the 

low-efficiency regime of the inverter. In this case, there is a minimum power threshold 

that prevents charging or discharging at a lower power than the threshold power. If the 

power reaches the threshold power, the charging or discharging is terminated.  

The different constraints regarding the maximum charging power are illustrated in Figure 

20 for an ES system specified with an E-rate of 1E, a maximum SOE of 95%, and a time 

step of 15 min. The total constrained charging power regime is the area within these 

limits and constraints. The time step has a high impact on the slope of the maximum 

average power during a time step. The full-power regime is reduced as the time step is 

increased. For 15-min time step and 95% maximum SOE, the power of a 1E-rated 

storage needs to be reduced when exceeding approximately 75% SOE. In a similar 

manner, the different constraints regarding the maximum discharging power are 

illustrated in Figure 21 for an ES system specified with an E-rate of 1E, a maximum SOE 

of 95%, and a time step of 15 min. 

 

Figure 20: Charging power constraints (rated power, constant-power mode, time-step, minimum 
power, maximum SOE) for an ESS specified with an E-rate of 1E, a maximum SOE of 95%, and 
a time step of 15 min. The shaded area shows the total applicable charging power regime.   
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Figure 21: Discharging power constraints (rated power, constant-power mode, time-step, 
minimum power, maximum SOE) for an ESS specified with an E-rate of 1E, a maximum SOE of 
95%, and a time step of 15 min. The shaded area shows the total applicable discharging power 
regime.   

4.3 Cost of degradation 

Battery operators must be able to submit bids that the marginal operating costs of the 

ESS. These marginal costs should include all the variable cost factors, also the cost of 

battery degradation caused by each cycle. The methodology described in [47] is adopted 

as a baseline. The cycle depth (ΔDOD) has a substantial impact on the total attainable 

number of cycles. A model for the typical cycle lifetime vs ΔDOD characteristics from the 

literature were developed in Section 2.3 and presented in Figure 10 and Equation (8). In 

Figure 22, that model is adopted into a case in which the 100% cycle depth corresponds 

to 1000 cycles.  
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Figure 22. Normalized cycle life and the corresponding cycle life loss. 

With a cycle starting from a full charge towards the depth of 20% and then back, the 

maximum number of cycles is about 11,245 (assuming that 1000 cycles is the maximum 

amount of cycles having 100% depth). That is, a cycle with ∆DOD (or Δδ) of 20% uses 

one cycle of out the total of the above mentioned 11,245. This means that every cycle 

from 100% to 80% SOE consumes 1/11,245 = 0.000089 (8.89*10-5) or 0.009% of the 

total life. If the investment cost of a battery per storage volume is 1000 €/kWh, then the 

cost of one 20% DOD cycle is 1000 €/kWh*1/11,245  = 0.09 €/kWh.  

If we denote the battery investment cost by K, the rated capacity of the storage by En 

and the discharge efficiency by ηdch, then we can write a specific investment cost (c0) for 

a battery storage as follows: 

 0 dch

n

K
c

E
   (27) 

By defining the battery cycle loss function     this cost function can be modified into 

degradation unit cost function, as follows: 

 bdch

n

( ) ( )
K

c C
E

 


        (28) 

where Cb is the replacement cost of the battery.  

We describe two alternative approaches that has been used in the literature. The first 

one, the direct linearization (as we call it here), is based on using the degradation cost 

curve (i.e., specific investment cost times the cycle life loss function) directly in defining 

the cost. In this method the battery is handled as one unit and the nonlinear degradation 
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cost curve is linearized in piece by piece. The second method is based on the well-known 

rainflow algorithm that has its use in material fatigue analysis. In this method, the battery 

is divided into evenly sized segments. Each segment corresponds to a specific cycle 

depth having specific marginal degradation cost. This is obtained as a derivative of the 

linearized degradation cost. The cost of degradation is then calculated as marginal cost 

multiplied by activity level (discharge) in each segment and the total cost is obtained by 

summing up over the segments. So, both of the methods use the same input data, but 

they use it in alternative ways. In what follows, we define these methods in a detailed 

enough level and then compare the results obtained by the methods we have 

implemented in GAMS. 

4.3.1 Direct linearization 

The cost of degradation based on the cycle depth is a nonlinear function. Figure 22 

illustrates a ten-segment linearization of one example of such a curve, where the depth 

of discharge, delta, is defined as ( ) ( 1)t t t     . During charging, this expression 

gives negative values that are excluded, i.e., only the positive values refer to discharging 

and we allocate all the costs of degradation on discharging. 

For a battery, the points of the piecewise linear  approximation are given by their 

coordinates, (  ,    ). For any    we can find the corresponding     by using 

a linear interpolation between the points of the piecewise linear approximation with the 

help of the following set of equations using special order sets of type 2 (SOS2) [48]: 
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At most two variables within a SOS2 can have non-zero values. The two non-zero values 

have to be adjacent. The most common use of SOS2, and the one applied here, is to 

model piecewise linear approximations to nonlinear functions. 

The difference in DOD (or SOE) in consecutive steps defines the value of the x-axis 

variable and  bC    gives the corresponding cost. In other words, in each time step 
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the change in DOD (x-axis value) is measured, its position is defined using the segments, 

and the corresponding cost is determined on the y-axis.  

Total cost of degradation over the planning period can now be defined as 

 deg t

t

C c   (32) 

This is part of the objective function that will be defined below. 

This method has no sense of history: it focuses entirely on the change from the previous 

state to the present state. The easiest way to improve the method is to take into account 

also the (possible) discharge in the previous step by simply adding it to right hand side 

of the Equation (29): 1t t t      . This addition is capable of noticing discharge 

on two consecutive steps—a small improvement over one step process. The degradation 

cost function looks now as follows:  

 b 1( )t t tc C         (33) 

4.3.2 Segmenting the cycle depth 

The rainflow counting algorithm, which is extensively used in materials stress analysis to 

quantify the cumulative impact of cycles, can also be used in battery life assessment 

[47]. The rainflow method [47] identifies cycles when a SOE profile with a series of local 

extrema (i.e. points where the current direction changed) is given: s0, s1, …, etc.  

 

Figure 23. Using the rainflow algorithm to identify battery cycle depths. [47] 
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The algorithm advances as follows: 

1. Start from the beginning of the profile (as in Figure 23(a)). 

2. Calculate  
1 0 1s s s   , 

2 1 2s s s   , 
3 3 2s s s    

3. If 2 1s s    and 2 3s s   , a full cycle of depth 2s associated with s1 and s2 

has been identified. Remove s2 and s3 from the profile and repeat the 

identification using points s0, s1, s4, s5, … 

4. If a cycle has not been identified, shift the identification forward and repeat the 

identification using points s1, s2, s3, s4, … 

The identification is repeated until no more full cycles can be identified throughout the 

profile. 

The remainder of the profile is called the rainflow residue and it contains only half cycles. 

A half cycle with decreasing SOE is a discharging half cycle, while a half cycle with 

increasing SOE is a charging half cycle. For example, the SOE profile shown on Figure 

23(b) has two full cycles of depth 10% and one full cycle of depth 40%, as well as a 

discharging half cycle of depth 50% and charging half cycle of depth 50%. 

The rainflow algorithm cannot be integrated directly within an optimization problem, but 

following the method described in [47] to implement the rainflow counting algorithm 

makes it possible to use it in an optimization model. In this model the total life lost L from 

a SOE profile is assumed to be the sum of the life loss over all the number of cycles 

identified by the rainflow algorithm.  

The formulation of the rainflow method implementable into an optimization model thus 

divides the battery into J segments and keeps them separate. They are interconnected 

only by summation.  Each segment has for each time step the SOE, the charging power, 

and the discharging power variables.  The advantage obtained by this formulation is to 

avoid using the SOS variables needed to keep track of the change in the SOE and the 

degradation cost related to the change.  

The equations describing the battery dynamics are now the following: 
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V is a binary variable that prevents simultaneous charging and discharging.  

When discharging the energy content of the battery develops as (assuming 60-min time 

step and moving into relative values by dividing both sides by the rated capacity En): 
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The incremental ageing from this cycle is    . The marginal ageing is obtained by 

taking a derivative with respect to discharging power 
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To define the marginal cost of ageing we include the battery replacement cost Cb into 

the marginal cycle ageing and construct a piecewise linear approximation function c. This 

function consists of J segments that evenly divide the cycle depth range from 0 to 100 %. 

For each segment: 
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The degradation cost for each segment using the battery investment cost K can now be 

defined as 
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The cost differences of the adjacent segments form the core of the definition. Defining 

the cycle aging cost function as    
2

100     (    0,1,4,9,16, ,100  ), the 

cost vector obtained is then cj={1,3,5,7,9,11,13,15,17,19}.. 

The cycle ageing cost is a sum of the cycle aging costs associated with each segment 

over the horizon: 

  dch
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The term in the brackets defines the amount of energy discharged. 

4.3.3 Comparing the modelling approaches 

Figure 24 compares the rainflow algorithm, the optimization compatible rainflow method 

[47] and the degradation cost linearization method [48]. We use the same cycle aging 

cost function as above:    
2

100     . Both the OptRain and the rainflow methods 

end up in the same degradation costs but the routes used to calculate it differ. The basic 

linearization method LinearZ takes into account only the change in the DOD and 

interprets it as cycle depth when defining the cost. This leads to lower costs of 

degradation because the deeper cycles are left unnoticed. The slightly advanced method 

LinearZ_2 looks one step backward and the results improve: The costs in this example 

exceed those of the rainflow based methods. The smaller costs of the LinearZ method 

anticipate large variations for the state of energy of the battery in the simulations. The 

rainflow methods are capable of identifying larger cycles which leads to higher and more 

realistic cost estimates, as seen in steps 9, 12 and 13 in the OptRF line and the 40% 

cycle cost of 16 units in the original RainFlow method. 

Notice that the energy segments at the top table are not all the time populated from 

bottom to the top. The cost of discharge is smallest for the first (shallowest) segment so 

it is discharged—and charged—at first. To get energy back from the deeper segments 

is possible only by using larger cycle depth at higher cost. The algorithm keeps the 

charged energy in its original segment until it is actually discharged at a cost 

corresponding with its depth. 
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Figure 24. Battery operation example (referring to Figure 23). Using the rainflow algorithm to 
identify battery cycle depths. Storage: energy by segment; Discharge: discharge by segment; 
OptRain: costs of discharge by segment; rainflow: costs of identified cycles; LinearZ: Degradation 
cost function linearization method (only discharging generates costs); LinearZ_2: Consecutive 
DOD summed up before cost calculation. 

4.3.4 System definition for the experiments 

In this section we show some properties of the models defined above and compare 

alternative formulations using the system shown in Figure 25. The load, or demand L(t), 

is given and the battery is used to minimize energy procurement costs consisting of 

energy and peak power costs. In the experiments below we study system behaviour in 

two basic modes of battery use. In addition, we compare alternative battery model 

versions in several dimensions. All calculations are carried out with 15-min time step 

(exceptions are mentioned) which will likely be the applied time step in the electricity 

markets in future. The price and load development over one day is illustrated in Figure 

26. Battery characteristics are the ones shown in Figure 22. The SOE and ΔDOD curves 

are approximated by 10 segments; J = {1, … ,10}. 

Time step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Storage SoE, %

10 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1

20 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1

30 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1

40 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1

50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SoE, % 60 10 20 30 20 30 40 50 40 30 40 30 20 10 60

Discharge Costs

SoE[%] 10 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

20 3 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

30 5 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

40 7 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

50 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

60 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OptRF 43 0 25 0 0 1 0 0 0 1 3 0 1 5 7 0

RainFlow 2 1 1

16

43 25 25

delta_DoD 50 10 10 10 10 10 10 10 10 10 10 10 10 50

rho 100d^2 25 1 1 1 1 1 1 1 1 1 1 1 1 25

LinearZ 31 25 1 1 1 1 1 1

LinearZ_2 40 25 1 1 4 1 4 4

segments

16
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Figure 25. System setup for model experiments. 

 

Figure 26: Electricity price and load. The 24-hour planning horizon is broken down into 15-min 
time steps. 

4.3.5 Experiments with objective functions 

We compare the model outcomes with three alternative objective functions. The first 

describes pure price arbitrage, i.e. trading energy for profit, without degradation costs, 

the second is the same with degradation costs included and the last one adds still one 

component: the peak power cost factor: 

  dch ch

smax ( ) t t

t

p t T P P
 

   
 
   (45) 

  dch ch

s degmax ( ) t t

t

p t T P P C
 

    
 
   (46) 

  dch ch

s deg px pxmax ( ) t t

t

p t T P P C P C
 

     
 
   (47) 
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Ppx is the peak demand over the period and Cpx is the corresponding peak power cost 

per power unit. There are now three components in the objective function: minimizing 

both energy procurement costs and peak power cost and taking the degradation costs 

into account. Peak demand is defined as the highest power a customer takes from the 

grid during the planning period: 

 
ch dch

px t t tP P P d     (48) 

where dt defines the time-dependent demand of the battery owner. By timing the 

discharge it is possible to drive the peak demand down.  

We have nine cases to compare: three modelling methods and three objective functions, 

which are all shown in Figure 27. The energy trading case without degradation costs (left 

panel) shows that the battery use is substantial and the model outcomes are the same 

for all the degradation cost modelling approaches—naturally as the approaches differ 

only in degradation costs are included in the cost definition. In the middle panel we 

include the degradation costs to the energy trading case. Clearly they make energy 

trading non-profitable as the battery stays idle all the time—no matter how the 

degradation costs are implemented. The right hand panel shows the impact of the peak 

power cost on the battery use economics: The battery comes active again to take care 

of peak load shaving. The OptRain method causes less ramping in the battery SOE 

compared to those of the Linearization cases. The SoE in LinZ2 ramps less than LinZ by 

taking the two last ∆DODs into account simultaneously. 

    

Figure 27: Left panel: without degradation cost; middle panel: degradation cost included; right 
panel: degradation costs and peak power costs included. (X-axis describes time: 96 15-min steps 
and 10 samples in each step = 960 samples in all.) 
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Figure 28. Peak power in the test cases. The letters a, b, and c refer to Equations (45), (46), and 
(47), respectively, and peak power is defined in Equation (48).  

Power in case (a) is higher than in case (b) due to the fact that peak power has no cost 

and high load and battery charging takes place simultaneously: the use of the battery 

increases peak power but it can be done without extra cost. In this case only energy 

trading generates revenues and costs. In case (c) the peak power is highest in OptRF 

case, as it is the only one of the approaches capable of taking the degradation into 

account in a realistic manner. The linearization approaches are limited to the short term 

events only.  

As an example, Figure 29 shows the battery usage with the original load, battery 

operations and the resulting peak power for case OptRF. The battery is used for peak 

shaving only—energy arbitrage is not economic with the price differences and 

degradation costs applied. 
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Figure 29. Timing of battery operations. Left panel: Without degradation costs and peak power 
cost. Right panel: Peak shaving when peak power has a cost and degradation costs included. 
The horizontal line describes the peak power after shaving. 

4.3.6 Experimenting with the number of customers 

In all the above results are based on a single user case with 24 hours of planning horizon. 

If we change our perspective from an individual customer to an aggregator or distribution 

network operator then the optimization problem is modified from a single user case into 

a multi battery system with possibly hundreds of batteries to be optimized. The way the 

problem is set up may have a dramatic impact on the time it takes to optimize the overall 

system. 

Next we shall compare the solution times of the two modelling approaches in a system 

consisting of 30 batteries. The linearization approach uses 10 segment piecewise 

linearization as in all the above examples and the OptRF approach continues to use a 

10 segment description of the battery storage. 

The approximate sizes of the problems are as follows: OptRF: 34,600 rows and 80,350 

columns; LinearZ and LinearZ_2 both has about 17,200 rows and 45,800 columns. The 

OptRF is about two to three times the size of the LinearZ problem due to the 

segmentation of the battery.  

The execution times for one day (24 hours in 15-min steps) are the following: OptRF: 2.3 

sec and LinearZ and LinearZ_2: 1.8 sec, so the execution run time is about two seconds 

for all the model variations. We can infer that the models are equal as to the run-time. 
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4.4 Time resolution 

The choice of time resolution is important as it decides to which extent reality can be 

modelled. Whereas batteries can, and often are modelled with a very high time 

resolution, this is normally not the case from an energy market perspective, where time 

resolution often follows the resolution of the price signals which incentivizes the use of 

flexibility.  

In energy market modelling, a one-hour time resolution is normally chosen, and is 

sufficient for a high precision optimized decision. The lower the time resolution is, the 

less physics can be taken into account, as fluctuations in real life surroundings could 

potentially violate constraints on a short time basis, which are not violated when 

resolution is lower. This also means that the longer the duration is, the more decisions 

and responsibilities have to be handled by the local system. On the contrary, the higher 

the time resolution, the more data must be handled. This kind of data can be new and 

different forecasts/predictions like a weather update, the connection of new EVs, local 

decisions made due to fluctuations or unforeseen events etc. 

In general, the time resolution should be equal to the factor that requires the highest 

resolution, which in a battery optimization case is not achievable. For example, an 

objective function maximizing the profit (savings) of a prosumer, will need to take load, 

PV production and price into account when deciding how to operate a battery, EV battery 

or other flexibility services. Although the price is updated on an hourly basis, the PV and 

load can change in a matter of seconds. With a high time resolution, fast changes in the 

system like an unexpected connection of an EV can be integrated quickly, whereas a 

low time resolution the EV will not be taken into account before a new time period starts.  

The length of the time step has direct consequences on the model operation. The longer 

the time step, the more drastic the changes from one time step to another. Figure 30 

shows the differences in SOE development when using 15-min (left panel) and one-hour 

(right panel) time step in otherwise identical models using the same input data. Figure 

illustrates that charging–discharging phenomena are the same qualitatively but the 

shorter time step makes all the changes more gradual, or the longer time step makes 

the SOE development more angular. 
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Figure 30. The impact of the length of the time-step on battery use. Left panel: 15-min time step. 
Right panel: one-hour time step. 

4.5 Optimal operation regime 

The optimal operation regime in terms of lifetime and performance can be defined based 

on the degradation stress factors, performance, and performance constraints. Based on 

the results from Sections 2.1, 2.3, 2.5, 3.4, 4.2, and 4.3, the following suggestions are 

made:  

1. The operating temperature should stay within 15–30°C. 

2. The E-rate should be fairly low (but not too low), preferably within E/5–E/2. 

3. The SOE should be kept within 10–70% for most of the time. 

4. The typical cycle depth should be fairly low, preferably less than 30%.  

In case the proposed modelling method regarding the cost of degradation presented in 

Section 4.3 is implemented in the flexibility management operation algorithm, the item 

#4 is addressed automatically. However, the items #1–3 are not directly included in the 

cost of degradation nor any of the power constraints using the default parameters 

presented in Section 4.6.  

4.6 Parameter extraction 

Parameter extraction is based on the technical specifications, data sheets, cost 

information, and typical performance and degradation behaviour of the cell chemistry.  
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4.6.1 Energy capacity 

Nominal installed energy capacity expressed in kWh specified in the data sheet of the 

ESS and defined on the ES-side shall be used.  

4.6.2 Discharging power capacity 

The nominal continuous discharging power of the ESS defined on the AC-side and 

expressed in kW shall be used.  

In case the system does not have a common specification, the maximum charge and 

discharge power need to be defined. For the PCS, the maximum AC power is specified 

in the data sheet. For the battery, the battery-limited AC-power can be approximated as 

follows: 

 
dch dch dch

b,ac inv b,dcP P   (49) 

where the 
dch

b,dcP  is the maximum discharge power at a selected voltage. Conservative 

ratings are obtained if the low cut-off voltage, i.e., the minimum voltage, is used for both 

discharging and charging. With this selection, the specified AC power can always be 

provided regardless of the SOE and SOH.  

 
dch dch dch dch

b,ac inv cut-off nP U I   (50) 

The minimum value shall be selected:  

  dch dch

b,ac invmin ,P P P   (51) 

4.6.3  Charging power capacity 

The nominal continuous charging power of the ESS defined on the AC-side and 

expressed in kW shall be used.  

In case the system does not have a common specification, the maximum charging power 

needs to be defined. The procedure is similar to the one presented in the previous 

Section for discharging power capacity. The equations for charging corresponding to 

Equations (49)–(51) are as follows: 

  

ch

b,dcch

b,ac ch

inv

P
P


   (52) 
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dch ch
ch cut-off n

b,ac ch

inv

U I
P


   (53) 

  ch ch

b,ac invmin ,P P P   (54) 

4.6.4 Charging and discharging efficiencies 

Total charging efficiency and discharging efficiency of the ESS include both the ES and 

the PCS. The specification provides typically only the optimal roundtrip energy efficiency, 

which is obtained at a low E-rate (typically in the range of E/5–E/2). Therefore, the 

anticipated average efficiency is calculated by using the estimated efficiency of the 

battery based on the methods presented in Section 2.1.2 and the efficiency chart of the 

inverter. If the inverter efficiency chart is not provided by the storage system supplier, the 

generic efficiency chart shown in Figure 13 may be used. The maximum value of the 

inverter efficiency curve can be adjusted to match the specified value by scaling the 

curve.   

4.6.5 Cycle lifetime 

A cycle life vs ΔDOD chart shall be requested from the storage supplier and implemented 

as a look-up table or as a mathematical function. If it is not provided, a generic chart 

shown in Figure 10 and presented in Equation (8) shall be used.  

4.6.6 Replacement battery cost 

A replacement battery cost expressed in k€ shall be used. The cost should include 

installation and all related costs, and it can be extracted from the offer. Anticipated cost 

decline may be applied. Estimates for the cost decline were given in Section 3.5.  

4.6.7 Minimum SOE 

A minimum SOE expressed in percentage shall be defined. It can be selected arbitrarily. 

Default value is 5%.  

4.6.8 Maximum SOE 

A minimum SOE expressed in percentage shall be defined. It can be selected arbitrarily. 

Default value is 95%.  
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4.6.9 End of constant-power region for charging 

The end of constant-power region for charging expressed in percentage SOE shall be 

defined. It depends on the E-rate, and hence, it is convenient to define it for a specified 

E-rate and then to extrapolate it to comply with the rated charging power. Default value 

is 85% specified at a rate of 1E.  

4.6.10 End of constant-power region for discharging 

The end of constant-power region for charging expressed in percentage SOE shall be 

defined. It depends on the E-rate, and hence, it is convenient to define it for a specified 

E-rate and then to extrapolate it to comply with the rated discharging power. Default 

value is 10% specified at a rate of 1E.  

4.6.11 Minimum power 

Minimum power expressed in % of rated power.  
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