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Executive summary 

The renewable energy source (RES) penetration in the electricity network is highly 

depend on the ways to manage the variations in their energy production, and many 

methods including demand-side management are available. Maturing battery 

technologies and decreasing price of batteries creates special interest in mitigating the 

fluctuations in RES energy production by adding electrical storage in electric network. 

The main focus of the INVADE project is to study possibilities to increase RES 

penetration and integration in the power system by adding storage. In this respect, the 

analysis within the project centres on the flexibility services from different types of 

batteries, namely: centralized, distributed and mobile (EVs). The focus of the work 

package 5 (WP5) is to manage several distributed flexible, and find cost-effective 

investment decision to install batteries. Deliverable D5.4 provides an advanced optimal 

battery operation and planning algorithm, and it is a complement to the D5.3.  

The report is split into two documents. The first document details the modelling 

framework for the flexibility management algorithm. Detailed model of batteries based 

on D6.2, EV model, and thermal load models are explained. The overall framework of 

optimization and the variable fixing issues and their solution approaches are presented 

in order to deal with uncertainties during operation planning. Finally, aggregated 

flexibility services that can be offered to external agents, i.e., BRPs and DSOs are 

elaborated. This document contains a detailed description of the algorithms that will be 

used in the daily operations of flexibility assets.   

The second document deals with a detailed explanation of the bi-level robust algorithm 

for optimal investment decisions on battery storage systems including optimal sizing 

and placement. In order to deal with the uncertainty modelling in the storage planning 

problems, robust optimization of storage investment is adapted. The robust 

optimization framework represents a tractable uncertainty modelling structure, which 

has a potential to be applied in large-scale systems. The proposed scheme is applied 

to 19-bus LV CIGRE benchmark grid to investigate the capability and efficiency of the 

model. However, it is not applied in INVADE pilots since our information about the 

relevant pilots is limited. 

Deliverable 5.4 presents the necessary methods and models for the development of 

the integrated INVADE platform to serve 5 pilots based on the framework described in 

D4.3. 



INVADE H2020 project – Grant agreement nº 731148 

This project has received funding from the European Union’s Horizon 2020 
Research and Innovation programme under Grant Agreement No 731148. 

Smart system of renewable energy storage based on INtegrated EVs and 

bAtteries to empower mobile, Distributed and centralised Energy storage 

in the distribution grid 

Deliverable nº: 

Deliverable name: 

Version: 

Release date: 

Dissemination level: 

Status: 

Author: 

D5.4 A 
Flexibility management algorithms 
1.0
17/12/2018 

Public     

Submitted     
 Pol Olivella-Rosell, Pau Lloret, Leon Haupt and 
Sara Barja– UPC 
Sigurd Bjarghov, Venkatachalam Lakshmanan, Hossein 
Farahmand, Magnus Korpås – NTNU
Juha Forsström, Victor Mukherjee, Ari Hentunen – VTT  
Stig Ødegaard Ottesen, Terje Lundby – eSmart 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 2 of 170 

Document history: 

Version Date of issue Content and changes Edited by 

0.1 01/10/2018 First draft, proposing outline and 
structure of the document 

H. Farahmand, S.
Bjarghov, V. Lakshmanan,
P. Olivella-Rosell, P.
Lloret

0.2 10/10/2018 Adding space heating model V. Lakshmanan and H.
Farahmand

0.3 15/10/2018 
Adding Pilot structure based on 
internal documents provided by Stig 
Ødegaard Ottesen 

H. Farahmand

0.4 16/10/2018 Adding electric water heater and EV 
model P. Olivella-Rosell

0.4 20/10/2018 Adding Battery Model S. Bjarghov

0.5 1/11/2018 Adding Information structure and the 
planning process V. Lakshmanan

0.6 10.11.2018 Chapter on Aggregated flexibility 
services 

P. Olivella-Rosell, P.
Lloret

0.7 10/11/2018 Chapter on Variable fixing technique V. Lakshmanan and S.
Bjarghov

0.8 12/11/2108 
Improve the domestic space heating 
model based on feedback received 
from Prof. Magnus Korpås 

V. Lakshmanan and H.
Farahmand

0.9 15/11/2018 Inputs from VTT to battery model Juha Forsström, Victor 
Mukherjee, Ari Hentunen 

0.91 20.11.2018 Improve battery modelling S. Bjarghov, J. Forsström,
V. Mukherjee, A.
Hentunen

0.92 24.11.2018 Final Edit 

V. Lakshmanan, S.
Bjarghov, H. Farahmand,
P. Olivella-Rosell and P.
Lloret

0.93 27.11.2.18 Chapter 11 and section 10.5 is 
completed 

P. Olivella-Rosell, P.
Lloret and V.
Lakshmanan,

1.0 14.12.2018 Addressing the reviewers’ comments V. Lakshmanan and H.
Farahmand



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 3 of 170 

Peer reviewed by: 

Partner Reviewer 

SIN Jayaprakash Rajasekharan 

ElaadNL Patrick Rademakers 

Deliverable beneficiaries: 

WP / Task 

WP5 / Task 5.3 and 5.4 

WP8 / Task T8.3 

WP10, Pilots 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 4 of 170 

Table of contents 

Executive summary .................................................................................................. 12 

1 Introduction ........................................................................................................ 13 

2 Simplified models and advanced models ......................................................... 14 

2.1 Battery model 14 

2.2 EV model 15 

2.3 Thermal load model 15 

2.3.1 Electric Water heater model 15 

2.3.2 Space heating model 15 

3 Battery model ..................................................................................................... 16 

3.1 Simple battery model 16 

3.2 Advanced battery model 16 

3.2.1 Constant voltage charging constraint 16 

3.2.2 Piecewise linearized battery efficiency 17 

3.2.3 Battery degradation 23 

3.2.4 Degradation modelling 27 

4 EV model ............................................................................................................. 31 

4.1 Introduction 31 

4.2 EV mathematical formulation 31 

5 Electric water heater model ............................................................................... 34 

5.1 Introduction 34 

5.2 Thermal load modelling – Electric water heater 35 

5.3 Electric Water Heaters (EWH), Shiftable Energy Volume 35 

6 Space Heating Model ......................................................................................... 43 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 5 of 170 

6.1 Introduction 43 

6.2 Thermal load modelling - Space heating 43 

6.3 Control limitations 44 

6.4 Flexibility 47 

6.5 Mathematical formulation 48 

6.6 Runtime constraints 49 

6.7 Time restriction of flexibility activation 50 

6.8 Identification for ‘start’, ‘run’ and ‘end’ of flexibility activation 51 

6.9 Maximum duration of flexibility activation constraint 51 

6.10 Minimum duration between successive flexibility activation constraint 52 

6.11 Maximum number of flexibility activation constraint 52 

6.12 Flexibility contract cost 53 

6.13 The complete model 53 

6.14 Illustrative example 55 

7 Information structure and the planning process .............................................. 58 

7.1 Introduction 58 

7.2 Length of planning horizon 58 

7.3 Time resolution 59 

7.4 Receding and rolling process 59 

7.5 Overall framework 60 

7.5.1 Program control flow 61 

8 Variable freezing techniques ............................................................................. 64 

8.1 Problem description 64 

8.2 Variable freezing approaches 68 

8.2.1 Approach 1: Running constraints for the entire time 

horizon 68 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 6 of 170 

8.2.2 Approach 2: Running constraints (only) for current and 

future time periods 73 

8.3 The t-1 issue 75 

8.4 Overall evaluation of approaches 76 

8.4.1 Approach 1 76 

8.4.2 Approach 2 76 

9 Pilot structures ................................................................................................... 77 

9.1 Introduction 77 

9.2 Norwegian case study 78 

9.2.1 Structure information and historic meter values 78 

9.2.2 Commercial/agreement information 79 

9.2.3 Grid contract 79 

9.2.4 Retail contract 81 

9.2.5 Flexibility 81 

9.2.6 An illustrative example 84 

9.3 Dutch case study 88 

9.3.1 Introduction 88 

9.3.2 Structure information and historic meter values 89 

9.3.3 Objectives 90 

9.3.4 Flexibility and decisions 93 

9.4 Bulgaria case study 101 

9.4.1 Introduction 101 

9.4.2 Structure information and historic meter values 101 

9.4.3 Real-time meter values in general 102 

9.4.4 Commercial/agreement information 103 

9.4.5 Flexibility 103 

9.4.6 An illustrative example 106 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 7 of 170 

10 Prosumer objective functions ......................................................................... 109 

10.1 Norwegian case study 109 

10.1.1 Periods smaller than 1 hour 110 

10.2 Dutch pilot 110 

10.2.1 Pilot 1: Home charging 111 

10.2.2 Pilot 2: Large scale offices and parking lots 113 

10.2.3 Pilot 3 Small scale office 114 

10.2.4 Pilot 4 Large scale public 115 

10.3 Bulgarian pilot 116 

10.4 Spanish pilot 116 

10.5 Illustrative prosumer results 116 

11 Aggregated flexibility services ........................................................................ 122 

11.1 Introduction 122 

11.2 Flexibility request prioritization 122 

11.3 Flexibility availability algorithm 123 

11.4 Centralized mathematical formulation 124 

11.5 Distributed mathematical formulation 125 

11.6 Objective functions in pilots 126 

11.6.1 Spanish objective function 126 

11.6.2 German objective function 126 

11.7 DSO case study 127 

11.7.1 Spanish case study 127 

11.7.2 German case study 132 

11.8 BRP case study 132 

11.8.1 Spanish case study 132 

12 Conclusions ...................................................................................................... 133 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 8 of 170 

13 Appendix: Offline software testing manual .................................................... 135 

13.1 Introduction 135 

13.2 Building a test case and running 135 

13.3 Solver selection and MIP gap input 137 

13.4 Automatic model building 137 

13.5 Site implementation 138 

13.6 Input data file structure 140 

13.6.1 “TestCaseData.xlsx” 140 

13.6.2 Site configuration and resource information 141 

13.6.3 Prosumer.xlsx 142 

13.6.4 Storage_x.xlsx 143 

13.6.5 Charging_x.xlsx 144 

13.6.6 Generation_x.xlsx 146 

13.7 Running a test case 146 

13.8 Output file format 147 

13.8.1 Site_x_control_signals.xlsx 147 

13.8.2 Site_x_prosumer_costs_and_energy_balance.xlsx 148 

13.9 Testing the RH code including variable fixing 152 

13.9.1 Changes into the main code file 153 

13.9.2 To copy applied values of the current execution time 

to the next period 153 

13.9.3 To fix the variables for the past periods 155 

13.9.4 To add metered values from past periods to the 

baseline 156 

14 Appendix: Overview of sets, parameters and variables ................................ 158 

14.1.1 Sets 158 

14.1.2 Parameters 159 

14.1.3 Variables 166 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 9 of 170 

 

  



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 10 of 170 

Abbreviations and Acronyms 

Acronym Description 

AHES AMI Head End system 

API Application programming interface 

BMS Battery Management System 

BRP Balance Responsible Party 

BS Balance Scheduling 

CEM Customer energy management system 

CPO Charge point operator 

DER Distributed Energy Resources 

DMS Distribution management system 

DOD Depth of discharge 

DSO Distribution System Operator 

EMG Energy Management Gateway 

EOL End Of Life 

ESS Energy Storage System 

EV Electric Vehicle 

EVSE Electric Vehicle Supply Equipment 

EWH Electric water heater 

FEP Front End Processor 

FO Flexibility Operator 

IEC International Electrotechnical Commission 

IED Intelligent Electronic Device 

IIP Integrated INVADE Platform 

LV Low Voltage 

MDC Meter Data Concentrator 

MDM Meter data management 

MR Meter Reader 

MV Medium Voltage 

NA Not Applicable 

OCHP Open Clearing House Protocol 

OCPI Open Charge Point Interface 

OCPP Open Charge Point Protocol 

OCMP Open Charge Management Protocol 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 11 of 170 

Acronym Description 

OM Operation meter 

OSCP Open Smart Charging Protocol 

PCS Power Conversion System 

PRIME PoweRline Intelligent Metering Evolution 

PV Photovoltaic 

RTU Remote Terminal Unit 

SCADA Supervisory control and data acquisition 

SDC Smart device controller 

SGAM Smart Grid Architecture Model 

SM Smart Meter 

SOH State of Health 

TBD To Be Determined 

ToU Time-of-Use 

TSO Transmission System Operator 

USEF Universal Smart Energy Framework 

V2G Vehicle to Grid 

WP Work Package 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 12 of 170 

Executive summary 

Flexibility management algorithm comprises the necessary methods and models for the 

development of integrated INVADE platform. The platform will support many different 

functional areas, but the main development in the INVADE project is the cloud based 

flexibility management system, which will be used in the daily operations of the different 

flexibility services. A first, simplified version of the developed algorithm has been 

delivered to the integrated INVADE platform in June 2018. The output of the algorithm 

includes the decision support for the optimal operation of flexibility assets. The algorithm 

can be integrated into real-time control for managing several distributed flexible 

resources such as a fleet of EVs and other consumer flexibility assets. The platform 

incorporate flexibilities from a local to a regional perspective by introducing Flexibility 

Operator. Flexibility Operator is in charge of flexibility management at integrated INVADE 

platform.  

In this document we formulate the flexibility management algorithm both from prosumer 

perspective and from BRP and DSO perspective, which is an aggregated level. The 

aggregated flexibility algorithm ensures that each prosumer providing flexibility to 

external agents will be economically rewarded and the FO will schedule the minimum 

cost flexibility sources at the same time. 

This document contains a detailed description of the algorithms that will be used in the 

daily operations and it is a complement to the D5.3. First, the mathematical formulation 

of available flexibility assets at INVADE pilots are reviewed. Secondly, chapter eight 

presents the program framework and it constitutes a general overview about the files 

structure with special attention to the input and output files. It presents the receding 

horizon approach used to reproduce the daily operations. Finally, the document explains 

aggregated flexibility services that can be offered to external agents, i.e., BRPs and 

DSOs. 

Overall, the document encompasses methodologies for improved management of the 

flexibility resources based on forecasting information of the system. 
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1 Introduction 

According to the DoA the deliverable D5.4 is Advanced Optimal Battery operation and 

control algorithm. This report contains the final version of the flexibility management 

allocation and operation algorithms from T5.3 and T5.4. This version includes more 

technical parameters and detailed use case scenarios for operating the INVADE 

platform. This version will be implemented in the INVADE Platform. The work in this 

document is built upon the content in several other deliverables in different work 

packages: D4.1 [1], D4.2 [2], D5.1 [3], D5.2 [4], D5.3 [5] and D10.1[6]. 

The main purpose with this document is to provide advanced optimization models for the 

flexibility resources used in the flexibility algorithms defined in D5.3 [5]. These models 

are the extension of simplified models used in the Integrated INVADE platform through 

the task T8.3. The task T5.4 has implemented the simplified battery operation and control 

algorithm described in D5.3 [5]. 

An overview of different flexibility services and how they will be implemented in the 

different pilots are defined in D4.3 [7]. 

Table 1: Overview of flexibility services to be used in each pilot (Y: yes; N: no). 

Flexibility 
customer Flexibility services INVADE Norwegian 

pilot 
Dutch 
pilots 

Bulgarian 
pilot 

German 
pilot 

Spanish 
pilot 

DSO 
Congestion management N Y N Y Y 
Voltage / Reactive power control N Y N Y Y 
Controlled islanding N N N N Y 

BRP 
Day–ahead portfolio optimization N N N N N 
Intraday portfolio optimization N N N N N 
Self-balancing portfolio optimization N N Y N Y 

Prosumer 

ToU optimization Y Y Y N N 
kWmax control Y Y Y N N 
Self-balancing Y Y Y Y1 N 
Controlled islanding N N N N N 

1 Prosumer self-balancing service is going to be supplied by local home management system product from 

SMA (https://www.sma.de/en.html) outside the scope of the INVADE project 

https://www.sma.de/en.html
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The rest of this document is organized as follows: Chapter 2 describes the main 

differences between the simple models described in D5.3 and the advanced models 

presented in this document. A detailed model of battery, which the main source of 

flexibility in INVADE project is detailed in Chapter 3. Updated EV models are described 

in Chapter 4 .Chapter 5 and 6 describes both thermal loads water heater and space 

heating in detail in the respective chapters.  Chapter 7 – Information structure and the 

planning process, Chapter 8 presents the possible variable fixing methods and their 

advantages and disadvantages. The 5 different pilot structures and detailed in Chapter 

9. The objective functions related to prosumer services are presented in Chapter 10 and 

the objective functions related to aggregated flexibility services are presented in Chapter 

11. Finally the Chapter 12 presents the concluding remarks.  

2 Simplified models and advanced models  

In D 5.3 [5], simplified models of all flexible resources were discussed with generalised 

perspective. This chapter outlines the specific characteristics of model for each flexible 

resources and highlights the differences compared to the simple model. 

2.1 Battery model 

The proposed simple battery model in D5.3 considers the battery to have constant 

charging and discharging efficiency for all values of the charging and discharging power. 

In reality, the efficiency changes in a nonlinear way for different charging and discharging 

power values.  Also, the model considers the battery capable to charge with constant 

current in the whole region of its state of charge. The simple model doesn’t consider 

different types of battery degradation. 

The advanced model includes the nonlinear change in efficiency with charging and 

discharging power by splitting the charging and discharging power regions in multiple 

parts and linearizing the efficiency by adopting piecewise linearization technique. 

The battery degradation is accounted separately for its calendar ageing and cycle 

ageing. More technical descriptions are detailed in the Chapter 3. 
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2.2 EV model 

In D5.3, the EV models proposed considers that the EVs charging power can be 

controlled to any value between zero and their maximum charging power. But in reality, 

the charging power has a much higher non-zero minimum value below which the next 

possible value is zero. Moreover, in the communication protocol between charger and 

car the low non-zero values are not allowed, and experience shows that most cars stop 

charging below 11 amps. Therefore, the variable corresponding to the charging power 

cannot be continues variable.  This expanded model allows to set the charging power 

between a maximum and minimum charging levels or on/off regulation, depending on 

case. 

In D5.3, the V2G model is included. However, there are several uncertainties about the 

available information and the final plan for the application of this technology in INVADE 

platform, which makes it difficult to decide, what would be the improvement to that model. 

2.3 Thermal load model 

For thermal loads, in D5.3 a state queue model and black box approach with temperature 

prediction were proposed. Both methods assumes that there minimum two measurement 

parameters namely temperature and power consumption are available. But in reality, 

only power consumption measurements are available. Therefore, the thermal loads were 

classified into two different categories as space heaters and water heaters. 

2.3.1 Electric Water heater model 

The electric water heaters can be treated as a curtailable disconnectable load models. 

The main problem is that the energy curtailed will never be recovered. Therefore, 

shiftable energy volume model is proposed which can consider the re-bound effect to 

consume the energy curtailed during flexibility activation. 

2.3.2 Space heating model 

The new space heating model assumes that there are three different temperature states 

possible. And there is a possibility to predict the energy requirement to achieve the three 

different temperature states using machine learning. The flexibility available between the 

upper and lower energy levels are captured in the new model proposed. More technical 

details are elaborated in the Chapter 6. 
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3 Battery model 

In this chapter we briefly present the simplified battery model, followed by a detailed 

description of what is new in the advanced battery model. 

3.1 Simple battery model 

The constraints needed to model the energy capacity and state of energy have been 

presented in D5.3 but will be repeated here. This simple model contains the basic 

equations needed to operate a battery, but lacks features such as degradation costs 

(both cycle and calendar ageing), non-linear efficiency and non-constant-current 

charging regions. These new features will be presented in the following subsections. 

3.2 Advanced battery model 

The advanced battery model contains new functionalities such as cyclic ageing, calendar 

ageing, piecewise linearized efficiency and constant voltage charging constraints. These 

are presented in the following subsections. All notation that is new is listed in this 

deliverable, but notation that is similar to the notation used in D5.3 is not repeated. 

3.2.1 Constant voltage charging constraint 

In order to avoid reaching minimum and maximum cell voltages during operation, 

additional constraints are needed. As described in D6.5, the CC (constant current) 

charging region of a battery does not apply to the full SOC area of a battery. The following 

constraints reduces the allowed charging power when approaching the minimum and 

maximum energy levels. This will prevent scenarios where we calculate the state of 

charge to reach its maximum value in time step t, when actually the battery management 

system restricted the charging power, resulting in a lower state of charge than expected. 

( )
, ,min

, 1, ,
, , ,

1

B SOC B
b t bB dis B dis

b t b B hour
b

O
Q b B t T

w N

σ
σ − − ≤ ⋅ ∀ ∈ ∈

+
  (1) 

( )
,max ,

, 1, ,
, , ,

1

B B SOC
b b tB ch B ch

b t b B hour
b

O
Q b B t T

w N

σ
σ − − ≤ ⋅ ∀ ∈ ∈

+
  (2) 
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The tuning parameter B
bw  can be used to tune to which extent the charging has to be 

slowed down when approach minimum or maximum state of charge. This is more 

thoroughly explained in D6.5. 

3.2.2 Piecewise linearized battery efficiency 

The efficiency of the energy storage system is a combination of the battery efficiency 

and the inverter efficiency. Inverter efficiencies are normally very strong (>98%) around 

the rated power, but can be weak at low power. The battery efficiency mostly depends 

on ohmic losses inside the battery.  

 

Figure 1: Energy storage system efficiency curves. 

Figure 1 shows that the inverter efficiency is high and stable around 98 % for most 

segments of the rated power capability (red curve), except for the low power segment (< 

5% of rated power). The battery losses are close to zero for low power, and linearly 

increases to around 4 % at full power (blue curve). The combined efficiency of the 

storage system is shown as the yellow line and has an average efficiency of 96 % as 

indicated by the purple line. The easiest approach is to model the efficiency as a constant 

with 96 % efficiency (or any other constant efficiency of an ESS), however, as the curve 

shows, this could lead to an error of about 2%, and even more if the discharge/charge 

power is low. One approach is piecewise linearization, which means creating segments 

of efficiencies which are dependent on the rated power used in the optimization. 
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Table 2: (Dis)advantages with both efficiency modelling methods 

 Advantages Disadvantages 

Constant 
efficiency 

• Solves fast 

• Easy to implement 

• If degradation cost is 
modelled properly, 
efficiency is a minor cost 
factor in comparison 

• Very bad ESS efficiency in low 
power segments 

• Real measurement values 
have to be used constantly 
due to error in most steps 

Piecewise 
linearized 
efficiency 

• More precise approach 

• Adaptable to different 
types of ESS with different 
efficiency characteristics 

• Solve time increases 
drastically with increased 
amount of segments 

• Convex dependency between 
injected and received power is 
required 

• Complex implementation 

 

In Table 2, the evaluation of the two approaches is presented. Of course, the advantage 

of one is the disadvantage of the other. Whereas piecewise linearization is more precise, 

it does not necessarily capture the low efficiency at low power, due to the need for convex 

dependency. A possible approach would be to set the lowest possible charging power to 

10 % of the rated charging capacity. However, this makes our optimization problem a 

MIP (mixed integer programming) problem, which could increase the solving time 

drastically. It should also be mentioned that errors made in such low power areas also 

makes up a very low volume of the total energy input and output, and hence is not 

responsible for any significant part of the revenue related to the battery. Thus it could 

also be ignored for simplicity.  

3.2.2.1 Piecewise linearized efficiency with binary representation model 

Because the efficiency of the battery depends on the power input, we have to model a 

power dependent efficiency. As shown in Figure 1, this dependency is not linear, which 

complicates the model solving. Therefore, we make a linear approximation by 

segmenting the efficiency into J segments. The more segments, the higher precision. In 

Figure 2 it is shown how ,
,

B ch
b tσ  and ,

,
B dis
b tσ  are split into two variables each2.  

                                                

2 Note that if this model is used, the energy balance and state of charge equations 
have to be changed accordingly. The variables with superscript inv represents the 
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Figure 2: Overview of variables when using piecewise linearized efficiency. 

 

Firstly, the power that goes into the inverter has to be divided into segments. 

, , , ,
, , , , , ,B ch inv B ch inv

b t b t k
k K

b B t T k Kσ σ
∈

= ∀ ∈ ∈ ∈∑    (3) 

Then, segments are given boundaries ,
B
b kB  which represents the end of the segment x-

axis value. The following equation allocates the correct amount of charging power to 

each segment by using this value. 

( ) ( ), , , ,
, , 1 , , 1 , , , , 1 , , , , ,B B B ch B ch inv B B B ch

b k b k b t k b t k b k b k b t kB B B B b B t T k Kγ σ γ− + −− ⋅ ≤ ≤ − ⋅ ∀ ∈ ∈ ∈   (4) 

Next, each segment is given a binary value ,
, ,

B ch
b t kγ  which represents whether or not a 

segment has a value (is activated). The following equation says that a segment ,
, , 1

B ch
b t kγ +  

cannot be activated unless the previous segment ,
, ,

B ch
b t kγ  also is activated. This will 

ensure that segments are enabled in the correct order (sequentially). Segments are 

activated if ,
, , 1B ch

b t kγ =  and are not activated if ,
, , 0B ch

b t kγ = . 

, ,
, , , , 1, , ,B ch B ch

b t k b t k b B t T k Kγ γ +≥ ∀ ∈ ∈ ∈    (5) 

Finally, the output of the inverter which is then received by the battery is shown in Eq. 

(6) 

                                                

power that is exchanged between the main meter node and the inverter, whereas the 
variables with superscript bat represents the power exchanged between the inverter 
and the battery. 
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, , , ,
, , , , , , ,B ch bat B B ch inv

b t b k b t k
k K

b B t T k Kσ µ σ
∈

= ⋅ ∀ ∈ ∈ ∈∑ (6) 

Similarly for discharging, all equations are repeated. However, as shown in Figure 2, we 

are now trying to find the power out of the inverter as a function of what was withdrawn 

from the battery. 

, , , ,
, , , , , ,B dis bat B dis bat

b t b t k
k K

b B t T k Kσ σ
∈

= ∀ ∈ ∈ ∈∑ (7) 

( ) ( ), , , ,
, , 1 , , 1 , , , , 1 , , , , ,B B B dis B dis bat B B B dis

b k b k b t k b t k b k b k b t kB B B B b B t T k Kγ σ γ− + −− ⋅ ≤ ≤ − ⋅ ∀ ∈ ∈ ∈ (8) 

The same rule of segment enabling applies, but now for discharging. 

, ,
, , , , 1, , ,B dis B dis

b t k b t k b B t T k Kγ γ +≥ ∀ ∈ ∈ ∈ (9) 

Finally, the power going into the main meter node is shown in (EQREF). 

, , , ,
, , , , , , ,B dis inv B B dis bat

b t b k b t k
k K

b B t T k Kσ µ σ
∈

= ⋅ ∀ ∈ ∈ ∈∑ (10) 

In Figure 3 the relation between output and input power, ,
B
b kµ  is shown. The relation is 

almost completely proportional except for some deviances for low powers. When 

charged with full power, the efficiency is 98 % in this example. A more clear efficiency 

curve can be shown in Figure 4. 

Figure 3: Relation between the power received by the battery and input power to inverter 
represented by slope µ for different segments. 
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Figure 4: Efficiency for different input powers. 

3.2.2.2 Piecewise linearized efficiency with “special order set 2” variables 

Another way of implementing piecewise linearized efficiency is by utilizing special order 

sets (SOS). SOS1 and SOS2 variables allow us to create segments where only one or 

two segments can have a non-zero value, respectively. This can be used to create a 

piecewise approximation where different power inputs results in different efficiencies for 

the battery. 

The mathematical formulation of the SOS2 approach is explained in D6.5. However, this 

approach is not directly translatable to Pyomo. Therefore, this subsection will focus on 

how to implement the SOS2 approach, and does not go in-depth on the mathematical 

formulation. 

Two things are needed for implementation 

• The x and y coordinates which represent the selected values which constitutes 

the piecewise linear approximation of the battery inverter efficiency. This is shown 

in Figure 6. 

• The built-in pyomo function called Piecewise, which takes 6 inputs described 

below: 

o Time index, model.t 

o X-axis variable, , ,
,

B ch inv
b tσ  

o Y-axis variable, , ,
,

B ch bat
b tσ  
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o The reserved pyomo library call, “pw_repn”. This can call different 

piecewise approximation methods. Example: pw_repn='SOS2' or 

pw_repn='CC'. 

o X-coordinates of the selected values using the reserved pyomo library 

call: “pw_pts”. In Figure 6, the input would be 
, , ,pw_pts=[0,0.1 ,0.5 , ]B ch B ch B ch

b b bQ Q Q⋅ ⋅ .  

o What type of mathematical operator to be used. Typically these are equal, 

greater than or equal or less than or equal. The type is called by the 

reserved pyomo library call: “pw_constr_type”. Because we want a value 

on the line in-between the x and y axis values, we use 

pw_constr_type='EQ'. 

o Function rule representing the relation between x and y coordinates. 

f_rule=_function_name_. Example: “f_rule=f_efficiency”. 

Finally, an example of the code needed is shown in Figure 5. 

 

Figure 5: Example of how piecewise linearized efficiency using SOS2 variables is implemented. 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 23 of 170 

Figure 6: x and y coordinates needed to create an SOS2 piecewise linear approximation. 

Note that the solver GLPK does not handle SOS2 constraints. If to be solved by GLPK, 

the approach described in 3.2.2.1 should be used, or a different type of approximation 

should be utilized. The other types of approximations and their results can be found in 

D6.5, along with an evaluation of the methods comparing solving speed. 

3.2.3 Battery degradation 

Degradation processes were described in detail in D6.3 Simplified battery state of health 

diagnostics tool. In brief, the degradation process in a lithium ion battery is a complex 

combination of electrochemical and mechanical processes, which lead to capacity 

decrease and power fading. Most of these processes cannot be studied independently 

as they occur simultaneously at similar timescales and interact with each other. Ageing 

processes can be divided into two groups: ageing during use and ageing during storage. 

In other words: ageing related to cycle life and ageing related to calendar life. 

3.2.3.1 Performance degradation 

The performance of a battery degrades as a result of ageing. The main characteristics 

that are affected by the ageing are the capacity and the internal impedance. As a 

consequence, the ageing degrades also the efficiency and the heat generation 

characteristics as well as lengthens the duration of charging due to longer duration of 

constant-voltage operation. For repetitive use at constant operating conditions, the 

capacity degradation rate is typically almost linear. A change in the typical use pattern 

or ambient temperature may change the degradation rate too because of degradation 
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stress factors. For impedance increase, the rate of degradation is more difficult to predict. 

For some batteries, the impedance increases in a linear manner, whereas for other 

batteries the impedance remains nearly constant for almost the whole lifetime.  

Degradation stress factors are all the operation practices or circumstances that 

accelerate the degradation in battery and thus shorten the lifetime of the cell. By 

identifying the stress factors, the battery operating conditions and practices can be 

optimized within the application limits so that the degradation of the battery is minimized 

and longer lifetime is achieved. 

 A summary of the degradation stress factors addressed in the lifetime tests of the 

reviewed articles in D6.4 is shown in Figure 7. Results vary widely depending on the 

chemistry and even among different studies regarding the same chemistry. The values 

in the low-stress and optimal-range columns are very coarse generalisations based on 

the results. 

 

Figure 7: High, low and optimal stress ranges. 

3.2.3.2 Cost of degradation 

In D6.2, the operational optimization algorithm included the Levelized Cost of 

Degradation (LCOD) in the objective function to address the costs that are related to the 

battery degradation. The LCOD was obtained by calculating the marginal degradation 

caused by cycling and by utilizing either the investment cost or the replacement battery 

cost. The cycle depth stress factor was incorporated into the algorithm by applying the 

equivalent rainflow counting algorithm proposed by Xu et al. [8]. This approach has three 

drawbacks: (i) The future benefits are not discounted, (ii) the battery lifetime and the 

replacement battery cost are not known initially, and (iii) the operational decisions are 

solely based on the technical and economical parameters, and therefore, the battery may 
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be totally unused or overused in some cases. For example, a battery with high 

investment cost or low cycle lifetime may be used very little in cases where the benefits 

are low. However, even in that case, it is not meaningful not to use the battery at all, 

because the investment has already been made, and the battery has a limited calendar 

life as well. Therefore, it would be better to use the battery to obtain the available benefits 

to minimize the losses.   

In a recent article by He et al. [9] [10]an intertemporal decision framework for the 

management of a storage was proposed, in which the optimal usage of the storage in 

the economic sense is first planned for the long term, which is followed by the formulation 

of the operational decision-making in the short term. The operational algorithm includes 

the battery degradation in the objective function, but it excludes the investment cost of 

the battery, because the investment cost is a sunken cost that should not affect the 

operational decision making. This approach is intuitive and solves the main problems of 

the LCOD method. However, it requires additional efforts to first determine the optimal 

usage and later on to manage the utilization of the battery and the associated rate of 

degradation according to the predefined plan.  

3.2.3.3 End of life 

End of life of a battery is when it no longer meets its performance requirements. As long 

as safety is maintained, the limit of performance requirements can be decided internally, 

but normally EOL is when the performance is about 60–80 % of its rated performance.  

In order to identify when the EOL of a battery is reached, the State of Health (SOH) of 

the battery needs to be tracked. Many BMSs and EMSs provide some SOH indication, 

which can be based simply on coulomb-counting or on more advanced methods. In 

INVADE, a SOH diagnostics tool was developed in T6.2. The tool is an Excel-based 

offline tool that can be used locally by the pilots. The tool incorporates a detailed battery 

degradation model that addresses the degradation stress factors to the historical usage 

data of the battery system. Time-series data is given as an input, and the estimated SOH 

is provided as an output. The system operator can then update the battery capacity 

parameter to the IIP. It is suggested to update the parameters on a monthly basis. 

The EOL is highly dependent on the application-specific performance requirements and 

the techno-economics of the use case. At some point, a critical performance requirement 

cannot be anymore achieved, or the flexibility profit no longer exceeds the marginal cost 

of operation. A default EOL criterion of 70 % of the original capacity (i.e., 70 % SOH) will 

be used for INVADE pilot batteries, but it can be adapted for each pilot based on the 
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application-specific requirements, battery technical specification and warranty terms and 

conditions, and techno-economic evaluations.  

3.2.3.4 Model parameters 

The input parameters that are needed to run the model are shown in Table 3. Some 

parameters are used directly in the model or constraints, whereas some parameters are 

used indirectly to calculate or define other parameters or characteristics of the model. 

Note that this is not a complete list, but a general overview of some general assumptions 

made in order to fine-tune the operation of the battery. 

Table 3: Parameters that are needed to run the battery model. 

Parameter Unit Default Info Source 

Energy capacity kWh Updated regularly Specification 

Discharging power 
capacity kW Continuous rating Specification 

Charging power capacity kW Continuous rating Specification 

Battery charging and 
discharging efficiency % 98.5% At typical rate in 

the application 
Calculated based 
on specification 

PCS maximum efficiency % 98.5% Maximum value Specification 

Cycle lifetime FCE Convert to full 
cycles equivalent 

Specification or 
warranty terms 

Calendar lifetime years 10 years Specification or 
warranty terms 

End of life % 70% Percentage of the 
original capacity 

Specification or 
warranty terms 

Replacement battery cost € 500 €/kWh Battery system 
only Estimation 

Cost of degradation 
tuning parameter 1 Updated regularly SOH diagnostics 

Typical operating 
temperature °C 25 °C Application-specific 

Minimum SOC % 5% Application-specific 

Maximum SOC % 95% Application-specific 

Power constraint 
coefficient for charging 0.8 Application-specific 

Power constraint 
coefficient for discharging 0.8 Application-specifig 
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3.2.4 Degradation modelling 

3.2.4.1 Cycle ageing 

In INVADE, the cycle depth is considered as the most influential degradation stress 

factor, and therefore, it is included in the calculation of the cost of degradation. An 

equivalent rainflow counting algorithm is implemented that calculates the marginal cost 

of degradation caused by the cycle depth [8]. Additionally, the temperature stressor is 

included indirectly as a parameter. The operating temperature data is not collected in the 

IIP, and hence, actual temperature data cannot be used in the optimization. The selected 

approach is to use historical long-term average temperature from the local SCADA 

system, which can be updated regularly by the system operator. In this way, the long-

term average temperature is used to calibrate the degradation rate of the battery. If the 

temperature data is not available in the SCADA system, the parameter shall be set to 

resemble the average ambient temperature or the expected average operational 

temperature of the battery.  

In order to model cycle ageing, the battery has to be divided into segments. These 

segments are virtual and are used by the optimization model to allocate costs to 

charging/discharging decisions segment by segment. The cost of discharging a segment 

increases the deeper the cycle3. 

The mathematical formulation requires some additional variables and parameters. First, 

J segments need to be defined. From there we have the following new maximum SOC 

per segment; 

,max
,max

, , ,
B

B b
b j

OO b B j J
J

= ∀ ∈ ∈    (11) 

To model marginal cost of cycle ageing, further input parameters are needed such as 

the battery cell replacement cost B
bR (€) the battery size ,maxB

bO  and the discharge 

efficiency ,B dis
bA . Since the cycle depth ageing stress function is non-linear, the marginal 

cost is linearized with different numbers of segments j with 𝑗𝑗 ∈  𝐽𝐽. 

, , ,max

1[ ( ) ( )], ,
B

B b
b j B dis B

b b

R j jc J b B j J
A O J J

φ φ −
= − ∀ ∈ ∈   (12) 

                                                

3 Note that this is independent of which segment is being discharged. A cycle from 80-
60-80% SOC has an equal cost of a cycle from 60-40-60% SOC. 
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Where we have a near quadratic function to calculate the stress function: 

( ) caφ δ δ=  (13) 

For NMC batteries, 𝑎𝑎 = 5.24x10−4 and 𝑐𝑐 = 2.03, which represent the stress function for 

NMC performing approximately 3000 cycles at 80% cycle depth [8]. 

Figure 8: Example of an upper-approximated cycle depth ageing stress function [8]. 

To allocate the correct initial and final SOC, , ,B SOC init
bσ and , ,B SOC final

bσ  are given their 

respective SOC values for t = 0 and t = tend by summing the energy for all segments. 

, , , ,
, , ,B SOC init B SOC init

b j b
j J

b B j Jσ σ
∈

= ∀ ∈ ∈∑ (14) 

, , , ,
, , ,B SOC final B SOC final

b j b
j J

b B j Jσ σ
∈

= ∀ ∈ ∈∑ (15) 

When using segmented variables, the new SOC evolution equation looks as following. 

Note that ,B ch
bA represents the battery efficiency, whereas the inverter efficiency 

described in 3.2.2 is already incorporated in ,
, ,

B ch
b t jσ . 

,
, ,, , , ,

, , , 1, , , , , , ,
B dis
b t jB SOC B SOC B ch B ch

b t j b t j b t j b B dis
b

A b B t T j J
A
σ

σ σ σ−= + ⋅ − ∀ ∈ ∈ ∈ (16) 

The sum of charging/discharging power in all segments equals the total 

charging/discharging power of the battery. 

, ,
, , , , , ,B ch B ch

b t b t j
j J

b B t T j Jσ σ
∈

= ∀ ∈ ∈ ∈∑ (17) 

, ,
, , , , , ,B dis B dis

b t b t j
j J

b B t T j Jσ σ
∈

= ∀ ∈ ∈ ∈∑ (18)
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The total charging from all segments also has to stay below the maximum charging and 

discharging power. Additionally, ,
B

b tδ ensures that charging and discharging does not 

happen at the same time. 

, ,
, , , ,B ch B ch B

b t b b tQ b B t Tσ δ≤ ⋅ ∀ ∈ ∈    (19) 

, ,
, ,(1 ), ,B dis B dis B

b t b b tQ b B t Tσ δ≤ ⋅ − ∀ ∈ ∈    (20) 

Next, the SOC in each segment has to be between zero and the maximum SOC per 

segment. 

, ,max
, , , , , ,B SOC B

b t j b jO b B t T j Jσ ≤ ∀ ∈ ∈ ∈    (21) 

In addition, the accumulated SOC in all segments cannot exceed the maximum nor go 

below the minimum battery SOC. 

, ,max
, , , , ,B SOC B

b t j b
j J

O b B t T j Jσ
∈

≤ ∀ ∈ ∈ ∈∑    (22) 

, ,min
, , , , ,B SOC B

b t j b
j J

O b B t T j Jσ
∈

≥ ∀ ∈ ∈ ∈∑    (23) 

Finally, the cost of degradation in each segment is allocated in the following constraint. 

The marginal cost of degradation from each segment is allocated to the corresponding 

discharging segment. Because the marginal cost of cycling reflected by ,
B
b jc is a non-

linear parameter, the cost will be higher the deeper the cycle. 

, ,
, , , , , , , ,B cyc B B dis

b t j b j b t jc b B t T j Jβ σ= ⋅ ∀ ∈ ∈ ∈    (24) 

3.2.4.2 Calendar ageing 

Also the degradation caused by the calendar life has been addressed in D6.5. The 

calendar life degradation model includes the SOC stress factor and the temperature 

stress factor. The calendar ageing was initially included to add cost for not using the 

battery and to control the SOC to be at the optimal level to achieve long calendar life. 

The disadvantage is the ambiguity of the parameterization, because typically the battery 

specifications and warranty terms provide very generic statements about the calendar 

lifetime, which cannot be used to parameterize the model properly without making 

substantial assumptions. At a later phase, when the long-term planning and the 

associated coefficient was added to the cost of degradation model, the original need was 

no longer valid, as the average rate of degradation could now be forced to track the target 
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degradation. Both degradation models have been implemented and tested. The final 

decision on which of these models will be used in the pilots will be made at a later stage. 

The calendar ageing is modelled by the following equation: 

, ,0 , , ,
, , , 1

1 1 , ,
2

B cal B B SOC B SOC B SOC
b t b b b t b tB

Lf Y d h

S S b B t T
T D H S

β σ σ −
  = ⋅ + ⋅ + ∀ ∈ ∈  ⋅ ⋅ ⋅  

(25) 

In general, a higher SOC leads to a higher calendar ageing cost. This cost depends on 

the parameterization factors ,B SOC
bS  and ,0B

bS . Because there factors are hard to tune 

correctly, it should be noted that it can be difficult to get a good representation of the 

real battery characteristics. 

3.2.4.3 Battery degradation tuning factor 

Finally, we create a variable ,
,

B tot
b tβ  which sums the degradation in each time period t. It 

is to be used in the minimization objective function if battery degradation is to be taken 

into account. The total degradation cost per time step is then given by Eq. (26). 

, , ,
, , , ,( ), , ,B tot B B cal B cyc

b t b b t b t j
j J

b B t T j Jβ ρ β β
∈

= + ∀ ∈ ∈ ∈∑ (26) 

Although the model proposed in this section keeps the algorithm from making decisions 

that does not result in revenue higher than the degradation cost of the battery, a factor 
B
bρ is added if it is necessary to tune down the degradation costs that are used in the 

algorithm. Especially the cycle degradation cost is quite high, and if correct values are 

used, the battery could end up not being used much at all because each cycle has a very 

high cost. Still, the batteries are already invested in and they are there to be used. By 

giving B
bρ  a value between 0 and 1, degradation costs can be tuned from 0 to full 

depending on the owner’s wish. It is recommended to start by setting this parameter to 

1, and tune it if the battery is not serving its purpose in the eyes of the owner. 
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4 EV model 

4.1 Introduction 

The simple EV model assumes continues control of EV charging between 0 and 

maximum power. In this chapter we present detailed description of advanced EV model 

which has ON-OFF control and charging between minimum and maximum power. 

4.2 EV mathematical formulation 

For fully controllable EV charging points (𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐) we can delay, interrupt and set the 

charging power of the EV charging process. This model allows to set the charging power 

between a maximum and minimum charging levels or on/off regulation, depending on 

each case. An example is given in the Table 4 for the adjustable control between 3 and 

1 kWh. Therefore, the model cannot set a charging power below 1 kWh.  

Table 4. Illustrative example controllable EV charging. 

1 2 3 4 5 6 7 8 

𝑊𝑊𝑣𝑣,𝑡𝑡
𝐸𝐸𝐸𝐸 3 3 2 

𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ 2 1 0 2 2 1 

This model controls charging stations and does not include EV driver charging needs or 

the EV battery state-of-charge as input due to the lack of information exchange. Some 

references in the literature assume to have this information as Mohseni [11] and Mouli 

[12]. However, this is not possible in the INVADE project. Departure times, EV battery 

capacity and the energy requested for the following periods are not known and the model 

relies upon the forecasting inputs. 

The inputs are: 

• EV charging demand forecasted (𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶) per period t and charging point v. It is the

energy consumption baseline in the charging point v without flexibility activation.



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 32 of 170 

This input parameter is used for defining the EV charging demand parameter 

𝜃𝜃𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑐𝑐𝑐𝑐 as (27) shows.  

,
,

,
,

,
, , , ( )

EV end
v n

EV start
v n

T
CP CP cd c

v t v n
t T

W v V n N vθ
=

= ∀ ∈ ∀ ∈∑  (27) 

• 3 EV charging point status possibilities: connected and consuming, connected

but not consuming and not connected. The n number of sessions between

connection and disconnection periods [𝑇𝑇𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝑣𝑣,𝑛𝑛

𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒] are extracted from the

EV charging point status.

The decision variable 𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ represents the energy supplied to the EV charging point v 

in each time period t. The amount of energy charged out of the session scope is zero. 

Therefore, if an EV reaches a charging point before 𝑇𝑇𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the charging point reports 

the event and the platform re-calculates the optimal scheduling before starting the 

charging process. 

, , ,
, , ,0, v V , ( ), ,CP ch c EV start EV end

v t v n v nn N v t T Tθ  = ∀ ∈ ∀ ∈ ∉  (28) 

The decision variable 𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒 represents the total energy supplied to the EV during the 

charging session n from 𝑇𝑇𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 until time period t. Each charging session is 

independent and 𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒 is zero at the beginning of each session n. The following 

constraint calculates the total energy supplied to the EV v until the period t (𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒) within 

the charging session n. 

, , , , ,
, , 1 , , ,    v V , ( ), ,CP es CP es CP ch c EV start EV end

v t v t v t v n v nn N v t T Tθ θ θ−  = + ∀ ∈ ∀ ∈ ∈  (29) 

Notice there is no charging efficiency parameter included in Eq. (29) because the energy 

effectively stored in the EV battery is not known. Additionally, the forecast tool predicts 

the energy measured in the charging point so no need to include any efficiency. 
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,min ,max
, ,

, ,    (OR) 0,    v ,
CP CP

CP ch CP ch cv v
hour hourv t v t

Q Q V t TN Nθ θ≤ ≤ ∨ = ∀ ∈ ∈   (30) 

Eq. (30) is a disjunctive constraint that limits the charging power in a charging point. It 

ensures that the charging power scheduled per charging point is between 

�𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝑣𝑣

𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚� or it is disconnected. 

,
, ,

, ,                  t T
c CP chV

CP ch v t
hourv t

v

Q
Nθ ≤ ∈∑   (31) 

Eq. (31) ensures that the total charging power per charging station is limited to a given 

value (𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ). 

, , ,
, , ,,                                 v , ( ),CP es CP cd c EV end

v t v n v nV n N v t Tθ θ≤ ∀ ∈ ∀ ∈ =   (32) 

Finally, Eq. (32) sets the maximum energy supplied per session n and charging point v 

and it is equal or less than the forecasted EV energy demand 𝜃𝜃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑐𝑐𝑐𝑐. 

The following cost function compensates for the difference between the expected EV 

charging demand estimated by the FO (𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶) and the result of applying the set-points 

(𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ). Additionally, this difference is relative to the total charging demand expected 

(𝜃𝜃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑐𝑐𝑐𝑐). Notice that an EV could be rewarded even in cases that the EV is not fully 

charged when it leaves. This is included in the compensation fee (𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑛𝑛𝑛𝑛) for every kWh 

not supplied 

, , , sup , arg cosEV control EV shift EV non plied EV ch ing tζ ζ ζ ζ−= + +   (33) 

,
,

, ,
,

, , ,
, ,

( )
( )

Ev end
v n

c EV start EV start
v n v

T t
EV shift CP shift CP CP ch

v v t v t
n N nv V t T T

P Wζ θ
∈∈ =

= −∑ ∑ ∑ ∑   (34) 

 

,
,

, sup , , ,
, ,

( )
( )EV end

v nc

EV non plied CP ns CP cd CP es
v v n v T

n N vv V

Pζ θ θ−

∈∈

= −∑ ∑   (35) 

 

, arg cos ,
,

c

EV ch ing t buy CP ch
t v t

t Tv V

Pζ θ
∈∈

= ⋅∑∑    (36) 

Notice that the Eq. (36) is not necessary if the objective function already includes the 

electricity consumption cost. 

Model assumptions and limitations: 
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1) Charging power: The power input from the EV charger is assumed to be independent
of the state of charge. This assumption holds true for chargers with a small power-
rate which are very popular in residential installations. As this model is meant for
mainstream and cheap charging technologies, the charger is assumed to have a
small to medium power available. Typically, 3.3 kW and up to 11 kW.

2) Flexibility contracts: The information from flexibility contracts for EV in households
are the shifting and non-supplying costs. Additionally, the EV owner can declare the
periods when the EV can be shifted forward if necessary. In case of public charging
stations, it depends on the EV driver information available. This should be discussed
case by case.

Input data: 

This model relies upon the forecasting tools capable to create the input data requested 

to execute the EV flexibility model for scheduling purposes. 

1) 𝑊𝑊𝑣𝑣,𝑡𝑡
𝐸𝐸𝐸𝐸: The expected EV energy consumption without external signals of each EV

v at time period t [kWh]. From this value, 𝑉𝑉𝑣𝑣
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑣𝑣

𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 are known.

2) Charging point status. This information allows to create the expected arrival and
departure times [𝑇𝑇𝑣𝑣

𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑣𝑣
𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒].

Additionally, the following information is needed: 

1) 𝑃𝑃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑃𝑃𝑣𝑣

𝐶𝐶𝐶𝐶,𝑛𝑛𝑛𝑛,𝑃𝑃𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏: Flexibility costs if available

2) 𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ,𝑄𝑄𝑣𝑣

𝐶𝐶𝐶𝐶,𝑐𝑐ℎ: Charging point and station maximum capacities

Model limitations: 

 It requires an accurate forecasting system for knowing the EV energy consumption
and departure times in case of not having this information.

 Even though the aggregated services for energy delivery is satisfied there might be
a chance that individual EV’s energy delivery requirements are not met.

5 Electric water heater model 

5.1 Introduction 

Flexible loads are one of the flexibility resources considered in the INVADE project. In 

the D5.3 document, the flexible loads were classified as curtailable and shiftable loads 

and different ways of handling such loads were described. However, thermal loads were 

considered as a special case and their description is not sufficiently covered. The 

purpose of this chapter is to propose a possible solution for one such loads namely 

electric water heater. 
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5.2 Thermal load modelling – Electric water heater 

Controllable water heaters will be involved in some of the Norwegian households. Each 

water heater will have fixed parameter for installed capacity (kW). All the water heaters 

in the pilot will have 1.95 kW.  

The water heater control is based on a set of timing restrictions that will be input to the 

optimization algorithm: 

a. For each period, a parameter says whether it is allowed to disconnect the

water heater or not (e.g. disconnection is allowed at any time, except from

between 1900 and 2200).

b. A maximum disconnection duration is given (e.g. if the water heater is

disconnected, it must at the latest be reconnected after 1 ½ hour)

c. A minimum duration (rest time) between two disconnections is given (e.g.

if a water heater is reconnected after a disconnection, it cannot be

disconnected again before at least 3 hours)

The parameters above will be provided by a local home automation facility in the 

Norwegian pilot. 

The output from the optimization algorithms is a set of disconnection and reconnection 

periods. The control signals will be off and on with a given time (e.g. off at 12:15, on at 

12:45). This information will have the granularity equal to the length of the periods, mainly 

15 minutes, which means that the connections and disconnections will be set to these 

time points, and not at any minute inside a 15 minutes’ interval.  

5.3 Electric Water Heaters (EWH), Shiftable Energy Volume 

In order to represent the above described behaviour, it is developed an improved 

shiftable energy volume model that is able to disconnect the EWH when needed and it 

considers the re-bound effect. Therefore, if there is a load curtailment, it will always 

supply the exactly same amount of curtailed energy afterwards, within the corresponding 

shifting interval i ϵ [𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒). The main improvement from the previous

shiftable energy volume model described in D5.3 has to do with including two new timing 

constraints: 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 (maximum disconnection duration) and 𝐷𝐷𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 (the minimum 
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time between two disconnections) to let the EWH to recover temperature inside the water 

tank. 

It is good to clarify that in this present case, 𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, since it is not 

possible to move load backwards. From now on, the parameter 𝑇𝑇𝑖𝑖,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 will be used.  

In order to simplify, let’s consider a EWH installed capacity of 2 kW. Each time interval 

lasts 15 minutes, making a 0.5 kWh of maximum energy consumed each time period. 

These two new timing restrictions are explained below: 

• 𝑫𝑫𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒎𝒎𝒎𝒎𝒎𝒎: Parameter that indicates the maximum number of time periods 

available for disconnection during each load shift interval. The number of 

disconnections, unlike the curtailable loads model, do not have to be followed.  

• 𝑫𝑫𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒎𝒎𝒎𝒎𝒎𝒎: Parameter that ensures the minimum duration between successive 

activations. 

A minimum number of consecutive time periods is established in which the EWH 

cannot be disconnected under any circumstances. This restriction is imposed due 

to uncertainty, since the water temperature inside the EWH is an unknown value 

because the temperature sensor inside is not sending information outside.  

 

 

Figure 9:  Graphic explanation of 𝑫𝑫𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒎𝒎𝒎𝒎𝒎𝒎 ,𝑫𝑫𝒍𝒍

𝑬𝑬𝑬𝑬𝑬𝑬,𝒎𝒎𝒎𝒎𝒎𝒎and the shifting intervals I. 

𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum rest periods between two EWH shift intervals, but as you can 

see in the graphic example above, the duration can be more than 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 time 

intervals. 

The model is divided in three big steps that are going to be explained. 

STEP 1: Automatic generation of shift interval set and parameters. Figure 10 shows the 

sub steps to follow: 
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Figure 10 Step1 graphic diagram 

Another graphic example is given below in order to explain Step1 procedure. A baseline 

EWH consumption 𝑊𝑊𝑡𝑡,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸 is shown in Figure 11. In this example, it is allowed to 

disconnect in all the planning horizon between 𝑇𝑇𝑖𝑖,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑖𝑖,𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒.(This means

𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1      ∀ 𝑡𝑡 ∈ 𝑇𝑇 ).  So the 𝑊𝑊𝑙𝑙,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸 is going to be the same that 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 

since: 

, ,
, , ,               l LEWH restrict EWH EWH allow ewh

l t l t l tW W C= ⋅ ∀ ∈ (37) 

Figure 11: Baseline Forecast EWH consumption 𝑾𝑾𝒕𝒕,𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 

The following parameters values are given: 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 = 3 ,𝐷𝐷𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 = 2

Firstly, it is needed to know the set of EWH shift intervals i. Then, the following 

parameters, 𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒, can be calculated automatically.

Once 𝑇𝑇𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑙𝑙,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒  are already found, 𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 is imposed by the following

restriction Eq. (38) 

, , ,max
, ,               l L ,EWH end EWH end EWH ewh

l i l i lT V D i I= + ∀ ∈ ∀ ∈ (38) 

Figure 12 shows visually the automatically estimated 𝑇𝑇𝑖𝑖,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑖𝑖,𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 values.

Generate Set of 
shifting intervals i

Generate Parameters:
Tstart, Vend

Generate Parameters:
Tend

STEP 1

STEP 2INPUTS
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Figure 12: Set of shifting intervals I and parameters found automatically in Step1 

  

As can be seen in Figure 12, some arrangements need to be done. For example, 

𝑇𝑇𝑙𝑙,2
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠can never start before the end of the previous load shift interval 𝑇𝑇𝑙𝑙,1

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒.  

Step2 arranges all these inconsistencies. 

STEP 2: Ensures that all the following restrictions (Restriction 1 and Restriction 2) are 

met.  

Once all the parameters needed for the model are established (𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒), 

we make sure now to meet the two restrictions. If they do not meet, the 𝑇𝑇𝑖𝑖,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 

assigned value in Step1 must be changed.  

Restriction 1: there is at least 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 time intervals where the EWH cannot be 

controlled or shifted.  

, , ,min
, 1 ,
EWH start EWH end EWH

l i l i lT T D+ − ≥    (39) 

Restriction 2: ensures that there is, at most, 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 time periods where the baseline 

consumption can be shifted/controlled in each time shift interval i.  

, , , ,max
, , ,
EWH end EWH end EWH end EWH

l i l i l i lV T V D≤ ≤ +    (40) 

In the example proposed in Figure 12, it can be seen that the Restriction 1 does not 

meet in any case: all the shifting intervals 𝑖𝑖 ∈ 𝐼𝐼 are separated less than 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 periods. 

For example, between shifting intervals i = 1 and i =2 there is less than 3 periods. 

Notice also that the last shifting interval (i =3), 𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 is equal to 23 because there is 

no more periods in the planning horizon in this present example.  
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If Restriction1 (𝑇𝑇𝑙𝑙,𝑖𝑖+1
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚) does not meet, 𝑇𝑇𝑙𝑙,𝑖𝑖+1

𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −

𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 value can be positive or negative:

Positive value: , , ,min
, 1 ,0 EWH start EWH end EWH

l i l i lT T D+≤ − <

Solution proposed: Move  𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 backwards.

The parameter 𝑇𝑇𝑙𝑙,𝑖𝑖+1
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 maintains the same time interval position, while  𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 is

brought backwards in order to meet the 𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚  restriction.  

As a result, the previous shift interval have less time periods available for flexibility, 

because [𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒)  is shortened.

The new 𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 value would be Eq. (41)

, , ,min
, , 1 l L ,EWH end EWH start EWH ewh

l i l i lT T D i I+= − ∀ ∈ ∀ ∈ (41) 

It does not make sense that  𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒, so if this happens, we equal values

𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒, becoming that shift interval i is non-flexible.

Figure 13 shows the new 𝑇𝑇𝑖𝑖,𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 values after applying the formulation explained above 

Figure 13 New Tend values that meet Restriction 1 for  𝟎𝟎 ≤ 𝑻𝑻𝒊𝒊+𝟏𝟏,𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑻𝑻𝒊𝒊,𝒍𝒍

𝑬𝑬𝑬𝑬𝑬𝑬,𝒆𝒆𝒆𝒆𝒆𝒆 < 𝑫𝑫𝒍𝒍
𝑬𝑬𝑬𝑬𝑬𝑬,𝒎𝒎𝒎𝒎𝒎𝒎 

Negative value: , ,
, 1 , 0EWH start EWH end

l i l iT T+ − <  

Solution proposed: Move  𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 backwards. Eq. (42)

, , , , ,min
, , , 1 , l L ,EWH end EWH end EWH start EWH end EWH ewh

l i l i l i l i lT T T T D i I+= − − − ∀ ∈ ∀ ∈ (42) 

Like it has been explained before, if  𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 , values are equal  𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑉𝑉𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑛𝑛𝑛𝑛. 
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0.5
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In Figure 14, it can be seen how shifting interval i=1 becomes inflexible, this means no 

curtailments are allowed within that shift interval.  

This meets Restriction1, because there are more than  𝐷𝐷𝑙𝑙
𝐸𝐸𝑊𝑊𝑊𝑊,𝑚𝑚𝑚𝑚𝑚𝑚 periods between two 

possible disconnections. 

 

Figure 14 New Tend values that meet Restriction 1 for 𝐓𝐓𝐥𝐥,𝐢𝐢+𝟏𝟏
𝐄𝐄𝐄𝐄𝐄𝐄,𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 − 𝐓𝐓𝐥𝐥,𝐢𝐢

𝐄𝐄𝐄𝐄𝐄𝐄,𝐞𝐞𝐞𝐞𝐞𝐞 < 𝟎𝟎 

STEP 3: ensures that there is no 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  consumption shifted to periods when 

𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0. 

Another different graphic example is shown in Figure 15 in order to explain the present 

step. In that example, 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 during time intervals [2,5), where the algorithm is 

not allowed to control the EWH consumption. The 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 consumption is [1,4). As a 

result, the baseline restrict 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is [1,2). 

So during the periods where 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0, it is not allowed to control the EWH 

consumption. Due to this, we cannot shift EWH consumption from time interval 1 to 

period 2 or 3, for instance. Because of this, there must be set an inflexible shift interval, 

so load is not shifted to periods where there is a consumption already.  
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Figure 15 Step3 graphic explanation: there must be set an inflexible shift interval, so load is not 
shifted to periods where there is a consumption already 

So, if 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 and during the time interval before there is a consumption and the 

present time interval does too, then:  𝑇𝑇𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑙𝑙,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒. 

Once the algorithm procedure has been explained, all the optimization equations are 

described below: 

For each period, the parameter 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  says whether it is allowed to disconnect the 

water heater or not (e.g. in Figure 16 disconnection is allowed at any time, except from 

between 19:00 and 22:59, where 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0).   

 

Figure 16 Red shading represents the periods when it will not be possible to disconnect EWH 

consumption under any circumstances (𝐂𝐂𝐥𝐥,𝐭𝐭
𝐄𝐄𝐄𝐄𝐄𝐄,𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 = 𝟎𝟎). 

Power levels can be controlled between a minimum 𝐸𝐸𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum 

𝐸𝐸𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 value.  In this EWH particular case, we want an ON/OFF control type, and in 

order to do so, 𝐸𝐸𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 are set to the same value Eq. (43) 

,min ,max                   l LEWH EWH ewh
l lE E= ∀ ∈    (43) 

The final amount of energy consumed  𝜔𝜔𝑡𝑡,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸 is a semi-continuous variable Eq. (44) 

,min ,max
, ,   OR   0       l L ,EWH EWH EWH EWH ewh

l l t l l tE E t Tω ω≤ ≤ = ∀ ∈ ∈   (44) 
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For each load shift interval i the sum energy volume delivered to the load unit must equal 

the sum baseline forecast. Eq. (45) 

, ,
, ,

, ,
, ,

,
, ,          l L ,

EWH end EWH end
l i l i

EWH start EWH start
l t l i

T T
EWH EWH restrict ewh
l t l t

t T t T

W t Tω
= =

= ∀ ∈ ∈∑ ∑ (45) 

There could be inflexible intervals (for example, during the periods where 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 

and there could be a baseline consumption during that periods), where the forecast load 

cannot be shifted/controlled. 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is a parameter that indicates the baseline 

consumption when 𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0. The energy delivered to the EWH unit must equal the 

baseline forecast during the periods where there is no shifting interval I Eq. (46) 

, _
, , l L , ( )EWH c allow EWH ewh

l t l tW W t T i= ∀ ∈ ∉  (46) 

In order to know the final and real EWH consumption, the parameter 𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 must 

be added to the optimized 𝜔𝜔𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐻𝐻 Eq. (47) 

_ , _
, , ,         l L , ( )EWH realconsumption EWH c allow EWH ewh

l t l t l tW t T iω ω= + ∀ ∈ ∈   (47) 

For EWH units, we introduce the concept of weighted average delay, already defined in 

other sections Eq. (48): 

,
,

,
,

,
,

,
,

,
, ,

,
,

,

(( ) )
           l L , ( )

EWH end
l i

EWH start
l i

EWH end
l i

EWH start
l i

T
EWH EWH restrict
l t l t

t TEWH ewh
l i T

EWH restrict
l t

t T

W t
t T i

W

ω

τ =

=

−

= ∀ ∈ ∈
∑

∑
 (48) 

This weighted average delay will never be negative, because it is not allowed to shift 

volume backwards. It is reminded that 𝑇𝑇𝑖𝑖,𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑖𝑖,𝑙𝑙

𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.

The total costs for shifting EWH volume is then Eq. (49) 

,
,( )         l L ,

ewh

EWH EWH shift EWH ewh
l l i

i Tl L

P i Iζ τ
∈∈

= ⋅ ∀ ∈ ∀ ∈∑ ∑ (49)
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6 Space Heating Model  

6.1 Introduction 

Follow up the description of the thermal loads from previous chapter, the purpose of this 

chapter is to propose a possible solution for space heating. 

6.2 Thermal load modelling - Space heating 

Assume that the site is a household and has a main meter to measure the consumption 

at the household level as shown in Figure 17. Beneath the main meter, it has a set of 

inflexible loads and one flexible/controllable load unit, which is a panel oven that heats a 

living room. The energy consumption of the panel oven is metered separately as shown 

in the Figure 17. The living room has temperature control, and the people living in the 

household can enter a temperature setpoint for the room, and the heating system will 

ensure that the temperature always stays in a small bandwidth around this setpoint. The 

temperature setpoints can have different values for different days and for different times 

of the day.  

 

Figure 17. Household with space heating system. 
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6.3  Control limitations 

A Flexibility Operator (FO) sells services to households, where the energy costs are 

reduced by utilizing available flexibility. Through an agreement with a FO the user is 

willing to deviate from the temperature setpoints to save total energy costs. The 

temperature deviations are allowed with some predefined limitations: 

1) The temperature deviation is only allowed from midnight until 16.00 (hours 1 –

15). From 16.00 to 24.00 deviations are not allowed.

2) The temperature deviation must be limited to +/- 2°C

3) The temperature is not allowed to deviate for any longer time than three hours,

then the temperature must return to the setpoint

4) Deviations are allowed maximum twice a day

For example, in a given day, the temperature setpoints are 21°C from 16.00 to 24.00 and 

19 °C for the rest of the day as shown in Figure 18. The green curve shows the setpoints. 

The red curve shows the upper limit when deviation is allowed, and the blue shows the 

corresponding lower temperature limit. Notice that the timing constraints – maximum 

three hours’ deviation and maximum twice a day, is not visible in Figure 18. By selecting 

between the three temperature levels, consumption can be shifted away from high price 

hours. 

Figure 18. Temperature variation during a day in a house 

The temperature inside the room is proportional to the thermal energy level inside the 

room. If the energy level is high, the room temperature is high and vice versa. The 
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required energy level for given temperature and the energy demand can be predicted in 

multiple ways [13-16]. Article [13] proposes a grey-box modelling technique to identify 

suitable model for the heat dynamics of buildings. Article [14] presents a method for heat 

load forecasting for single family houses. This model can be used to estimate the energy 

level to maintain the temperature in the room. Power capacity profile estimation for 

building heating and cooling in demand-side management is presented in [15]. A review 

of different energy models for demand forecasting is presented in [16]. 

The space heating model presented in this chapter relays on the energy levels predicted 

by prediction algorithms  provided by eSmart in INVADE Integrated Platform (IIP). The 

algorithms should estimate the needed energy if the temperature in one hour is increased 

to the upper limit (21°C) or reduced to the lower limit (17°C) in the allowed time interval 

(hour 1 – 15).  More energy is needed to deliver the upper temperature limit and less to 

deliver the lower limit, compared to the setpoint. 

However, if the temperature in one hour is deviating from the setpoint, it will also 

influence the energy needed in the next hour. If the temperature in one hour is raised to 

the upper limit, the need in the next hour is smaller, compared to a situation where the 

temperature in the same hour is at the setpoint. And contrary: if the temperature in one 

hour is reduced to the lower limit, the energy needed to reach the setpoint or the upper 

limit will be larger. 

Let us say the inside temperature at any time period is 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 and the corresponding 

energy level inside the room is 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟. The setpoint temperature values entered by the 

user is 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠. The upper and lower limit of the temperature are denoted by 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢 and 

𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙. The energy level in the room 𝑤𝑤𝑡𝑡𝑟𝑟corresponding to the temperature  𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠 is 

predicted to be 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠. Similarly the energy level in the room 𝑤𝑤𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑟𝑟corresponding to the 

temperature at upper limit 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢  is predicted to be 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢 and energy level in the room 

𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟corresponding to the lower upper limit 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙  is predicted to be 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙. The additional 

energy �𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 −𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠� delivered can be used for compensating the energy required for 

heating in the future time periods. The energy difference  �𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 −𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙� can be used 

for heat storage for the energy available in the future time periods. 

As the temperature outside the house 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 is lower than 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖, there is a heat loss 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 from the house to outside environment as shown in the Figure 19. The space 

heater has to compensate for the heat loss by adding the heat energy 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆 to maintain 
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the temperature between 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 and 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙. If energy provided by 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆 is less than 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 

the temperature inside the house will continue to drop from 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 in the next time periods 

and vice versa. The relation between 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖

, 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜

, 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆

 and 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 is not linear. 

Figure 19. Heat flow and temperature in a house 

Let us say when 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠, the heat loss 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠). Similarly the heat

loss at 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢 is 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) + 𝛼𝛼𝑙𝑙,𝑡𝑡,  where 𝛼𝛼𝑙𝑙,𝑡𝑡 is the additional heat loss due to

increase in room temperature, and the heat loss at 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙 is 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) −  𝛽𝛽𝑙𝑙,𝑡𝑡,

where 𝛽𝛽𝑙𝑙,𝑡𝑡 is the reduction in heat loss due to decrease in room temperature.  

For the model simplicity, let us assume that 𝛼𝛼𝑙𝑙,𝑡𝑡 and 𝛽𝛽𝑙𝑙,𝑡𝑡 are considerably small when 

compared to 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙, 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠 and 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 and the total heat capacity of the room, and errors 

due to disturbances like unexpected air exchange on door openings and change in 

number of occupants. Therefore the heat loss in whole temperature range (𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙 to 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢) 

is assumed to be 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜.  

Table 5 explains an example case of energy requirement for the first 7 time periods, each 

representing 1 hour, within the controllable period 0 and 16 hours as shown in Figure 18. 

These values will be provided by eSmart prediction algorithms in IIP, for a constant 

outside temperature 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜. This means that for the hours where the temperature can 

deviate (1 – 15), we can decide between three different options: The temperature can be 

at the lower limit, at setpoint or at upper limit and required energy to maintain the 

temperature are predicted accordingly.  
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Table 5: Predicted heater energy consumption to reach the temperatures   

𝑻𝑻𝒍𝒍,𝒕𝒕
𝑺𝑺𝑺𝑺,𝒖𝒖,𝑻𝑻𝒍𝒍,𝒕𝒕

𝑺𝑺𝑺𝑺,𝒔𝒔 and 𝑻𝑻𝒍𝒍,𝒕𝒕
𝑺𝑺𝑺𝑺,𝒍𝒍 from 𝑻𝑻𝒍𝒍,𝒕𝒕

𝑺𝑺𝑺𝑺,𝒔𝒔. 

Temperature  Energy 

required 

Time period 

1 2 3 4 5 6 7 

𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢 (kWh) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠 (kWh) 1 1 1 1 1 1 1 

𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙 (kWh) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

6.4 Flexibility 

The heat capacity 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 −  𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑠𝑠 provides heat storage for preheating the room and the 

heat capacity 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 −  𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙 provides the heat storage that can be availed by cooling 

the room to 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙. The reasons for flexibility usage could be  

1. To minimize the energy cost with time varying prices: The space heaters can 

consume more by preheating the room during the low price periods or if high 

energy price is anticipated in the following hours. Also cooling the room by 

reduced consumption during the high energy price periods, or if low energy price 

is anticipated in the following hours can reduce total energy cost for heating. 

2. To avoid the total power consumption to exceed the subscribed power 
limits: The combined power consumption of other loads (mainly inflexible loads) 

and the load due to regular heating (without optimization) by space heaters may 

exceed the subscribed power limit. In such scenarios, the flexibility provided by 

the space heaters can be used to avoid power peaks by shifting their 

consumption. 

3. To provide flexibility in aggregated flexibility services: In case of DSO or 

BRP requesting flexibility, thermal space heaters can provide up and down 

regulation. 
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6.5 Mathematical formulation 

As described earlier, the electrical energy delivered to the heater at any time period 

is 𝜔𝜔𝑡𝑡 which is in the demand part of the energy balance equation. As the resistive 

electric space heaters has a coefficient of performance (COP) 1, the amount of kWh 

of electricity consumed equals to the kWh of heat emitted. Since 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟 is energy level 

in the room at any time period and the heat loss at any time period is 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜. The 

relation between 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟, 𝑤𝑤𝑙𝑙,𝑡𝑡−1

𝑆𝑆𝑆𝑆,𝑟𝑟 , 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 and 𝜔𝜔𝑡𝑡 are as given by Eq. (50). If  𝜔𝜔𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆 = 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜,  𝑤𝑤𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑟𝑟 will remain at the same value as in the previous time period 𝑤𝑤𝑡𝑡−1
𝑆𝑆𝑆𝑆,𝑟𝑟 

and the room temperature also maintained in the same level as the temperature at 

previous time period. If 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆 > 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜, then 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟 will be higher than 𝑤𝑤𝑙𝑙,𝑡𝑡−1

𝑆𝑆𝑆𝑆,𝑟𝑟  and the 

room temperature also will increase. Similarly if 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆 < 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜, then 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟 will be 

lower than 𝑤𝑤𝑙𝑙,𝑡𝑡−1
𝑆𝑆𝑆𝑆,𝑟𝑟  and the room temperature also will decrease  As the temperature 

inside the room has to be maintained between 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 and ,𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙, 𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟 has to take a 

value between 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 and 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙. The maximum value of 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝐻𝐻 is limited by the space 

heater capacity   𝑊𝑊𝑙𝑙
𝑆𝑆𝑆𝑆,𝐻𝐻. 

, , ,
, , 1 , , , ,SH r SH r SH SH out sh

l t l t l t l tw w W l L t Tω−= + − ∀ ∈ ∀ ∈ (50) 

,
, ,0 , ,SH SH h sh

l t l tW l L t Tω≤ ≤ ∀ ∈ ∀ ∈ (51) 

, , ,
, , , , ,SH l SH r SH u sh

l t l t l tW w W l L t T≤ ≤ ∀ ∈ ∀ ∈ (52) 

Where 

𝑊𝑊𝑙𝑙
𝑆𝑆𝑆𝑆,ℎis the maximum power rating of the space heater, 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙  is the energy level of the room corresponding to temperature 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑙𝑙  

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 is the energy needed to achieve 𝑇𝑇𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑢𝑢  

Let us consider the following simple example case shown in the Table 6, with the 

initial condition 𝑤𝑤𝑙𝑙,0
𝑆𝑆𝑆𝑆,𝑟𝑟 = 1, heat loss  𝑊𝑊𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 is 0.5 kWh for all time periods and 

maximum power rating of the space heater 𝑊𝑊𝑙𝑙
𝑆𝑆𝑆𝑆,𝐻𝐻 equals to 4 kW. The electricity 

prices are shown in the fourth row, represent by parameter, i.e., 𝑃𝑃𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏. At the low price

period ‘t = 3’, 𝑃𝑃𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 = 5  € cent /kWh the room is preheated to the maximum level
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(𝑤𝑤3𝑟𝑟=1.5 kWh) to avail the flexibility.  Similarly, as there is high price seen at the period 

‘t = 7’, the room is preheated to the maximum level at the period ‘t = 5’ (𝑤𝑤𝑙𝑙,5
𝑆𝑆𝑆𝑆,𝑟𝑟=1.5 

kWh) to avail the flexibility and reduce the total cost from 47.5 to 35 € cent. 

Table 6: Example case flexibility activation at low price period. 

Parameters Time period 

1 2 3 4 5 6 7 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 (kWh) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 (kWh) 1 1 1 1 1 1 1 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙 (kWh) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 

(kWh) 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 

𝑃𝑃𝑙𝑙,𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 10 10 5 10 10 20 30 

𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆(kWh) 0.5 0.5 1 0 1 0.5 0 

𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟(kWh) 1 1 1.5 1 1.5 1.5 1 

6.6 Runtime constraints 

Like other flexibility resources, there should be a provision to limit the number of 

flexibility activations, maximum duration of each activation and minimum resting time 

between two successive activations 

To implement the timing constraints for flexibility activations, the ‘start’, ‘end’ and ‘run’ 

conditions of the flexibility activations have to be defined. The start condition is 

represented by a binary variable 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the end condition is represented by a 

binary variable 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 and the run condition is represented by another binary 

variable 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 
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𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 will take a value 1 at the first period of the flexibility activation and will be 0 

for the rest of the periods. 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟will take a value 1 for all the periods in which 

flexibility is activated, including the first period of flexibility activation (This case is 

different from other flexible load). The 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 will take a value 1 one period after the 

flexibility activation is ended and will be 0 for the rest of the time periods. For example, 

if the flexibility is activated for the periods 3,4,5 and 6, 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  will be 1 only for 

period 3, 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 will 1 for the periods 3, 4, 5 and 6, and 𝛿𝛿𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒  will be 1 only for 

period 7. A detailed example is given in the Table 7. 

 With the binary variables, equation Eq. (52) can be rewritten as follows to enable 

flexibility only when 𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 =  1. 

( )
( )

, , , , ,
, , , , ,

, , , ,
, , , ,

1

1 , ,

SH run SH l SH run SH s SH r
l t l t l t l t l t

SH run SH u SH run SH s sh
l t l t l t l t

W W w

W W l L t T

δ δ

δ δ

⋅ + − ⋅ ≤ ≤

⋅ + − ⋅ ∀ ∈ ∀ ∈
(53) 

{ },
, 0,1 , ,SH run sh

l t l L t Tδ ∈ ∀ ∈ ∀ ∈ (54) 

6.7 Time restriction of flexibility activation 

The flexibility activation can be restricted to certain time periods as shown in Figure 

20. 

Figure 20. Time restriction of flexibility activation 

The necessary constraint for the above restriction is 

,
, 0, ,SH run sh c

l t l L t Tδ = ∀ ∈ ∀ ∉  (55) 

 where 𝑇𝑇𝑐𝑐 is the subset of periods where heater control is allowed 
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6.8 Identification for ‘start’, ‘run’ and ‘end’ of flexibility activation 

To identify the ‘start’ and ‘end’ conditions, the additional constraints are 

, , , ,
, , 1 , , , ,SH run SH run SH start SH end SH

l t l t l t l t l L t Tδ δ δ δ−− = − ∀ ∈ ∀ ∈   (56) 

{ },
, 1,0 , ,Sh start sh

l t l L t Tδ ∈ ∀ ∈ ∀ ∈    (57) 

{ },
, 1,0 , ,SH end sh

l t l L t Tδ ∈ ∀ ∈ ∀ ∈   (58) 

The flexibility activation should not start and end at the same time. Therefore, 

, ,
, , 1, ,SH start SH end sh

l t l t l L t Tδ δ+ ≤ ∀ ∈ ∀ ∈   (59) 

Table 7: Example of binary values for start, run and end conditions. 

Time period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆ℎ,𝑒𝑒𝑒𝑒𝑒𝑒 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

 

6.9 Maximum duration of flexibility activation constraint 

The maximum duration of flexibility activation as described in Section 2.1 and as shown 

in Figure 21 can be limited by the following constraint 

,max

, ,
, , , ,

SH
lt D

SH end SH start sh
l i l t

i t
l L t Tδ δ

+

=
≥ ∀ ∈ ∀ ∈∑   (60) 

Where 𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum duration of flexibility activation. 

For example, if 𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 = 7 as shown in the Table 7 and if the flexibility activation 

starts at time period t=5, as per Eq. (60), (i ranges from 5 to 12 ) 

( ), , , ,
,5 ,6 ,12 ,5
SH end SH end Sh end SH start
l l l lδ δ δ δ+ + + ≥    (61) 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 52 of 170 

6.10 Minimum duration between successive flexibility activation 
constraint 

There should be a minimum resting period between two successive flexibility activations 

as defined by the user. It is illustrated in Figure 21. 

,min 1

, ,
, , 1, ,

Sh
lt D

SH end SH start sh
l t l i

i t
l L t Tδ δ

−+

=
+ ≤ ∀ ∈ ∀ ∈∑ (62) 

Where 𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum duration between two successive activations 

In the above example, if 𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 = 4, as per Eq. (62), 𝛿𝛿𝑙𝑙,13

𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛿𝛿𝑙𝑙,14
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛿𝛿𝑙𝑙,15

𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(i ranges from 13 to 15) will be forced to 0 as 𝛿𝛿𝑙𝑙,12
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 = 1, to respect Eq. (62) and 

the expression is  

( ), , , ,
,12 ,13 ,14 ,15 1SH end SH start SH start SH start

l l l lδ δ δ δ+ + + ≤  (63) 

Therefore, next possible flexibility activation can be only at t=16 as shown in 

Table 7. 

6.11 Maximum number of flexibility activation constraint 

The number of flexibility activations should be limited to a maximum number as 

described in Section 2.1 and as shown in Figure 21. 

The maximum number of flexibility activation can be limited by the following 

constraint 

, ,max
, , ,SH start SH sh

l t l
t T

N l L t Tδ
∈

≤ ∀ ∈ ∀ ∈∑ (64) 

Where 𝑁𝑁𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number of activations allowed. 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 53 of 170 

 

Figure 21.  Timing constraints and number of flexibility activation. 

6.12 Flexibility contract cost 

If 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the cost for flexibility activation per period, then the total cost for  

flexibility activation 𝜁𝜁𝑆𝑆𝑆𝑆 is 

 

, ,
,

SH SH flex SH run
l t

l L t T
Pζ δ

∈ ∈
= ⋅∑∑    (65) 

6.13 The complete model 

The sub-chapter includes the complete model formulation, to show the overall 

implementation of space heating model. This includes time restriction of flexibility 

activation, maximum duration of flexibility activation constraint, and minimum duration 

between successive flexibility activation as well as maximum number of activations 

constraints. The objective function is to minimize the electricity bill for the prosumer. The 

objective functions have already presented in D5.3, and the heater consumption, 𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆, in 

the following equation is in the demand part of the energy balance equation for the given 

prosumer.  

, , ,
, , 1 , , , ,SH r SH r SH SH out sh

l t l t l t l tw w W l L t Tω−= + − ∀ ∈ ∀ ∈   (66) 

,
, ,0 , ,SH SH h sh

l t l tW l L t Tω≤ ≤ ∀ ∈ ∀ ∈   (67) 

( )
( )

, , , , ,
, , , , ,

, , , ,
, , , ,

1

1 , ,

SH run SH l SH run SH s SH r
l t l t l t l t l t

SH run SH u SH run SH s sh
l t l t l t l t

W W w

W W l L t T

δ δ

δ δ

⋅ + − ⋅ ≤ ≤

⋅ + − ⋅ ∀ ∈ ∀ ∈
  (68) 
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,
, 0, ,SH run c

l
sh

t l TL tδ = ∀ ∈ ∀ ∉
(69) 

{ },
, 0,1 , ,SH run

l t
sh cl L Ttδ ∈ ∀ ∈ ∀ ∈

(70) 

1 ,run run start end
t t t t t Tδ δ δ δ−− = − ∀ ∈ (71) 

{ },
, 1,0 , ,SH start sh

l t l L t Tδ ∈ ∀ ∈ ∀ ∈ (72) 

{ },
, 1,0 , ,SH end sh

l t l L t Tδ ∈ ∀ ∈ ∀ ∈ (73) 

, ,
, , 1, ,SH start SH end sh

l t l t l L t Tδ δ+ ≤ ∀ ∈ ∀ ∈ (74) 
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SH end SH start sh
l i l t

i t
l L t Tδ δ

+

=
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, ,max
, , ,SH start SH sh

l t l
t T

N l L t Tδ
∈

≤ ∀ ∈ ∀ ∈∑ (77)
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6.14 Illustrative example 

Here, we present an illustrative example of testing the above model for the period of 24 hours with each time period representing a duration of 
1 hour. The objective function for this example is to minimize the electricity cost for heating demand tω , which can be explained by the below 
equation: 

, ,
, ,min buy SH SH flex SH run

t l t l t
t T

P Pω δ
∈

 ⋅ + ⋅ 
 
∑    (78) 

The list of parameters to the space heating model are listed in Table 8. 

Table 8. Parameters of the model. 

In addition to the above table we have the following input parameters to the model 

Parameters Time period 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 

(kWh) 
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 

(kWh) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙 

(kWh) 
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 

(kWh) 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

𝑃𝑃𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏* (€ 

cent/kWh) 
10 10 10 10 20 20 40 50 50 40 30 30 20 20 30 40 40 50 50 50 30 20 20 15 
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,maxSH
lN  = 5, 

,maxSH

lD  = 5 , 
,minSH

lD  = 2, { },

1, ,15
SH c

lT =  , 𝑊𝑊𝑙𝑙
𝑆𝑆𝑆𝑆,ℎ = 4 kW, ,SH flexP = 1 € cent/kWh 

The output results of the optimization algorithm are presented in Table 9. 

Table 9. Output results of the model. 

Energy cost (without optimization) = 352.5 € cent 

Optimized energy cost = 319.5 € cent 

Flexibility cost = 7 € cent 

Objective function value = 326.5

Output Time period 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟(kWh) 1 1 1 1.5 1.5 1.5 1.5 1 1 0.7 1 1 1 1.5 1.5 1 1 1 1 1 1 1 1 1 
𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆(kWh) 0.5 0.5 0.5 1 0.5 0.5 0.5 0 0.5 0.2 0.8 0.5 0.5 1 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
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The electricity price and the optimized space heater consumption are shown in Figure 

22. The room is preheated at low price hour t=4 (10 € cent/kWh) to reduce the

consumption at the high price hour t=8 (50 € cent/kWh). The room temperature for the

time periods t = 4, 5, 6 and 7 will be at higher temperature (𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢), as the energy level in

the room is at higher level (𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢) as shown in the Figure 23. Further the room is

precooled at the time period t=10 when the price relatively higher (40 € cent/kWh) as

there is relatively low price at time period t=11 (30 € cent/kWh). Another preheating is

activated at low price hour t=13 (20 € cent/kWh) to reduce the consumption at the relative

high price hour t=16 (40 € cent/kWh).

Figure 22. Electricity price and optimized space heater consumption over 24 time periods. 

Figure 23. Room energy level representing temperature. 
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The flexibility activations happen only between the allowable time periods 1 and 15, 

though there is relative price variation during the time periods t=16 and t=24. It is shown 

in Figure 23, in which the room energy level 𝑤𝑤𝑡𝑡𝑟𝑟stays at the set value 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠. Therefore 

the room temperature also stays at the setpoint value 𝑇𝑇𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠, during the time periods 

between t=16 and t=24. 

 

7 Information structure and the planning process 

7.1 Introduction  

In D5.3, chapter 4 elaborates about different planning approaches, information structure, 

length of horizon, and time resolution for different services.  This chapter will discuss the 

approach adapted for planning in detail. 

7.2 Length of planning horizon 

The optimization horizon will include historic and forecasted periods. The number of 

historic and future periods will vary depending on information provided by the INVADE 

platform. The optimization framework is developed to adopt different historic and 

forecaster periods as an input from the INVADE integrated platform. In the given example 

in the following sections, the total optimization horizon starches for 3 days, in which first 

24 hours are historical values and the rest 48 hours are the timeline for optimization with 

forecasted parameters. At the beginning of a day, the electricity prices are known for 24 

hours. Therefore, the planning horizon could have been only 24 hours. As the EV 

charging schedule overlaps between 2 days (from the first day evening till next day 

morning), it was decided to keep one day in addition in the planning horizon with 

forecasted electricity prices to avoid EV charging schedules unserved. Similarly, to 

accommodate the EV schedule started on the day before and to keep the optimization 

framework generalized, all the time periods in the previous day is included in the 

historical data. Thus the planning horizon get stretched for 3 days by considering the day 

before (as history) and after in the optimization framework. 
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7.3 Time resolution 

The general consideration for time resolution is 15 minutes as the electricity metering is 

done at the main meter with 15 minutes resolution. The optimization framework is 

developed to adopt different time resolution as an input from the INVADE integrated 

platform, for example 1 hour, where the metered and forecasted parameter are available 

with 1 hour time resolution. But the basic requirement is that all the metered and 

forecasted parameters must have same time resolution for a given optimization instant 

and the result of optimization also will follow the same time resolution. In addition, in the 

prosumer case with kWmax subscription, the consumption above subscribed limit is 

calculated hourly basis. The optimization model adopts to this scenario even if the input 

data is with 15 minutes time resolution.   

7.4 Receding and rolling process 

In the optimization process for the given planning horizon, the receding horizon method 

is used. The problem is solved for a given window. The default horizon length is 3 days 

with one historic day in which the variable are fixed with actual metered values. 

 

Figure 24. Receding horizon approach within planning horizon. 

The receding process is illustrated in the Figure 24 with 15 minutes time resolution. 

Figure 24 (a) shows the planning horizon at the beginning of the day with 288 periods, 

when the time of execution (t_execution) is 96. The green shaded bar for the first 96 time 

periods which represents the historic values from the previous day. The optimization 

problem is solved for the remaining horizon length of 2 days (192 time periods), and the 
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control signals are applied only for one time period after t_execution. The current time is 

entitled as t_execution. After solving for each t_execution, the variables values for the 

t_execution are fixed similar to the historic values and the t_execution is incremented 

and moved forward. By doing that, the horizon is fixed for 3 days but the solver only has 

to solve for the periods between the current t_execution and the end of the planning 

horizon as shown in Figure 24(b). For example, the number of periods to solve in each 

iteration decrease from 192 (at the beginning of each day) to 144 at the mid of the day 

when the execution is 144.  

After the end of each day, the optimization horizon is rolled forward by one day ahead. 

A new planning horizon is formulated by including a new day ahead, discarding the oldest 

day in the previous planning horizon and considering the previous day for historic values. 

The t_execution is reset to 96 as it is the beginning of the new day. This can be seen in 

Figure 25 (a) and (b). 

 

Figure 25. Rolling horizon approach to extend the horizon 

7.5 Overall framework 

The modelling framework is developed in the programing language Python using the 

software package Pyomo4. The framework is developed in 3 layers as shown in the 

Figure 26. This figure is only for the illustrative purpose. The actual name of the files may 

be slightly different depending on the version and Pilot user case. The fundamental layer 

                                                

4 http://www.pyomo.org/ 
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(layer 1) is built on multiple python (.py) files representing every flexibility resource. For 

example, the “Battery.py” contains the mathematical formulations corresponding to the 

battery model. For example, the equations representing SOC development, constraints 

related to charging and discharging powers and SOC capacity, cost functions for 

degradation are represented in the “Battery.py” file. Similarly other flexibility resource 

models’ mathematical representations are coded in their respective python files. Though 

there is a generic representation of thermal load in the Figure 26, the different thermal 

load types, i.e., domestic water heater and space heater are represented separately. The 

different types of curtailable and shiftable loads also represented in the similar fashion 

like thermal loads. 

The second layer contains the files related to optimization input output handling, model 

building and solving the instance. The optimization model can be built with multiple 

similar flexibility resources represented in the first layer in any combination based on the 

user case input data. The third layer provides the overall information about the user case 

and the interfaces with the INVADE integrated cloud platform. This layer contains the 

‘main’ function which is invoked by the IIP and the ‘main’ function calls other functions in 

the other files to build the model, solve the instance and pass the results to the IIP. 

 

Figure 26. Optimization model file structure 

7.5.1 Program control flow 

The IIP invokes optimization program with the prepared input for the parameters with 

calculated, forecasted and metered data corresponding to the whole planning horizon. 

The IIP also provide the information about the time of execution (t_execution). The time 

of execution represents the time period number in the horizon below which the time 

periods are historic and the parameters and variables are either calculated or metered. 

And the time periods from time of execution till the end of horizon, the parameters are 

forecasted and the variables are yet to be solved by the solver during the optimization 

process. 
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Figure 27. Prosumer site configuration example. 

 

The steps in optimization process are, 

1. Optimization model creation 

The optimization model is based on the combination of flexibility resources for 

the given use case with constraints and an objective function for which the result 

has to be minimized or maximized based on the problem. For example, a 

prosumer site configuration shown in the Figure 27 has 5 elements namely PV, 

battery, EV, water heater (thermal load) and all other loads as inflexible loads. 

The objective is to reduce the electricity import from the grid. The optimization 

model will be built by adding the resources’ to an empty model optimization model 

based on the input data provided about the resources by the IIP as shown in the 

flow chart in Figure 28. If there is any problem in building optimization model due 

to insufficient or wrong information, the program will report the error and terminate 

the process. 

2. Variables fixing for the historic time periods 

While creating the optimization model, the parameters are loaded. The second 

step in the process is to fix the variables and parameters for all time periods less 

than t_execution as they represent historic events. Variable fixing problem and 

the different solution approaches are explained in the Chapter 8 

3. Initiate solving process 

The third step is to initiate the solving process and wait for the solver to provide 

solution status. If the optimization problem is solved successfully, the solver 

provides the status as ‘OK’. The optimization result can be formatted as needed 
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in IIP. In case, if the optimization problem is not solved, other possible solver 

statuses reported by Pyomo are listed in the Table 10. 

Table 10. Solver status. 

Status Reason 

‘warning‘ Termination with unusual condition 
‘error‘ Terminated internally with error 
‘aborted’  Terminated due to external conditions (e.g. interrupts) 
‘unknown‘ Unknown (an uninitialized value) 

 

If the solver reports any status other than ‘OK’, the status is reported to the IIP, and the 

results are not valid. The IIP will decide further actions either to execute the optimization 

process again with new set of forecasted values or use the results from the optimization 

process executed in the previous time period.   



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 64 of 170 

 

 

Figure 28. Optimization program flow diagram 

8 Variable freezing techniques 

8.1 Problem description 

Variable fixing is an issue that appears when operating in a rolling/receding horizon 

environment. The basic idea is that the algorithm will be run for the same planning 

horizon many times, but for each iteration, a new period will be historic. When iterating 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 65 of 170 

through a two-day forecasted time horizon and one historic day (288 time periods if 

programming time units are fifteen minutes), one part of the time horizon is in the past, 

and the other is in the future for which the optimization problem is solved. The past values 

(both decision variables and parameters) need to be included in the optimization 

algorithm using either previously calculated values or metered values from the end-user 

devices. 

Uncertainty is a key factor in variable freezing related issues. Because there always will 

be deviations from forecasted data to actual metered data, a solid approach has to be 

chosen in order to deal with these deviations. For example, load consumption is 

stochastic by nature, meaning that no matter how well our prediction models will perform, 

we will never be able to predict the exact realized value which is metered. 

Mainly, there are two issues related to variable fixing. 

1. Parts of the planning horizon is in the past and hence, the decisions cannot be

freely chosen, since they have already been implemented. So the decisions
must be fixed/frozen according to decisions made in earlier iterations. This

problem stems from the rolling horizon concept. The problem can be divided

into the following time segments:

For t + n, 

where n ≥ 0:  

All decisions can be treated by the model without any fixing. 

For t - 1: All decisions must be fixed according to the decisions from the 

previous iteration. 

For t – x, 

where x ≥ 2: 

All decisions must be fixed, some according to a decision in an 

earlier iteration (the iteration from which the decision was 

implemented), some according to a metered value. 

2. We in retrospect receive meter values for some of the parameters and some

of the variables. The problem with this is that these meter values will be

different from the parameters used as input to a previous iteration of the

flexibility algorithm (e.g. a prediction or any fixed parameter). In addition, the

decision variables decided and implemented in a previous iteration of the

flexibility algorithm. The problem can be divided into the following time

segments:
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For t + n, 

where n ≥ 0:   

All parameters are based on predictions and some other 

assumptions (NB! The latest updated ones). 

 

For t - 1: All parameters must be fixed according to the predictions used in 

the previous iteration 

For t – x, 

where x ≥ 2: 

Some parameters are fixed to metered values (or perhaps we 

should say that the prediction is substituted with a meter value) 

and some are fixed according to calculations where meter values 

are included. 

 

Variable fixing is key in order to ensure feasibility. The goal of this document is to assess 

what possible approaches exist, analyse their pros and cons, and therefrom decide an 

approach which is to be implemented.  

Some example of situations where variable fixing is needed are listed below: 

• Constraints where we need to keep track of information such as maximum 

number of activations, maximum activation or resting time for flexible loads such 

as disconnectable, reducible and shiftable loads. 

• When metered and calculated values differ, such as the battery state of 

charge. This problem could occur due to multiple reasons such as charger 

efficiency, constant current charging range, overheating etc. As the model is 

simplified by compromising certain non-linear effects, the metered state of charge 

may differ from the calculated value. 

• In the case of subscribed power (on an hourly basis), uncertainty in inflexible load 

prediction results in sub-optimal use of flexibility resources. By metering and 

updating the real conditions, the algorithm can “recover” from such disturbances. 

The three above suggested situations also apply to other elements and parameters, such 

as generation, EV charging etc.  

Another issue is what we call the “t-1” issue described in Figure 29. Every 15 minutes, 

control dispatch signals are sent from the INVADE platform to the local systems as an 

end result of the previous iteration. When the new iteration starts, predicted and metered 

data are sent to the platform in order to start the optimization with as new information as 

possible.  
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The problem has a horizon of 288 periods in which 192 periods are forecasted. The first 

iteration will be run some minutes before the start of the 96th period (15 minutes are 

chosen in this example). The algorithm is free to decide the decision variables for all 

periods, and all uncertain parameters are represented by their predicted values. The 

integrated INVADE platform then sends the decisions to the local systems, and the 

decisions for period 96 are implemented.  

 

Figure 29: Description of variable and parameter fixing for past time periods.  

Then we move to the second iteration, which takes place a few minutes before the start 

of period 97 (5 minutes). We then are inside period 96. For period 96 we already have 

decided what to do (in iteration 1). These decisions are also implemented, so when we 

call the optimization algorithm once more, the variables for period 96 must be fixed to 

the decisions we already made. The results from iteration 2 are sent to the local systems 

and decisions for period 97 are implemented. Notice that the decisions for period 96 from 

iteration 2 are identical to the decisions from iteration 1 (because we force them to be). 

Then we move to the third iteration, and here we get a new situation, because a few 

minutes after the end of period 96 receive meter values for period 96. The idea is that 

when we initialize the optimization model for iteration 3, we freeze the decisions from 

iteration 2 for period 97. In addition, for period 96 we substitute some of the predictions 

and some of the decision variables with metered values. We need to describe in detail 

which parameters and variables this is relevant for. Anyway, for all further iterations, we 

will have some historic periods with meter values (the green ones in the figure), we will 

have one current period where decisions are made, but no meter values are received 

yet (the orange ones) and a number of future periods, where no meter values exist 

(obviously), and where no decisions are frozen yet. 
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8.2 Variable freezing approaches 

Here we propose two approaches for variable fixing and discuss their pros and cons. 

The approach 1 is selected for implementation.   

8.2.1 Approach 1: Running constraints for the entire time horizon 

This approach suggests that constraints are run for all time periods in the time horizon 

from t=97 to t=288, independent of what time period we are in. By doing this, we are able 

to run constraints as they are designed in D5.3 (probably) without any major alterations. 

The optimization is done for the entire time horizon in every time period, but variables 

will be fixed for all previous periods and updated to their metered values when subject to 

new iterations of the optimization. This could create problems as we do not know if the 

metered values will match what we have calculated. Infeasibility issues are described in 

the next paragraph. 

Infeasibility issues associated with constraints 

A major issue when running constraints for previous time periods, is that the initially 

feasible problem now is updated with new, metered values for past periods, which can 

lead to infeasibility.  

1. Energy balance (equality constraint). 

In a prosumer case with only a battery, the energy balance looks like this (we 

ignore efficiency for simplicity): 

, ,
, ,

buy sell inflex B ch B dis
t t t b t b tWχ χ σ σ− = + −  

Because this is an equality constraint, any change in values that leads to an 

inequality will cause infeasibility. One example is shown in Table 11, where we 

in (t=texecution) predict and calculate the decision variables. In (t=texecution – 1), we 

have moved one time step further but we still do not have the metered values 

and therefore we are still using the calculated values. In this case, it means that 

we still are buying 5 kW, where 3 kW go to inflexible load and 2 kW go to charging 

the battery. However, in (t=texecution – 2), we receive metered values from that time 

period, and update the variables and parameters with the values metered in the 

pilot. However, the metered values now show that we do not have a balance 

anymore, and we experience an infeasibility. It is worth noting that the equality 

constraint could be violated by a 100, 1 or 0,001 kW and infeasibility would still 

happen. As meter readings never will be perfect, this is a significant issue.  
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Table 11: Example case for prosumer with battery where metered data do not add up in the energy 
balance. 

Energy 
balance 

buy
tχ  sell

tχ  inflex
tW  ,

,
B ch
b tσ  ,

,
B dis
b tσ  Imbalance 

 (t=texecution) 5 

(calculated) 

0 

(calculated) 

3 

(predicted) 

2 

(calculated) 

0 

(calculated) 

0 

 (t=texecution – 1) 5 

(calculated) 

0 

(calculated) 

3 

(predicted) 

2 

(calculated) 

0 

(calculated) 

0 

 (t=texecution – 2) 5,5 

(metered) 

0 

(metered) 

3,5 

(metered5) 

2,1 

(metered) 

0 

(metered) 

0,1 

(infeasibility) 

2. A second infeasibility case is whenever an activation of a disconnectable load 

(space heater) did not perform as expected. An example could be a 

disconnectable load described in Table 12. In this case, the algorithm scheduled 

a disconnection in time periods 97-99. As we are in time period 97, the 

disconnection has already happened and we are starting to plan for time period 

98.  

Table 12: Disconnectable load example. We are in time period 97 indicated by the orange colour. 

t 96 97 98 99 100 

      

𝛿𝛿𝑙𝑙,𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 1 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 0 0 1 1 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 0 0 0 0 1 

 

When reaching time period 98, the disconnection has failed and the meter which 

represents the disconnectable load has a meter reading indicating that it is not 

disconnected6 (e.g. same as on level of an electric water heater). We now have the 

situation displayed in Table 13. Because we have not yet received meter values from the 

meter in time period 98, ,
,
SH run
l tδ  is still 1 in t = 98 as was calculated by the optimization 

algorithm. 

                                                

5 To be specific, it is not metered, but calculated as the difference between all other 
elements in the energy balance.  
6 Note that delta values are not metered. The assumption is that they are derived from 
the meter readings and are fed into the algorithm as an input. 
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Table 13: Disconnectable load example. We are in time period 98 indicated by the orange period. 
However, the meter reading from time period 97 indicates that the disconnection did not happen in 

period 97 and is therefore reported as 0 to the flexibility algorithm. 

t 96 97 98 99 100 

      

𝛿𝛿𝑙𝑙,𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 0 0 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 0 0 1 1 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 0 0 0 0 1 

 

We see that ,
, 1
SH start
l tδ −  which originally was 1, is now measured to be 0 due to the updated 

meter reading of the disconnectable load. In the equation below, the constraint would in 

time period 98 have a result of 0 + 0 = 1 + 0 which would lead to infeasibility.  

, , , ,
, 1 , 1 , ,
SH start SH run SH start SH run
l t l t l t l tδ δ δ δ− −+ = +  

This kind of problem applies to most state variable dependent constraints (constraint with 

deltas representing the start, running or end of an activation).  

3. A third example goes for violation of maximum charging and discharging power 

in the battery. Batteries are complex, the maximum charging power of a battery 

can change depending on temperature and other conditions. An example is 

shown in Table 14. Numbers are shown in %. Due to battery limitations, the SOC 

can maximum change 50 % per time period. This is shown in the equation below.  

, ,
, 50%B ch B ch

b t bQσ ≤ =  

Table 14: Battery SOC example. We are in time period 98 indicated by the orange colour. All 
numbers are shown in %. 

t 96 97 98 99 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠 50% 30% 70% 70% 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑐𝑐ℎ 0% 0% 50% 0% 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑 0% 20 % 0% 0% 

 

When moving to the next time period (t=99), we receive metered values from t=98. The 

meter readings are shown in Table 15. 
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Table 15: Battery SOC example. We are in time period 99 indicated by the orange colour. All 
numbers are shown in %. An infeasibility is shown by the red colour after receiving metered 

values. 

 

t 96 97 98 99 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠 50% 30% 72% 72% 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑐𝑐ℎ 0% 0% 52% 0% 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑 0% 20% 0% 0% 

 

Due to the battery’s local management system, a higher charging power was allowed. 

However, when this was metered and sent to the platform and became subject to the 

constraint above, infeasibility occurred. 

Problem types associated with approach 

In general, we can find the following type of problems: 

1. Infeasibility in equality constraints with linear variables, shown in example 1. This 

is a major issue as a meter reading being imprecise or wrong in any way will lead 

to infeasibility, exemplified by the energy balance constraint. These types of 

constraints have to be skipped or relaxed with this approach. 

Relaxation of the constraint for previous time periods is done by adding a slack 

variable on one side of the equation which has no meaning to the actual physical 

system. This slack variable is only part of the equation for previous time periods. 

, ,
, ,( ) : buy sell inflex B ch B dis

exec t t t b t b tif t t Wχ χ σ σ> − = + −  

, , ,
, ,: buy sell inflex B ch B dis EB slack

t t t b t b t telse Wχ χ σ σ ε− = + − +  

By adding texec – 1, the last period is still not subject to the slack variable ,EB slack
tε  

as metered values are not yet available for this time period. ,EB slack
tε  is within the 

Reals domain and can take any positive or negative value depending on which 

side the imbalance is skewed towards. 

2. Infeasibility in inequality (≤ or ≥) constraints with linear variables shown in 

example 3. This issue might be easier than the above, as a meter reading which 

deviates from the calculated/predicted value could also lead to feasibility, 

depending on which direction the meter reading is wrong.  
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It is possible to relax the constraint for past time periods to “ignore” inconsistent 

meter-to-calculation deviations. This is done similarly as in the equality constraint 

issue explained above. 

, ,
,( 1) : B ch B ch

exec b t bif t t Qσ> − ≤  

, , ,
,: B ch B ch B slack

b t b telse Qσ ε≤ +  

Just as above, ,EB slack
tε is still within the Reals domain and can take any real value 

to absorb errors in calculated values. 

3. Infeasibility when meter readings are different from calculated binary values as 

described in example 2. When a disconnection did not take place, the binary 

value (delta) got a different value when interpreted by the cloud/algorithm from 

the meter reading, and lead to infeasibility in the state variable constraints. 

This issue is more complicated because it occurs when metered values do not 

match the binary decision value. This is typically only subject to state variables 

(on/off). In this case, the constraint can be skipped for past time periods (similar 

to approach 2 described in 8.2.2). However, this requires an overall evaluation of 

all constraints that need to be configured. 

4. Constraints where slack variables will only solve infeasibility problems, but 

interrupt the constraint purpose. One example is Eq. 32 from D5.3: For each 

charging session interval I the sum energy volume delivered to the EV must equal 

the sum baseline forecast. 

, ,
, ,

, ,
, ,

,
, ,

CP end CP end
v n v n

CP start CP start
v n v n

T T
CP ch CP
v t v t

t T t T
Wθ

= =

=∑ ∑  

When subject to metered values (in past periods), this equality constraint is 

problematic because the meter readings might (probably never will) match the 

predicted baseline consumption. By adding a slack variable, we can avoid 

infeasibility as the slack variable absorbs any deviation between metered and 

calculated values. However, this also means that we might have a case where 

the EV load is not served appropriately. One solution is to skip the constraint for 

previous time periods. However, then we cannot know if the load has been served 

or not.  
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8.2.2 Approach 2: Running constraints (only) for current and future time periods 

Contrary to the approach described in 8.2.1, this approach describes a method where 

previous time periods are indirectly taken into account by only running constraints for 

future (and t-1) time periods. Because constraints are not run for previous time periods, 

we avoid problems such as infeasibility when updating calculated values with metered 

values. However, information that is gained through running constraints for previous time 

periods are not taken into account. 

As described in D5.3, future decisions depend on previous events. E.g., if a 

disconnectable load can be activated (disconnected) twice a day, the algorithm needs to 

keep track of how many times the load has been activated previously in the day. With 

this approach, information of what has happened in previous time periods needs to be 

included by storing data in parameters and including them in the constraints. 

 

Infeasibility issues associated with constraints 

We illustrate the constraints with an example by showing a possible load curtailment and 

by analysing all constraints related to the curtailable load to see how they are affected 

by the described approach.  

 A load unit is curtailed in periods 96 to 99 and 102 to 103. The values of the binary 

variables are then as shown in Table 16. We are in time period 98 as shown by the green 

colour. The orange cells are previous time periods and the blue are future periods which 

are to be optimized. The first curtailment starts in period 96, hence ,
,1
SH start
lδ   is set to 1. 

The curtailment continues in periods 97, 98 and 99, and the ,
,1
SH run
lδ  are set to 1. The 

curtailment stops in the beginning of period 100 (or actually, in the end of period 99) so 

that ,
,5 1SH end

lδ = . 

Table 16: Example of curtailable load and how to keep track of information related to the activation. 
Orange is the time period we are in (t-1), green are past periods and blue are future periods yet to 

be optimized. 

t 96 97 98 99 100 101 102 103 104 

          

𝛿𝛿𝑙𝑙,𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 0 0 0 0 0 1 0 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 0 1 1 1 0 0 0 1 0 

𝛿𝛿𝑙𝑙,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 0 0 0 0 1 0 0 0 1 
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With this approach, the constraints have to analysed and altered, skipped or kept as they 

are in order assure proper operation. All constraints subject to the example above will be 

described below with the suggested approach. 

With the example in Table 16, Eq. (79) will run as normal, as it only requires values from 

period t, meaning that the variables in the equation are not connected to past and future 

time period values. It makes sure that the activation only happens in permitted periods. 

, ,
, , 0, ,SH start SH run c c

l t l t l L t Tδ δ+ = ∀ ∈ ∉ (79) 

Eq. (80) also runs as normal, as it only requires values from period t, meaning that the 

variables in the equation are not connected to past and future time period values. 

, , ,
, , , 1, ,SH start SH run SH end c

l t l t l t l L t Tδ δ δ+ + ≤ ∀ ∈ ∈ (80) 

In Eq. (81), the situation changes because we require ,
, 1
SH start
l tδ −  and ,

, 1
SH run
l tδ −  from the 

previous time period. In this case, ,
, 1
SH start
l tδ − and ,

, 1
SH run
l tδ −  has to be stored somewhere in 

order to fulfil the constraint. When the values are stored, ,
,
SH run
l tδ and ,

,
SH start
l tδ  will be 

decided by the algorithm. 

, , , ,
, 1 , 1 , , , ,SH start SH run SH start SH run c

l t l t l t l t l L t Tδ δ δ δ− −+ = + ∀ ∈ ∈ (81) 

Eq. (82) ensures that activation does not last longer than ,maxSH
lD  periods. In the example 

above, if ,max 4SH
lD =   in t = 98, the constraint will go from t = 98 to t = 102. However, 

because ,
,
SH start
l tδ   is in the past, the optimizer could break the initial schedule and keep 

the load activated as both ,
,
SH start
l tδ  and ,

,
SH end
l tδ could be 0 for all those periods. To avoid 

long activations, ,maxSH
lD has to be updated in all time periods inside the activation. After 

it has to be reset to its original value (in t = 99). 

,max

, ,
, , , ,

SH
lt D

SH end SH start c
l i l t

i t
l L t Tδ δ

+

=

≥ ∀ ∈ ∈∑ (82) 

Eq. (83) has the same issue as Eq. (82), and 𝛿𝛿𝑙𝑙,𝑖𝑖
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛿𝛿𝑙𝑙,𝑡𝑡

𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 have to be stored for

𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 time periods in the past. 

,min 1
, ,

, , 1, ,
SH
lt D

SH end SH start c
l t l i

i t
l L t Tδ δ

+ −

=

+ ≤ ∀ ∈ ∈∑ (83)
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Finally, Eq. (84) makes sure that the maximum number of curtailments does not exceed
,maxSH

lN . In this case, ,maxSH
lN needs to be updated after each curtailment. In the example 

above (we assume ,max 2SH
lN = ), ,maxSH

lN must be set to 1 in t=96 after the first activation. 

Depending on the contract, ,maxSH
lN  is reset after 1 day is finished (typically 96 time 

periods). 

, ,max
, , ,SH start SH c

l i l
t T

N l L t Tδ
∈

≤ ∀ ∈ ∈∑    (84) 

Finally, such an analysis has to be done for all types of flexibility and all constraints which 

belong to the flexibility elements. This could be quite time consuming. In addition, we do 

not know if we have covered all outcomes, especially when input data is missing or is 

wrong. 

Problem type associated with approach 

In general, we see the following type of problems: 

1. Constraints where we sum over time periods in the past and in the future at the 

same time. These constraints need to be modified to work by storing information 

in the cloud/algorithm. 

2. Constraints where we sum over current and future periods. We might face a 

scenario where we have to skip some constraints or store values for future 

periods. This is discussed in the explanation of Eq. (82) above. 

3. It is unlikely that we are able to correctly adjust all constraints for all kinds of 

scenarios regarding variable fixing. Basically if something is not fixed properly, 

the algorithm may lead to infeasibility or not run at all.  

8.3 The t-1 issue 

In order to have a data value more realistic than the old metered value (from t-1), we 

suggest to utilize the calculated value of the previous optimization algorithm solution. For 

instance, the battery could at 12:00 have 50 % SOC and is told by control dispatch to 

discharge to 40 % by 12:15. In this case, the metered value is 50 %, but by the 12:15 

the real value will be 40 % which will not be metered in time for the new control dispatch. 

Thus it makes more sense to use the calculated value for the 12:15 control dispatch. 

Note that the real value at 12:15 potentially could be wrong (e.g. 38 %) due to external 

conditions. If such an error occurs consecutively, the real SOC development could 
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deviate significantly from the calculated values as the errors might potentially stack on 

top of each other. 

Because the SOC equation only depends on the SOC of the previous time period (which 

is always a calculated value), the errors will stack on top of each other also when we 

update the variables with metered values. In short: the metered values never “catch up” 

to the equation.  

Note that the stack of errors potentially reset (are removed) when the battery SOC 

reaches minimum or maximum SOC, but not necessarily. 

8.4 Overall evaluation of approaches 

First, we evaluate approach 1 described in 8.2.1, then approach 2 described in 8.2.2. 

Note that approach 1 was chosen in INVADE. 

8.4.1 Approach 1 

Pros: 

• Constraints stand as they are for all time periods, however, many are given slack 

variables in order to deal with deviations between meter readings and calculated 

values. 

• As we solve for the entire time horizon in every time period, variables and 

parameters that are necessary to keep track of, do not need to be stored outside 

the flexibility algorithm. Past decisions are easily taken into account. 

Cons: 

• More tests are needed than in other options to ensure that it works for all 

situations, especially when metered values are missing or with high errors in 

forecasting. 

8.4.2 Approach 2 

Pros: 

• No need to solve time periods that are in the past. 

o Avoid complications in freezing parts of data time series. This requires a 

time series where the state of charge of a battery is frozen from all 
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previous time periods, but optimized for all future time periods (incl. 

present). 

o There will not be any infeasibility problems in constraints that are run after 

the metered values are included in the optimization problem. This is a big 

advantage. 

• We spend less time solving the problem as we do not optimize for previous time 

periods. This is a minor point as the algorithm must be solved for all time periods 

at some point either way. 

Cons: 

• It is more difficult to bring information from all previous time periods. E.g. 

how many times have we activated a disconnectable load? For all constraints 

that run over both past, present and future time periods, information from the 

previous time periods must be saved somehow to assure correct execution of the 

flexibility element. 

• Every constraint has to be checked and evaluated for possible issues 

connected to variable fixing. This especially applies to constraints where time 

periods in the past are included, and constraints where parameters must be 

saved in the cloud in order to keep track of mechanisms such as minimum resting 

time between activations (Dmin), maximum activation time (Dmax) and max amount 

of daily activations (Nmax). Such evaluation of the constraints are expected to be 

quite time consuming and does not guarantee a perfect outcome. 

9 Pilot structures 

9.1 Introduction 

This chapter will includes the details of the Norwegian pilot (Lyse pilot), Dutch Pilot, and 

Bulgarian Pilot as well as contains agreed information needed to be implemented in the 

flexibility management algorithm. On the other side, this is also about making the pilots 

aware about what they need to discuss and clarify. This chapter continues the initial 

discussion in D 5.3, and has been updated based on new information we have received 

from the discussions between eSmart and the INVADE pilots. Detailed description of the 
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remaining pilots in INVADE can be found D4.3, which will be released in similar time as 

this deliverable. 

9.2 Norwegian case study 

The Norwegian pilot structure and specification is explained in D 10.1. 

9.2.1 Structure information and historic meter values 

The structure information is data that is rarely changed. According to D5.3, the three 

different types of pilots can be illustrated as in the figures below, i.e., Figure 30, Figure 

31 and Figure 32 for the Norwegian pilot. 

Figure 30. Illustration of Lyse headquarter 

Figure 31. General illustration of Lyse households 
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Figure 32. General illustration of Lyse cooperatives 

Integrated INVADE Platform (IIP) will receive information about each specific site, which 

means each specific household and each specific cooperative, to establish models as 

illustrated above. The list of input combined in the Norwegian pilot is available in D10.1. 

9.2.2 Commercial/agreement information 

Since the Lyse pilot focuses on the prosumer services ToU optimization, kWmax control 

and Self-balancing, and since these are closely connected to the terms in the retail 

contract and the grid contract, information about these contracts must be given at a very 

detailed level. 

All customers/prosumers are connected to Lyse Elnett’s grid, hence, all will have grid 

contract with Lyse Elnett. A working assumption is also that all prosumers will have Lyse 

as retailer. 

9.2.3 Grid contract 

All prosumers will have the same type of grid contract, which will be based on the 

principle of subscribed power. The principle is illustrated in Figure 33, and it completes 

the open discussion from D5.3 on “subscribed power” type of grid contracts. 
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Figure 33. Illustration of the subscribed power concept 

A prosumer subscribes to a certain power level, say 5 kW. A fixed fee is paid according 

to this level. The price increases with increasing power level. The contract has a low 

energy fee (NOK/kWh) as long as the consumption is below the subscribed level. On the 

other hand, the energy price is much higher for volumes above the subscribed level. 

Notice that all meter values still are hourly, so instant power is not considered, only 

average power over 1 hour, or in other words: energy per hour, metered in kWh/h. This 

means that the instant power may be above the subscribed power level for some time, 

but as long as the total energy over the hour is below, the high price does not considered. 

An example from a presentation by NVE, the Norwegian regulator, is Figure 34. 

 

Figure 34. Example of prices for subscribed power 

To the left, the figure shows the fixed price in NOK/month for different subscription levels 

between 1 and 10 kWh/h. To the right, the energy fees are shown for volumes up to the 
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subscribed level (5 øre/kWh) and for volumes above the subscribed level, also called 

over consumption. In the example this price is 10 times the energy fee price. 

The example does not say anything about energy fee for hours with surplus electricity.  

9.2.4 Retail contract 

All prosumers in the Norwegian pilot will have a retail contract with Lyse. A detail of retail 

contracts based on Nord Pool electricity spot-price was presented in D5.3. For buying 

electricity, the consumers are supposed to pay electricity spot price plus a mark-up which 

is different for private consumers (3,9 øre/kWh) and commercial consumers (4,6 

øre/kWh). 

The remuneration for selling back surplus electricity is twice the Nord Pool spot price. In 

combination with the low energy fee at the subscribed power grid tariff, the incentive for 

self-consumption is highly reduced. 

9.2.5 Flexibility  

The Lyse pilots will include the following types of flexible devices: 

 Batteries 

 EV charging points 

 Water heaters 

 Space heating 

In flexibility management algorithm, each device will be modelled and treated separately, 

which means that meter values and control signals will be for each single device. In other 

words, there will be no flexible resources at aggregated levels. 

To be able to utilize the flexibility in an optimal way and without inducing any loss of 

comfort or other disadvantages, flexibility properties must be defined in detail. This also 

includes rules, agreements and interaction with involved people at the site, and which 

information that will be available at what times. Each type of flexible device will be 

handled below. 

9.2.5.1 Batteries 

Batteries will be involved in the office building (Profile H), in some of the households 

(Profile C, D and E) and possibly in some of the cooperatives (Profile F). The working 

assumption is that all of them can be treated similarly, when it comes to flexibility 
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management and data to and from the batteries. More details of the battery models are 

available in Chapter 3. 

9.2.5.2 EV charging points 

EV charging points will be involved in the office building (Profile H), in some of the 

households (Profile B, E, G), and in the cooperatives (Profile F). The pilot in Norway will 

use smart chargers from Schneider, and all chargers uses the OCPP standard.   

For some EV charging points the charging power (kW) can be controlled at each 

separate point. In other cases, power can be controlled at a grouped level. Then local 

systems will distribute the decisions down to each charging point. 

Each EV charging point will have fixed data for maximum charging power continuously 

between 0 and a maximum level. Dependent on the car that connects, the maximum 

power that the car takes can be lower than the maximum level at the charging point. In 

addition, there will be a lower level, which is decided by the car.  

In some cases a Smartly app might be involved. The main function in this context is that 

the EV driver can provide information that the charging session is not flexible, i.e. it 

cannot be controlled. In other words, this session is of type urgent or high priority. 

In addition, it should be considered, at least at some of the sites, to get more information 

from the driver, also through the app. Relevant information could be: 

 In advance of a connection: The driver sends information about what time she 

expects to connect and disconnect, and the expected charging demand. 

 When connecting: The driver sends information about real charging demand or 

battery SOC (in % or remaining number of km) and expected disconnection time. 

The benefit of this is that it the information as input to the optimization will be more 

accurate/correct.  

If the EV driver knows that it will be disconnected in a given hour and sends this 

information through the app, the decisions from the optimization will be adjusted 

accordingly. 

The output of the optimization algorithm will be a charging set-point for each period. The 

set-point will either be an average power level (kW) or energy (kWh). Implementation of 

the set-point then will be performed locally, i.e. by the Electric Vehicle Supply Equipment 

(EVSE) or Smartly. 
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9.2.5.3 Water heaters 

Controllable water heaters will be involved in some of the households (Profile A and G).  

Each water heater will have fixed parameter for installed capacity (kW). The water 

heaters in the pilot will have 1.95 kW.  

Meter readings for the energy to the water heater should be retrieved at the same interval 

as the rest of the meter readings (15 minutes or smaller). However, according to Smartly, 

this might not be possible. This is a big issue, since it then is very difficult to add any 

intelligence. Therefore, the prediction algorithm should provide some estimation about 

this information. In the further, we assume that these meter readings are available. 

The water heater control is based on a set of timing restrictions that will be input to the 

optimization algorithm: 

d. For each period, a parameter says whether it is allowed to disconnect the 

water heater or not (e.g. disconnection is allowed at any time, except from 

between 19:00 and 22:00).  

e. A maximum disconnection duration is given (e.g. if the water heater is 

disconnected, it must at the latest be reconnected after 1 ½ hour) 

f. A minimum duration (rest time) between two disconnections is given (e.g. 

if a water heater is reconnected after a disconnection, it cannot be 

disconnected again before at least 3 hours) 

The output from the optimization algorithms is a set of disconnection and reconnection 

periods. The control signals will be “off” and “on” with a given time (e.g. “off” at 12:15, 

and “on” at 12:45). NB! This information will have the granularity equal to the length of 

the periods, e.g., 15 minutes, which means that the connections and disconnections will 

be set to these time points, and not at any minute inside a 15 minutes’ interval. More 

details of this model are presented in Chapter 5. 

 

9.2.5.4 Space heating 

Space heating will be involved in some of the households (Profile A). Space heater may 

be floor heating cables or panel ovens. Smartly supports temperature control to these 

customers. The user can change the set-point for the temperature in each room.  

The same issue for available meter readings is valid here, as for water heaters. 

According to Smartly there might be the case that we will not get meter readings for the 
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space heater, which leaves us in a black box situation. Probably it will be difficult to add 

any intelligence. 

If space heating control shall be involved in the pilot, it must be decided how the flexibility 

can be treated. One option is to have the same approach as for water heaters: that the 

heating is controlled “off” and “on”, based on timing constraints. This might lead to 

inconvenience situations for the end-users. Another approach is to be able to control the 

temperature set-points. This approach is explained in details in Chapter 6. 

9.2.6 An illustrative example 

Assume we have a prosumer with a PV panel, a controllable water heater (2 kW), a room 

with controllable temperature (1 kW), an EV charging point (3 kW) and a battery (10 kWh, 

up to 5 kW charging and discharging power). 

Figure 35. Prosumer and resources 

The prosumer has a grid contract with 6 kW subscribed power. For a given day, the day-

ahead spot (Elspot) prices are according to Figure 36. 
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Figure 36. The day-ahead spot prices (Elspot) 

The predictions for the electric loads are shown in Figure 37: 

 The residual load has a peak 6 kWh/h in the afternoon 

 The water heater has high consumption in the morning and early and late in the 

evening and with long “off” periods 

 The space heater is surging electricity all the time, but varying between almost 0 

and 1 kW 

 The EV is charging twice, in the morning and in the early evening 

 

Figure 37. Predicted consumption for water heater, space heater, EV charging and residual loads 
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The PV production is predicted as shown in Figure 38. 

 

Figure 38. Predicted production from the PV panels 

In total, this gives a net exchange with the grid as illustrated in Figure 35. We see that 

over consumption occurs in the morning, early in the evening, and slightly late in the 

evening. Further we see that the profile’s peaks coincide with the price peaks. This gives 

a total net cost of 75 NOK for the day.  

 

Figure 39. Net exchange without flexibility and subscribed power level 

The cost can be reduced with almost 20 % by utilizing flexibility. Then the EV charging 

is moved in time from morning to the middle of the day and from early evening to the 

night. Further, the water heater and space heater consumption (which are not large) are 

slightly shifted.  
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Figure 40. Loads after control 

Finally, the battery is the source providing most flexibility in this example. We assume 

that the initial state of charge is 5 kWh and that this should the state of charge at the end 

of the day. Then, the state of charge is developing according to Figure 37. 

 

 

Figure 41. Battery filling development 

We see that the battery is charged during the night, and discharged fully during two hours 

in the morning, when consumption and prices are high. Then it is charged in the middle 

of the day, when the prices are low, and consumption is low and production is high. 

Finally it is discharged again during the high price hours in the evening. The net resulting 

net exchange is illustrated in Figure 42. 
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 Figure 42. Net exchange after activation of flexibility 

We see that over consumption is avoided and that the profile is completely changed so 

that electricity is bought in cheap hours. Notice also that we now have got sales of surplus 

electricity in two hours in the morning and one in the evening. According to the self-

balancing/self-consumption principle this may seem a bit strange, but remember that in 

this case, the prosumer gets double price for selling. In addition, the subscribed power 

tariff has a very low cost for normal consumption. 

9.3 Dutch case study 

9.3.1 Introduction 

According to D10.1, Dutch pilots will consist of four different types of sites: 

1. Home charging with approximately 25 homes and known, private users. 3 

homes will have 2 charging points, the rest will have 1. 

2. Large scale offices and parking lots with semi private/public situations and 

unknown users. This type will include 25 office buildings and parking lots with 

app 300 charging points. 

3. Small scale office sub-pilot with known users, probably also with energy storage 

and V2X capability. This type includes only one site, which is the Elaad office 

building. 

4. Large scale public charging with 500 – 1000 charging points spread over the 

whole country and unknown users. 
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All pilot sites will have a GreenFlux and ElaadNL installations, which means that 

exchange of data in all cases will be between the IIP and GreenFlux/ElaadNL.  

According to D4.2 the pilots in the Netherlands will include the following flexibility 

services: 

 DSO 

o Congestion management 

o Voltage/Reactive power control 

 Prosumer 

o ToU optimization 

o kWmax control 

o Self-balancing 

The DSO services will be treated simply as a capacity constraint for a site or a group of 

sites. 

9.3.2 Structure information and historic meter values 

A general illustration of the Dutch pilot sites is given Figure 43. Each square illustrates a 

point from which meter readings are received or to which control signals are sent. 

 

Figure 43. General illustration of the Dutch pilots 
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All the sites will have at least one charging point. An EV system (not visible in Figure 43) 

will control each charging point in real time. At some sites the charging points may be 

grouped with a capacity limit for each group. The pilot site of type 3, i.e., small scale 

office, will have all components in the illustration. Private homes (type 1) will have load 

and one or two charging points. In addition, some of these sites will have a PV panel. 

Finally, large scale offices and parking lots (type 2) will have charging points (up to 80) 

and load. Some of these sites will also have PV panels. 

9.3.3 Objectives 

Although the pilot types are different, it is a target to define all of them into a common 

framework. In fact revenue optimization is not the main focus of the Dutch pilot is to learn 

if steering could be a good control mechanism to ensure grid stability, not optimize 

revenue. So for grid stability we defer or reduce charging. And yes, the moments that 

such things are necessary probably correlate to higher APX prices. 

It is assumed that electricity is bought on retail contracts based on hourly prices from the 

APX (EPEX SPOT Power NL Hourly7), although the real customers do not necessarily 

have such a contract. An example of such prices is shown in Figure 44, where prices 

have been downloaded on February 28th, 2018. 

Figure 44. Example of APX spot prices for one specific day 

7 https://www.apxgroup.com/market-results/apx-power-nl/dashboard/ 
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We see that for this specific day, the prices vary from hour to hour, with a morning peak 

in hour 9:00 and an afternoon peak in hour 20:00. The most expensive hour has a cost 

approximately 100 % higher than the cheapest one.  

Sales of surplus electricity is assumed to be done to a price lower than the purchase 

price. If possible, it will then be profitable to shift EV charging to hours with surplus 

electricity. This is according to the overall idea to “drive, charged by the sun”.  

Finally, since the primary interest of Greenflux and ElaadNL is to ensure grid stability, 

different capacity limitations can be defined for a site, internally at a site or for a group of 

sites.  

For a simplified and illustrative example (though unrealistic), let a private household has 

a solar panel, loads and two charging points that can charge up to 3 kW each. The main 

fuse has a limitation of 5.5 kW. The resource overview is shown in Figure 45. 

 

 

Figure 45. Resource overview of example household 

Figure 46 shows possible values for PV production, load and EV charging demand. The 

blue curve shows net exchange with the grid, where positive values represent purchase 

and negative represent sales. The net exchange is below the 5.5 kW limitation in all 

hours. 
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Figure 46. Example of PV production, load and EV charging for a household for one specific day 

Further, assume that the revenues from selling surplus electricity is 50 % of the APX 

price. The total costs sum up to EUR 314, while the total revenues from sales sum up to 

EUR 15. Net cost then becomes EUR 299.  

Now, assume that we are able to control the EV charging by delaying parts of it. As 

described above, a profitable strategy will be to shift charging away from the peak price 

periods and to shift into the surplus periods. A possible solution is shown in Figure 47. 

 

Figure 47. Example of possible strategy when EV charging can be delayed  

Purchase in the morning and evening peak hours is now reduced. Purchase in the latest 

hours is increased, but is not violating the 5.5 kW main fuse constraint. Finally, the sales 

in the middle of the day is almost eliminated. This strategy gives total costs at EUR 276, 

total revenues EUR 4 and the resulting net cost EUR 272, which represents a cost saving 

of EUR 27 compared to the situation with no control. A comparison of the net exchange 

with and without control is presented in Figure 48. 
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Figure 48. Comparison of the net exchange with and without EV charging control 

9.3.4 Flexibility and decisions 

The main source for flexibility in the Dutch pilots is the control of the EV charging. In 

addition, batteries may be involved. However, in this document we focus on the EVs.  

Meter readings for each charging point will be received in an Open Charge Management 

Protocol (OCMP) message every 15 minutes. Similar to the Norwegian pilot, the 

message will contain meter counter values (accumulated kWh) per charging point and 

charging session. When a new charging session starts, meter values starts coming. For 

each period, accumulated values will be sent. This continues until the charging session 

stops, which means that the car disconnects from the charging point. By getting this 

information, the IIP also gets information about historic connection and disconnection 

periods, which can be used to train prediction algorithms about potential flexibility in 

terms of possibility to shift charging in time. 

 

Figure 49. Example of meter readings and delivered charging energy for two charging sessions 
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Figure 49 shows an example of two charging sessions at the same charging point. The 

orange and yellow curves illustrate the meter readings received, while the blue and grey 

bars show the charging energy delivered in each period. The example has hourly time 

resolution. The charging point is first connected sometime in hour 8. After hour 8, meter 

reading will be received, and the charging energy can be calculated. The electric vehicle 

stops charging somewhere in hour 10, but it stays connected until somewhere inside 

hour 11. Then the charging point is disconnected and no meter reading is sent in hour 

12 and 13. Next, the charging point is reconnected somewhere in hour 14. A meter 

reading is received when hour 14 is over. The counter continues from the last value for 

the previous session. We see that the EV charges in hours 14, 15, 16 and 17, but it stays 

connected until somewhere in hour 19. For the rest of the day, no car is connected to 

the charging point. 

NB! An issue to consider here, is that the charging points use a small amount of power 

(a few watts) even if not connected. For long time intervals where the point is not 

connected, the counter value may increase. This energy is not related to any charging 

session, and must be handled, somehow.  

The example above shows historic values. Furthermore, this will be used to make 

predictions, i.e., to predict when the charging point will be connected and disconnected 

and the related energy need. These predictions will be used as input to the optimization 

model, which in turn may change the charging profile within the predicted time when the 

charging point is connected, constrained by the maximum power level. Following the 

example above (which shows uncontrolled charging), the charging schedule from the 

optimization could look in Figure 50. 

 

Figure 50. Example of charging energy for two charging sessions when it is controlled 
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Observe that the first session is delayed one hour, and the profile is changed. For the 

second session, a delay is also introduced (now starting 1 hour later and finalizing 2 

hours later), and the profile is also changed. For instance no charging is done in hour 

17. 

In the household pilots, the users are known. This means that in normal cases 

information about car type, maximum charging power, battery capacity etc. can be 

available. However, this assumption can be violated in situations where a different car 

like a visiting guest uses the charging point.  At some pilot sites, the users can have an 

app where they have the possibility to select prioritized charging when connecting to a 

charging point, which means that they do accept the charging to be delayed.  

All this represents information that will be used both to predict charging demand and to 

predict available flexibility. 

The nature of our problem is that some information is not known with certainty at the 

moment where we make the decisions, and further, that information will be revealed 

successively. To handle this situation, we have selected to use a rolling horizon principle, 

which implies that the process of receiving fresh data, updating predictions, making 

decisions and sending these to the local systems. This process is repeated for each time-

slot. More information about this can be found in Chapter 7.  

In the Dutch pilot OCMP will be used for sending information between 

GreenFlux/ElaadNL and the IIP in both directions. These messages basically consist of 

three types of information: 

 Meter readings sent from GreenFlux/ElaadNL to IIP 

 Available capacity sent from GreenFlux/ElaadNL to IIP as Maximum Capacity 

Forecast. This contains the capacity limitations (kW) for a time block, defined by a 

start time and an end time. The capacity is valid for a group, which can be a group 

of charging points, one site (household, commercial building or charging site) or an 

aggregation of sites (The aggregation will probably be implemented by use of 

standard zone-functionality in the IIP).  

 Results from the optimization algorithm sent from IIP to GreenFlux/ElaadNL as 

Optimal Capacity Forecast with the same levels as the Maximum Capacity 

Forecast. GreenFlux/ElaadNL calculates how this shall be met at the detailed level 

(down to each charging point) and implements this. 

To illustrate this concept, we continue with some simple examples. 
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9.3.4.1 Example 1: One household 

Example 1 follows the example in Sub-chapter 9.2.3. 

First, the IIP receives the Maximum Capacity Forecast from GreenFlux. In this example, 

this will be the capacity limitation for the example household, which will be one time block 

from 00:00 to 24:00. The value will be 5.5 kW.  

Next, the flexibility algorithms will be run. For simplicity, assume that hourly time 

resolution is defined. In this example, we skip the description of the rolling horizon and 

pretend that we are running a one-shot planning just before a day starts. Then the 

planning horizon goes from hour 1 to hour 24. 

In a preparatory stage, the IIP performs the following steps: 

 Solar production from the PV panel is predicted for each of the hours in the 24 

hours’ horizon (H1 – H24) 

 Consumption for the loads is predicted for each of the hours in the 24 hours’ horizon 

 EV charging demand for the two charging points is predicted for each of the hours 

in the 24 hours’ horizon. 

 Prices from APX are collected. At this stage all prices are known, so a prediction is 

not needed. 

 Maximum capacity forecast for the household is retrieved 

It is now possible to calculate the numbers in Figure 46, including costs and to detect 

whether the capacity limit for the site is violated. 

Now, we need to have information about what flexibility that exists for the flexible 

resources, which in this case are the charging points. Based on historic values (+ 

potentially some input from apps), charging demand including connection and 

disconnection times are predicted.  

The flexibility algorithm makes decisions at the level of each of the charging points, 

aggregates the decisions and builds the Optimal Capacity Forecast. This is then sent to 

GreenFlux, which makes detailed plans for each charging point. Figure 51 illustrates the 

uncontrolled and controlled situation. The green curve then constitutes the Optimal 

Capacity Forecast.  
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Figure 51. Comparison of charging demand before and after control 

9.3.4.2 Example 2: Several households 

Now, assume that we expand example 1 with another household, with one charging point 

and loads. The two sites (households) form a zone because they are connected to a line 

or transformer with a capacity limit. 

 

Figure 52. Two households in a zone 

The key question now is whether the flexibility algorithm should optimize for the zone or 

for each of the households. 

Optimization for the zone: This approach will ensure that the zone capacity limit is not 

violated. Further the flexibility will be used to ensure cost minimization for the zone.  

However, this does not guarantee that the solution is optimal for each of the households.  
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Optimization for each household: This is in accordance with example 1, but in addition, 

we now have an additional constraint: The sum net purchase for the two households 

must be below the capacity limit for the zone. In cases where the optimal solutions for 

each of the two households lead to violation of the limit, some corrective actions must be 

performed. One possible approach could be to reduce the household capacity limits pro 

rata according to main fuse size or something. 

Each of these options have pros and cons: Optimization for the zone is easiest to 

implement, but may have some odd effects that may be perceived as unfair between the 

households. 

9.3.4.3 Example 3: Office charging with 4 charging points 

Consider an example with a site outside an office building with 4 charging points. 

Figure 53. Four charging points outside an office building 

Charging points 1, 3 and 4 can deliver 3 kW, while charging point 2 can deliver 8 kW. 

The total capacity at the site is 10 kW (defined in the Maximum Capacity Forecast), which 

means that all points cannot charge at full power simultaneously. We receive meter 

readings from each of the CPs. Further, assume that the prices are according to Figure 

44.  

Based on historic data for each CP, the following situation has been predicted: 

 CP1 is connected from hour 8 to 14 with a charging demand of 8 kWh
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 CP2 is connected from hour 10 to 15 with a charging demand of 26 kWh

 CP3 is connected from hour 9 to 16 with a charging demand of 11 kWh

 CP4 is connected from hour 10 to 17 with a charging demand of 8 kWh

With no control of the charging process, the following situation will occur (given that the 

predictions are right): 

Figure 54. Example of uncontrolled situation 

The sum charging will violate the 10 kW grid limit in the hours 10, 11 and 12. At the same 

time we see that the prices are high in the hours 8, 9, 10 and 11. We want to find a 

schedule that relieves the capacity violation, reduces the charging costs and at the same 

time meets the charging demand. 

We enter this information into the flexibility algorithms. Notice that we here make the 

plans based on predicted departure time. Hence, we know what (predicted) flexibility that 

exists. This approach will probably only work in cases where the charging follows some 

kind of pattern, i.e. it is not very random.  

Based on the input information, the flexibility algorithms will make optimal decisions at 

the level of each charging point. An example of a solution is presented in Figure 55. We 

t
CP1 CP2 CP3 CP4 Sum charging Grid limit Price Cost

1 0 10 4,73 0,00
2 0 10 4,60 0,00
3 0 10 4,63 0,00
4 0 10 4,41 0,00
5 0 10 4,46 0,00
6 0 10 4,64 0,00
7 0 10 5,36 0,00
8 3 3 10 6,99 20,97
9 3 3 6 10 7,75 46,47

10 2 8 3 3 16 10 7,01 112,16
11 8 3 3 14 10 6,94 97,10
12 8 2 2 12 10 6,51 78,08
13 2 2 10 5,85 11,70
14 (departure time) 0 10 6,15 0,00
15 (departure time) 0 10 5,98 0,00
16 (departure time) 0 10 5,74 0,00
17 (departure tim 0 10 5,61 0,00
18 0 10 6,21 0,00
19 0 10 8,10 0,00
20 0 10 8,98 0,00
21 0 10 7,38 0,00
22 0 10 5,50 0,00
23 0 10 4,99 0,00
24 0 10 4,99 0,00

8 26 11 8 53 366,49
Grid limit reached

Baseline case. No flexibility activated
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observe that there is no violation of the total capacity, that the cost has decreased from 

EUR 366 to 337 and that all cars have got all energy needed. 

Figure 55. Example of results from the flexibility algorithm 

The IIP sends the aggregated decision to GreenFlux/ElaadNL. Based on this information, 

GreenFlux/ElaadNL distributes this to each charging point.  

Some comments: 

 The distribution down to each charging point performed by GreenFlux/ElaadNL will

probably be different from the ones calculated by the flexibility algorithms. In worst

case it will lead to situations where some cars do not get fully charged. An option

could be that also the detailed solutions are sent to GreenFlux/ElaadNL as

additional input. Another option is that GreenFlux/ElaadNL sends back to the IIP

the detailed distribution

 The algorithm believes 100 % in the predictions. We see in the example that no

charging is performed in hour 8 and only small volumes in hour 9 and 10. A

constraint (minimum value) could be added to avoid situations where no car gets

any charging and leaves earlier than expected.

t
CP1 CP2 CP3 CP4

Aggregated 
decision

Cost

1 0 0,00
2 0 0,00
3 0 0,00
4 0 0,00
5 0 0,00
6 0 0,00
7 0 0,00
8 0 0,00
9 2 2 15,49

10 3 3 21,03
11 3 6 9 62,42
12 8 2 10 65,07
13 7 3 10 58,50
14 (departure tim 5 3 2 10 61,53
15 (departure tim 3 3 6 35,86
16 (departure tim 3 3 17,22
17 (departure tim 0 0,00
18 0 0,00
19 0 0,00
20 0 0,00
21 0 0,00
22 0 0,00
23 0 0,00
24 0 0,00

8 26 11 8 53 337,13
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 The approach builds on the assumption that it to a certain extent is possible to 

predict the charging.  

 How to handle situations where an EV connects earlier than predicted, in periods 

where no car is predicted to be connected (see Chapter 9-variable freezing 

techniques ).  

9.4 Bulgaria case study 

9.4.1 Introduction 

The Bulgarian pilot (Albena pilot) will consist of one single pilot site, the Flamingo Grand 

hotel, with an electric battery, a solar PV installation, a number of charging points and 

two central water boilers.  

The site will have a SCADA-system delivered by Schneider. All exchange of data, both 

meter readings and control signals, will be between the Integrated IIP and this SCADA-

system.  

According to D10.1 all BRP flexibility services are listed (Day-ahead portfolio 

optimization, intraday portfolio optimization and self-balancing portfolio optimization) as 

well as all prosumer flexibility services (ToU optimization, kWmax control, self-balancing 

and controlled islanding). 

Here, we only focus on the prosumer flexibility services, since we assume that these will 

be implemented first once the pilot becomes live. Furthermore, we interpret the prosumer 

flexibility services according to the definition in D5.3 as stated above. 

9.4.2 Structure information and historic meter values 

According to D5.3, the pilot site can be illustrated as in Figure 56. 
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Figure 56. Illustration of resource model for the Bulgarian pilot site 

IIP needs structure information about the site and resources to establish the model as 

illustrated above. Some of the potential necessary data from this pilot to flexibility 

management algorithm are listed as bellow (time granularity should be hourly or finer): 

 Net consumption (purchase) from the main meter . 

 Consumption at the water boilers 

 Outside temperature and cloudiness data 

Since the solar panels and charging points are not installed yet, historic data will not be 

available yet.  

9.4.3 Real-time meter values in general 

In line with the definitions in D7.2, the IIP will receive the following data from the 

Schneider SCADA system: 

 Net consumption (purchase) for the main meter 

 Net production (sales) for the main meter, if relevant 

 Charging energy consumption for each charging point 

 Consumption for each of the water boilers 

All this information will be received as meter readings (i.e. counter values) every 15 

minutes or more often. The granularity must be further discussed, but 15 minutes is a 

working assumption. If values are to be received more often, they must be fit to 15 

minutes’ intervals, for instance every 5 minutes or every 1 minute.  
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9.4.4 Commercial/agreement information 

Since the December 2018, Bulgarian pilot has a retailed contract for electrical energy 

based on the day-ahead prices of the Independent Bulgarian Energy Exchange (IBEX). 

An overview of prices variation for delivery day Friday 14/12/2018 is presented in Figure 

57.  

Figure 57. Day-ahead prices from Bulgarian energy exchange (14/12/2018) source 
(http://www.ibex.bg/en) 

9.4.5 Flexibility  

The Albena pilot will include the following types of flexible devices: 

 Battery

 EV charging points

 Water boilers

According to D5.3, the flexible devices will be used in the following way: 

For the prosumer the flexibility in the Bulgarian pilot will be used to shift consumption 

from peak to off-peak periods. A combination of the following options will be utilized to 

obtain this objective: 

• To charge the battery during off-peak hours and to discharge during peak hours

• To shift as much as possible of the water boiler consumption from peak to off-
peak hours
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• To shift as much as possible of the EV charging from peak to off-peak hours 

The flexibility will also be used to keep the maximum outtake/purchase below a given 

limit (kWmax) and finally to avoid feeding surplus electricity back to the grid. 

To be able to utilize the flexibility in an optimal way and without inducing any loss of 

comfort or other disadvantages, flexibility properties must be defined in detail. This also 

includes rules, agreements and interaction with involved people at the site, and which 

information that will be available at what times. Each type of flexible device will be 

handled below. 

In chapter 9.3.3 it is stated that a working assumption is that meter readings will be 

received every 15 minutes. This is closely linked to the time resolution of the optimization 

algorithms, which also are assumed to have 15 minutes time intervals. This means that 

every decision (output from the algorithms) has the granularity of 15 minutes. 

Implementation of these decisions in real-time is the responsibility of the local systems. 

As an example, the optimization algorithm can decide that a battery is going to charge 

5.0 kWh in a given 15 minute time slot. How this is implemented inside the time slot is 

left to the local system, which in this case might be the local Battery Management System 

(BMS).  

9.4.5.1 EV charging points 

EV charging points will be installed at Albena. It is assumed that meter readings will be 

received from each charging point and that the charging power (kW) can be controlled 

at each separate point. The alternative is that meter values are received at the 

aggregated level (for all charging points summed) and/or that control signals are sent at 

an aggregated level, and that the local system will distribute the power between the 

charging points. 

Each EV charging point will have fixed data for maximum charging power continuously 

between 0 and a maximum level. Dependent on the car that connects, the maximum 

power that the car takes can be lower than the maximum level at the charging point. In 

addition, there will be a lower level, which is decided by the car. Information about the 

car type will not be available at the Albena pilot, since different cars will connect. 

Meter values for charging energy will be received for each EV charging point with the 

granularity of 15 minutes or smaller. .The optimization algorithm output will be a charging 

set-point for each period. The set-point will either be an average power level (kW) or 

energy (kWh). Implementation of the set-point will be performed locally, i.e. by the EVSE 

or SCADA. 
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9.4.5.2 Water boilers 

There will be two disconnectable water boilers, each with 144 kW installed capacity. They 

are connected under the same meter, which means that the meter value will be at an 

aggregated level. We assume that the meter only meters water boiler consumption, but 

this must be verified. 

The water heater control is based on a set of timing restrictions that will be input to the 

optimization algorithm: 

a. For each period, a parameter says whether it is allowed to disconnect the 

water heater or not (e.g. disconnection is allowed at any time, except from 

between 1900 and 2200).  

b. A maximum disconnection duration is given (e.g. if the water heater is 

disconnected, it must at the latest be reconnected after 1 ½ hour) 

c. A minimum duration (rest time) between two disconnections is given (e.g. 

if a water heater is reconnected after a disconnection, it cannot be 

disconnected again before at least 3 hours) 

In the EMPOWER project, before a disconnection is executed, a message was sent to 

the user, and she could have the possibility to decline. This was regulated in the contract 

between the FO and the user. We assume that this functionality will not be included in 

the Albena pilot, but that might be reconsidered.  

The output from the optimization algorithms is a set of disconnection and reconnection 

periods. The control signals will be “off” and “on” with a given time (e.g. “off” at 12:15, 

and “on” at 12:45). NB! This information will have the granularity equal to the length of 

the periods, probably 15 minutes, which means that the connections and disconnections 

will be set to these time points, and not at any minute inside a 15 minutes’ interval.  

An illustrative (probably unrealistic) example is given below. Again, the time resolution in 

the example is one hour. The blue bars show the predicted consumption, while the 

orange line shows the consumption based on the output from the optimization algorithm. 
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Figure 58. Example of predicted energy consumption at a water heater and the resulting 
consumption when controlled 

 

9.4.6 An illustrative example 

This chapter contains a simple example to illustrate how the flexibility algorithms might 

work. Assume we have the setup as in Figure 56, with the following parameters: 

 The solar panels have installed capacity 100 kWp 

 The water boilers have installed capacity 288 kW and can be disconnected for 

maximum 1 hour between 12 and 17 

 There are 2 EV charging points, each with maximum charging power 11 kW, where 

charging can be delayed maximum 2 hours for each point 

 The battery has installed capacity 200 kWh, with 100 kW maximum power in and 

out and round-trip efficiency equal to 1.0 

For simplicity, we use hourly time resolution in the example. The predicted solar PV 

production is shown in Figure 59. 
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Figure 59. Example of predicted energy consumption at a water heater and the resulting 
consumption when controlled 

The load predictions for the EV charging points, the water boilers and the residual load 

is shown in the figure below. 

 

 

Figure 60. Example of predicted energy consumption at the water boiler, the charging points and 
the residual loads without control 

Altogether, this gives the following net profile in Figure 61. 
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Figure 61. Net load when no flexibility is utilized 

We see that there is a morning and an afternoon peak. These should be reduced by 

shifting loads and utilizing the battery. 

A possible strategy is shown in Figure 62. 

 

Figure 62. Netload when flexibility is activated 

We see that the profile is flattened, by reducing the morning and afternoon peaks and by 

filling the valley between 13:00 and 15:00. Compared to the pilots in Norway and the 

Netherlands, where electricity cost is a direct input to the algorithm, no cost is calculated 

here. The target is only to flatten the profile. 
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10 Prosumer objective functions 

In this chapter, we discuss issues regarding the objective functions for the prosumer 

services in different pilots in INVADE. We have not included the German pilot since our 

information about this new pilot is limited.  

10.1 Norwegian case study  

As it has been already explained, subscribed power tariff will be taken effect in 

Norwegian pilot. It is deemed that prosumers may turn to energy storage solutions rather 

than pay the heavy premiums if their energy needs exceed their present levels.  

In cases with subscribed power, there will be no demand charge, but an additional 

energy fee for energy levels above the subscribed value. The tariff will still have a fixed 

fee and an ordinary energy fee, the latter will cover marginal grid losses. But in addition, 

an overconsumption fee will be included. It works like this: The prosumer subscribes to 

a certain power level (actually energy per hour, kWh/h) and pays a fixed fee according 

to this value. In hours with consumption larger than the subscribed level, an over-

consumption fee must be paid for the part above subscribed level. The figure below 

illustrates the concept, where a prosumer subscribes 7 kW. For the hours 1, 18, 19, 20, 

21, 22 and 24, she must pay a cost equal to the overconsumption price multiplied with 

the overconsumption amount: 

 

 

Figure 63. Illustration of overconsumption where subscribed power is 7 kWh/h 

The objective function then becomes: 
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where 

,  0,  0overcons buy subscribed buy subscribed
t tX if X elseχ χ χ= − − >   (86) 

10.1.1 Periods smaller than 1 hour 

As a working assumption we will have 15 minutes’ time slots, which means that we will 

have 4 periods per hour. This will have certain implications. 

First, energy and power cannot be used interchangeably. For instance, charging of 4 kW 

in one period will give 1 kWh. So, energy and power terms must be used carefully and 

in a unified way. According to D5.3 all decision variables (e.g. 𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏) are defined as 

energy values. We then also might need to introduce average power variables and 

introduce some simple constraints defining the relation between energy and average 

power. This is probably needed since it is usual to talk about EV charging in kW (or A), 

which means that charging at 4 kW gives 1 kWh per 15 minutes. 

This is also important to capture the peak value related to demand charge. Since this is 

an hourly value, the 𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 cannot be used directly, but must be summed over all periods 

in one hour. Somehow, we must handle relation from period to hour, like: 

4

1
,buy buy

h t
t

h Hχ χ
=

= ∀ ∈∑    (87) 

And then it is the 𝜒𝜒ℎ
𝑏𝑏𝑏𝑏𝑏𝑏 that must be the basis for the calculation of the peak. 

The same issue is valid for the over-consumption amount, since it based on hourly 

values. Although a prosumer subscribes for instance 5 kW, it is possible to go beyond 

the average power level for some of the quarters without getting a penalty, as long as 

the hourly value is below. 

10.2 Dutch pilot 

The objective functions for the different Dutch pilot sites will be formulated in the following 

sections. 
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10.2.1 Pilot 1: Home charging 

The objective is to minimize the total electricity cost for the household. These costs 

include: 

• Grid contract based on maximum outtake (kWh/h) over the year 

• Retail contract with supply/retail. In this respect, the more locally produced ‘own’ 
energy is used, the lower the amount that needs to be paid to the retailer.  

The objective function is explained by the following equation, which includes both the 

retail contract and grid contract. 

min [( ) ( ) ]

                    

retail buy tax buy VAT retail sell sell
t t t t t

t T
peak peak VAT

z P P P P

P P

χ χ

χ

− −

∈

= + ⋅ ⋅ − ⋅

+ ⋅ ⋅

∑
  (88) 

As discussed above, the pilot has two contracts, i.e., the grid contract and the 

supply/retail contract.  

The grid contract is based on a peak demand charge for the year (𝑃𝑃𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎). This indicates 

that it is an incentive to reduce this peak (hourly value) as much as possible.  

The supply contract for buying electricity is normally an average fixed price for a full 

period (1 or 2 years). This pilot is using contract where energy retail prices are based on 

hourly prices at EPEX Spot8 without any mark-up or other fees that are relevant for the 

flexibility algorithm. This contract also regulates the price for sales of surplus electricity 

sales. This price is 0.18 €/kWh on average. The price change per hour. The homeowner 

pays the average price and get a refund or surplus at the end of a period depending on 

the real prices and usage. 

The formulation covers grid tariffs with peak demand charges. One issue here is to 

decide 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, which again can be split into two issues: 

1. The charge may be based on several models 

2. The basis for the charge may not fall inside the planning horizon 

The most common model is that the basis for the charge is the highest hourly outtake 

over a month. Currently, we do not know what type of regime we will have in the pilot, 

but we assume that monthly demand charge must be covered. We leave this issue for 

now, but need to have it in mind as the pilot details get clarified. 

                                                

8 https://www.apxgroup.com/market-results/apx-power-nl/dashboard/ 
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10.2.1.1 Peak hour not necessarily in planning horizon 

The basis for the demand charge is related to a horizon longer than the planning horizon. 

To illustrate the issue, assume that we have a 48 hours’ planning horizon, and that we 

first we are going to plan for a 48 hours’ horizon in the beginning of a month, see Figure 

64. 

Figure 64. Illustration of a planning horizon in the beginning of a month 

If the variable 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is decided as the largest  𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 in the planning horizon, suboptimal

decisions will most likely be the result (in retrospect), since the real monthly peak will 

realize later in the month. Then the model will try to reduce the maximum 𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 in the

planning horizon, which in reality does not give any cost savings. On the contrary, 

flexibility could be used better to reduce other cost elements in the objective function, 

and we might induce unnecessary flexibility costs. The question is then how to deal with 

this problem in the most efficient way. One way is to estimate/predict the monthly max 

and somehow set a limitation – in other words to constrain the value 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  from below. 

This approach is described in eq. (7) in [1]. 

Figure 65. Illustration of a planning horizon in the middle of a month 

Next assume that we are going to make an optimization in the middle of the month, see 

Figure 65. Then we already have a monthly max (so far in the month), which can be seen 

as a sunk cost. But still new peaks can realize in the rest of the month. 

Finally, assume that we are running an optimization for the last two days in the month. 

Then we have all information available: Realised peak so far and planned values for the 

rest of the month. 
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Figure 66. Illustration of a planning horizon in the end of a month 

Consequently, this means that we need to introduce a parameter, i.e., 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, that 

constrain the 𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 from below: 

 ,peak peak
t M t Tχ ≥ ∀ ∈   (89) 

Then, 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 must be updated before each optimization run based on a combination of 

predictions and realized peaks. 

10.2.1.2 Peak cost 

Another issue is how to handle the peak cost. Recall that the optimization algorithm is 

run for a planning horizon. Assuming that this covers two days, the objective function 

value will cover two days with costs. However, the peak cost is for a month. One 

approach could be to multiply this term in the objective function with the fraction that 

these two days contribute in the given month (e.g. 2/31). On the other hand, a new peak 

will have a large impact. 

Another way is to view the peak cost so far this month (or predicted peak cost) as sunk 

and only include the additional cost. This means that we do not use the 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 directly, 

but the delta, for instance: ∆𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜. Still, it should be considered 

if the full “delta-cost” should be included. This represents an increase in monthly cost, 

while the rest of the cost elements cover two days’ costs. 

10.2.2 Pilot 2: Large scale offices and parking lots 

The objective is to minimize the total costs for the building owner or prosumers by 

controlling EV charging. These costs include: 

• Grid contract based on maximum outtake (kW) over the year 

• Retail contract with costs for purchase based on hourly EPEX Spot price 

• Flexibility contract on using charging flexibility services to the EVs 
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The objective is to maximize the total delivered charging by controlling and balancing 

charging in such a way that none of the capacity limitations are violated. This way cost 

of energy consumption can be reduced and extension of the grid connection can be 

prevented.  

There are three contracts that are involved in this pilot: The grid contract, the supply/retail 

contract and the “flexibility contract” with the EV to deliver charging energy. The objective 

function can be explained as below. 

min [( ) ( ) ]retail buy tax buy VAT retail sell sell
t t t t t

t T
peak peak VAT flexibility

z P P P P

P P

χ χ

χ ζ

− −

∈

= + ⋅ ⋅ − ⋅

+ ⋅ ⋅ +

∑
(90) 

The grid contract is based on a peak demand charge for the year. This means that it is 

an incentive to reduce this peak (hourly value) as much as possible.  

The supply contract for buying electricity is based on hourly prices at EPEX Spot9 without 

any markup or other fees that are relevant for the flexibility algorithm, which is similar to 

the Pilot 1. This contract also regulates the price for sales of surplus electricity sales. 

This price is 0.05 €/kWh on average, but it is not known whether this is fixed or varying 

over the day. 

Finally, there is an income from selling charging energy to the EVs. This is a fixed price 

of 0.29 €/kWh and goes is paid by the EV-driver, via its service provider and charge point 

operator, to the owner of the charging station. 

10.2.3 Pilot 3 Small scale office 

The objective of the Small scale Office pilot is local capacity management on EVSE while 

gathering real-time information on the energy use of both the other EVSEs and other 

loads on the local site. Three optimization levels are considered ranging as a) locally 

behind the connection point  b) locally congestion in agreement with the local DSO c) 

national level; flexibility is provided to BRP and TSO  

Control on the first level will be done based on self-balancing needs. Since this is a single 

site where ElaadNL performs this local load within the site there are no external parties 

involved at this level.  At this level, the objective function is similar to Pilot 2, and the 

9 https://www.apxgroup.com/market-results/apx-power-nl/dashboard/ 
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constraints will be added at site asset grouping. The scheme has been proposed by 

eSmart and is under development. 

 On the second level there is no price / product / tariff in place at the DSOs (yet). This is 

part of the R&D work within the DSO’s 

 At the third level flexibility can be priced as the combination of the prices on the potential 

markets given before ((short term) wholesale; day-ahead and intra-day (like EPEX) and 

ancillary markets FCR and aFRR) and the own current (im)balance position of the BRP. 

We will explain the objective function in Chapter 11. 

10.2.4 Pilot 4 Large scale public 

This pilot focuses on the function of controlling EVSEs and their energy supply to EVs, 

connected to a management system of the CPO. It is planned to conduct experiment 

with large scale public charging in the Netherlands, using grid congestion management 

and BRP services (possibly containing frequency containment reserve support).  More 

specifically, this pilot will follow the steps researching the extent to which charging 

stations are capable of providing BRP support using by central control. 

A new grid tariff type is the “Dynamic capacity” which works like this: 

• The customer has a given main fuse size, e.g. 3X35 A. Normal tariff rate is a fixed
fee, e.g. 800 €/year

• If the customer can guarantee that he/she will not surge above 3X25 A in certain
peak hours, he/she will pay a reduced rate, e.g. 200 €/year. Which hour that are
included in the definition of peak hours are dynamic, but will be known in advance
illustrates the principle. Here, up to 24 kW can be bought in the non-peak hours
defined Figure 67. Illustration of the tariff type “Dynamic capacity”by the hours 8
– 10 and 17 – 21. For the peak hours 8 – 10 and 17 – 21, the capacity is reduced
to 17 kW.
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Figure 67. Illustration of the tariff type “Dynamic capacity” 

Connections are 3x25A or 3x35A, yearly connection prices are: 225 incl VAT and 816 

incl VAT. There are neither volumetric price drivers, nor  there is (yet) a contracted 

capacity component in place. The basis for the objective function of this pilot is explained 

in the Chapter 11. 

10.3 Bulgarian pilot 

According to the pilot specification in section 9.3, the main objective is to shift as much 

as possible of the load from the peak-load hours to the off-peak load hours. This can be 

formulated as: 

20
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min buy
Bu t

t
z χ

=

=∑    (91) 

An alternative formulation is to maximize the up-regulation in the peak load hours: 
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Notice that this formulation only covers batteries and flexible loads. Also notice that it 

presupposes that the battery has no baseline schedule. If other resource types, like EV 

charging points are added, or batteries have a baseline schedule, the formulation must 

be changed. 

10.4 Spanish pilot 

The objective function for the Spanish pilot is explained in Chapter 11. 

10.5 Illustrative prosumer results 

This section presents an illustrative example that test the rolling horizon model for a 

horizon of 24 hours with a resolution time of 15 minutes. This makes a total horizon of 

96 periods. The number and kind of devices available in this example are the following: 

2 EV charging points, 1 electric water heater (EWH), 1 controllable PV generator and 1 

inflexible PV generator, and 2 batteries. This illustrative example can be seen as a 

subcase of the Norwegian pilot. 
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The input parameter values of each of the devices are specified below. First, parameters 

that have constant values are shown in a table and then parameters that vary with time 

are shown in a graph afterwards. 

EV charging points input parameters can be seen at Table 17 and Figure 68. 
Table 17. EV charging points input parameters. 

PARAMETER 
VALUE 

EV charging point 1 

VALUE 
EV charging point 2 

UNIT 

𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 3 3 [kW] 

𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 0 0 [kW] 

𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑛𝑛𝑛𝑛 4 4 [NOK/kWh] 

𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 0.01 0.001 [NOK/kWh] 

Figure 68 EV charging points baseline consumption. 

Electric water heater input parameters can be seen at Table 18, Figure 69 and Figure 
70. 

Table 18. EWH input parameters. 

PARAMETER VALUE UNITS 

𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 4 [ptu] 

𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 5 [ptu] 

𝑄𝑄𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 0.5 [kWh] 

𝑄𝑄𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 0.5 [kWh] 

𝑃𝑃𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 0.01 [NOK/kWh] 
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Figure 69. EWH baseline consumption. 

Figure 70. C_Allow parameter. 

PV generation input parameters can be seen at Table 19 Table 18and Figure 71. 
Table 19. PV generator input parameters. 

PARAMETER VALUE UNITS 

𝑃𝑃𝑔𝑔𝐺𝐺 0.5 [NOK/kWh] 

Figure 71. PV forecasted generation. 

Input parameters related to the prosumer can be seen at Table 20, Figure 72 and Figure 
73. 

Table 20. Prosumer input parameters. 

PARAMETER VALUE UNITS 
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𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 100 [kW] 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐 100 [kW] 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 0.69 [-] 

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 1.25 [-] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 0,68 [NOK/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑖𝑖𝑖𝑖ℎ 1 [NOK/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−𝑙𝑙𝑙𝑙𝑙𝑙 0.21 [NOK/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 [NOK/kWh] 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 300 [NOK/kWh/month] 

 
Figure 72. Electricity prices for buying and selling. 

 
Figure 73. Prosumer Inflexible load. 

Battery input parameters can be seen at Table 21 and Table 18. 

 
Table 21. Battery parameters. 

PARAMETER 
VALUE 

Battery 1 
VALUE 

Battery 2 
UNITS 

𝐴𝐴𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ 0.95 0.9 [-] 
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𝐴𝐴𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 0.95 0.9 [-] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑚𝑚𝑚𝑚𝑚𝑚 10 20 [kWh] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑚𝑚𝑚𝑚𝑚𝑚 1 2 [kWh] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑒𝑒𝑒𝑒𝑒𝑒 5 10 [kWh] 

𝑃𝑃𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ 0.01 0.01 [NOK/kWh] 

𝑃𝑃𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 0.01 0.01 [NOK/kWh] 

𝑄𝑄𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ 5 12 [kW] 

𝑄𝑄𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 5 12 [kW] 

𝑆𝑆𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ 0.8 0.8 [-] 

𝑆𝑆𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 0.1 0.1 [-] 

 

Based on all these inputs, the aggregated consumption and generation baseline can be 

seen at Figure 74. 

 
Figure 74. Aggregated baseline consumption and generation. 

The results of the optimization can be seen at Figure 75. 
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Figure 75. Aggregated optimization results10. 

The following points can be observed from these results: 

1. Up to period 12, all site consumption is supplied by the grid, except period 0 that 

indicates batteries are discharging. 

2. From period 12 onwards, photovoltaic generation begins. Batteries are 

discharged from period 19 to 26, because there is enough PV generation 

forecasted throughout the day, which will be used later to charge the batteries 

with that surplus power generated. During these periods, the net load is lower 

than the base load due to battery discharging, which translates into economic 

savings by having to buy less energy from the grid. 

3. EWH consumption in period 21 is postponed to period 25 where there is more 

PV generation and less inflexible load consumption. 

4. In period 51, batteries start charging in order to use that stored energy later in 

periods where there is no photovoltaic generation thus avoiding having to buy 

electricity from the grid (Check periods from 69 to 79). See that the net load curve 

has a lower absolute value than the base load from period 51 to 60. This means 

that less amount of energy is sold to the grid after the optimization performance. 

Mainly because batteries need to be charged instead.   

5. In the case of EV charging points, some consumption is postponed from the 76 

period to the 92, where the price of electricity is lower, because there is no PV 

generation and all the energy needed is purchased from the grid.   

6. Batteries provide the flexibility needed for optimal use of renewable resources. 

During daylight hours, there is a clear excess of PV generation, which is sold to 

the grid or used to charge batteries.  

7. Storage units end simulation period with the minimum required SOC (5kWh + 10 

kWh = 15 kWh). 

 

 

                                                

10 Just as a reminder: 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐸𝐸𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

− 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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11 Aggregated flexibility services 

11.1 Introduction 

This section presents the aggregated flexibility services as centralized and distributed 

optimization problems. In further stages, the results will be compared. These services 

are connected with the Spanish and the German pilots. For more information about the 

problem architecture and agents’ interactions, see the D4.3. 

11.2 Flexibility request prioritization 

Under simultaneous flexibility requests (FRs) from two different external agents like 

DSOs (𝐹𝐹𝐹𝐹𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷) and BRPs (𝐹𝐹𝐹𝐹𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵), it is necessary to stablish a prioritization. Up flexibility 

means to reduce consumption or increase production and the other way around for down 

regulation (increase consumption or decrease production). 

D4.3 describes this problem in more detail. Figure 76 exposes the prioritization algorithm 

used. In case of receiving a BRP FR, it is necessary to check if there is any DSO request. 

In case of simultaneous FRs, the FO takes the minimum if the DSO is asking down-

regulation, otherwise it takes the maximum of all FR. 

Figure 76 Flexibility request prioritization algorithm 

For every 
period t

BRP 
Flexibility 
requests 
reception

DSO 
request?

FR = FRBRP

Yes
No

FRDSO>0

FR = 
MAX(FRDSO,FRBRP)

END

YesNo

A

A

FR = 
MIN(FRDSO,FRBRP)
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Figure 77 Flexibility requests example and their prioritization 

11.3 Flexibility availability algorithm 

Given a certain FR, it is necessary to know if the FO has enough flexibility in its portfolio 

to attend the FR. Otherwise the optimization algorithm could be infeasible to be solved. 

Therefore, it is necessary to verify that the FO portfolio can fully attend the FR.  

The algorithm below is in charge of this: 

, ,

, ,

min ( )

                   + ( )

buy sell baseline
p t p t t

p Pt T

baseline buy sell
t p t p t

p Pt T

z W

W

χ χ

χ χ

+

−

∈∈

∈∈

 
= − − 

 
 

− − 
 

∑ ∑

∑ ∑
  (93) 

The 𝑊𝑊𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the FO portfolio total energy consumption or generation in case of 

providing the prosumer flexibility optimization at site level. Based on this baseline, each 

prosumer can modify its consumption pattern to attend the FR. During up-regulation 

periods (𝑇𝑇+) the new profile needs to consume less and the opposite during down-

regulation periods (𝑇𝑇−). The objective function aims to minimize the area between 

𝑊𝑊𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and the new portfolio consumption after applying the FR. 

This objective function is subject to all prosumers constraints and the capacity limitation 

constraints: 
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, ,( ) ,           buy sell baseline
p t p t t t

p P
W FR t Tχ χ +

∈

− ≥ − ∀ ∈∑   (94) 

, ,( ) ,           buy sell baseline
p t p t t t

p P
W FR t Tχ χ −

∈

− ≤ − ∀ ∈∑   (95) 

The capacity limitation constraints ensure that the total consumption doesn’t 

11.4 Centralized mathematical formulation 

This section describes the mathematical formulation of the aggregated flexibility problem 

in a centralized approach in generic terms. This problem finds the optimal scheduling 

that flexibility operators (FO) can apply for attending flexibility requests (𝐹𝐹𝐹𝐹𝑡𝑡 ). Assuming 

a certain number of prosumers remotely controlled by the FO, they could provide 

flexibility in the framework of local flexibility markets described in [17]. 

The aggregated flexibility algorithm ensures that each prosumer providing flexibility to 

external agents will be economically rewarded and the FO will schedule the minimum 

cost flexibility sources at the same time. 

Objective function: 

 

, , , , , , , , ,min ) ( )buy buy sell sell flexibility low low high high
p t p t p t p t p t p h p h p h p h

t T t T h H
z P P P Pχ χ ζ χ χ

∈ ∈ ∈

 = ⋅ − ⋅ + + ⋅ + ⋅ 
 

∑ ∑ ∑ ∑  

 

 (96) 

buy retail buy grid buy tax
t t t tP P P P− −= + +    (97) 

sell retail sell grid sell
t t tP P P− −= +    (98) 

Flexibility request constraint: 

, , ,( ),          aggregated buy sell
t p t p t p

p P
t Tχ χ χ

∈

= − ∀ ∈∑    (99) 

, ,              baseline aggregated
t t t pW FR t Tχ +− ≥ ∀ ∈   (100) 

, ,              baseline aggregated
t t t pW FR t Tχ −− ≤ ∀ ∈   (101) 
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Additionally, every p has its own constraints for each flexibility device and site as it is 

shown in the prosumer model. 

 

Figure 78 FO portfolio and their energy exchange  

11.5 Distributed mathematical formulation 

The aggregated flexibility services could be formulated as an exchange problem and the 

formulation presented by Boyd et al.[18]. The exchange problem is a special case of the 

sharing problem. This is one classic problem in the field of distributed optimization for 

large amount of data. In case of managing a large number of prosumers, the centralized 

optimization can be very computational costly. Therefore, it could be necessary to find 

distribution optimization techniques to find the optimal solution splitting the problem in 

sub-problems.  

The generic distributed exchange problem is formulated as follows: 

min ( )

 0

P

p p
p

P

p
p

z f x

subject to x

=

=

∑

∑
   (102) 

 

With variables 𝑥𝑥𝑝𝑝 as the flexibility decisions and 𝑓𝑓𝑝𝑝 as the electricity cost function of each 

prosumer p including its flexibility costs 𝜁𝜁𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 in the set P. This minimization function 

is subject to the energy balance equation. As Boyd et al. [18] states:  

“The goal is to solve the problem above in such a way that each term can be handled by 

its own processing element, such a thread or processor.” 

p=1 p=2

𝜒𝜒𝑡𝑡 ,𝑝𝑝
𝑏𝑏𝑏𝑏𝑏𝑏  𝜒𝜒𝑡𝑡 ,𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝜒𝜒𝑡𝑡 ,𝑝𝑝
𝑏𝑏𝑏𝑏𝑏𝑏  𝜒𝜒𝑡𝑡 ,𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝜒𝜒𝑡𝑡 ,𝑝𝑝
𝑏𝑏𝑏𝑏𝑏𝑏  𝜒𝜒𝑡𝑡 ,𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝜒𝜒𝑡𝑡 ,𝑝𝑝
𝑎𝑎𝑔𝑔𝑔𝑔𝑟𝑟𝑒𝑒𝑔𝑔𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑  
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11.6 Objective functions in pilots 

11.6.1 Spanish objective function 

In this case, the flexibility provider is a single centralized energy storage (CES) 

units and the consumption costs are simpler than the German pilot. However, this 

pilot contains two flexibility buyers that could request flexibility simultaneously and 

the program has to ensure a correct performance. 

This formulation is made generic for cases with multiple CES units b. Eq.(103) is 

the minimization cost function composed by the electricity costs and the flexibility 

costs. Eq. (104) and Eq. (105) are the terms that define the electricity buy and 

sell prices. Eq. (106) is the flexibility cost from CES units for charging and 

discharging the battery every period.  

, , , , ,min ( )buy ch sell dis flexibility
t b t b t b t b t b

b B t T t T
z P Pσ σ ζ

∈ ∈ ∈

 = ⋅ − ⋅ + 
 

∑ ∑ ∑   (103) 

, , , ,
buy retail buy grid buy tax

t b t b t b t bP P P P− −= + + (104) 

, , ,
sell retail sell grid sell

t b t b t bP P P− −= + (105) 

, ,
, , , , ,
flexibility B ch ch B disc dis

t b b t b t b t b tP Pζ σ σ= ⋅ + ⋅    (106) 

The degradation costs should be included in Eq. (106) if the needed parameters are 

available. 

This objective function is subject to the aggregated flexibility service constraints Eq. (99)

, Eq. (100) and Eq. (101). In this case, there are no more sites other than the CES. 

Therefore: 

, ,
buy sell ch dis
t t t b t bχ χ σ σ− = −   (107) 

11.6.2 German objective function 

The generic model introduced in the section 11.4 fits well for the German case as there 

are multiple prosumers willing to provide flexibility services to the DSO in collaboration 

with the CES. 
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11.7 DSO case study 

11.7.1 Spanish case study 

The Spanish pilot site has a single centralized energy storage (CES), and the DSO is 

one of the flexibility buyers. In Figure 79, the scheme of the MV network can be observed.  

 

Figure 79: HV-MV pilot site grid scheme 

11.7.1.1 DSO flexibility request algorithm 

The Spanish case study is based on the distribution grid and a centralized energy 

storage unit, CES. However, the algorithm is detailed in a generic approach since having 

more flexibility sources could be a feasible scenario. The problem to solve is mainly an 

AC-OPF, considering as the objective function the minimization of the total flexibility 

costs, but also considering the distribution network. In the following subsections the 

objective function is detailed, as well as all the restrictions related to AC-OPF.  

This model is going to work separately from the aggregator algorithms presented above. 

Since, a completely different and new nomenclature is going to be used to write the 

algorithm. Below, the sets, the parameters and the variables are detailed.  

Sets 

K Set of nodes of the MV distribution grid  

L Set of lines of the MV distribution grid 

Parameters 

𝐵𝐵𝑖𝑖,𝑘𝑘 Bus susceptance value between nodes 𝑖𝑖 ∈ 𝐾𝐾 and 𝑘𝑘 ∈ 𝐾𝐾 [S] 

P1,t

=
~

Grid

HV/MV

P2,t
... PK,t

Q1,t

Q2,t ... QK,t

M
V/LV
CES



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 128 of 170 

 

𝐶𝐶𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Flexibility activation cost accorded between the FO and the DSO for 

period 𝑡𝑡 ∈ 𝑇𝑇  [€/kW] 

𝐺𝐺𝑖𝑖,𝑘𝑘 
Bus transversal conductance value between nodes 𝑖𝑖 ∈ 𝐾𝐾 and 𝑘𝑘 ∈

𝐾𝐾 [S] 

𝐼𝐼𝑖𝑖,𝑡𝑡 Current at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [A] 

𝐼𝐼𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀 Maximum allowed current at line 𝑙𝑙 ∈ 𝐿𝐿 

𝑃𝑃𝑖𝑖,𝑡𝑡 Total active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑃𝑃𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 Generated active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑃𝑃𝑖𝑖,𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Demanded active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑃𝑃𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 

Maximum active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 from the 

flexibility source. [kW] 

𝑄𝑄𝑖𝑖,𝑡𝑡 Total reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑄𝑄𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 Generated reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kVAR] 

𝑄𝑄𝑖𝑖,𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Demanded reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kVAR] 

𝑄𝑄𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 

Maximum reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 from the 

flexibility source. [kVAR] 

𝑆𝑆𝑖𝑖,𝑡𝑡 Apparent power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kVA] 

𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 Maximum voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑁𝑁 Minimum voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑈𝑈𝑖𝑖,𝑡𝑡 Voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑌𝑌𝑖𝑖𝑖𝑖 Admittance value for line 𝑖𝑖 − 𝑘𝑘 [S] 

𝑦𝑦1𝑖𝑖,𝑘𝑘 Transversal admittance value for line 𝑖𝑖 − 𝑘𝑘, first component [S].  
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𝑦𝑦2𝑖𝑖,𝑘𝑘 Transversal admittance value for line 𝑖𝑖 − 𝑘𝑘, second component [S] 

𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 Voltage angle difference between nodes 𝑖𝑖,𝑘𝑘 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝜃𝜃𝑖𝑖,𝑡𝑡 Voltage angle at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝜃𝜃𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 Minimum allowed voltage angle at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝜃𝜃𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 Maximum allowed voltage angle at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝑍𝑍𝑖𝑖,𝑘𝑘 Impedance value for line 𝑖𝑖 − 𝑘𝑘 [Ω] 

Variables 

𝜑𝜑𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 Total active power injected at node i at time t from flexibility 

sources [kW]  

𝜑𝜑𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 Total reactive power injected at node i at time t from flexibility 

sources [kVAr] 

𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Total cost for utilizing internal flexibility [€] 

11.7.1.2  Objective Function 

The objective function is to minimize the total flexibility costs function. This function is 

based on the price accorded between the FO and the DSO for period 𝑡𝑡 ∈ 𝑇𝑇, 

𝐶𝐶𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and the total active power injected by the flexibility resource, 𝜑𝜑𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴.  

,min flexibility flexibilityDSO ACT
t i t

t T i N
z Cζ ϕ

∈ ∈

 = = ⋅ 
 

∑ ∑   (108) 

11.7.1.3  Constraints  

The constrains listed below ensure the compliance of the AC Power Flow equations and 

a correct system operation.  

AC Power Flow equations  

The AC power flow equations describe the power system network operating point in 

steady state and are based on complex phasor representation of voltage-current 

relationship at each node. The active 𝑃𝑃𝑖𝑖,𝑡𝑡   and reactive 𝑄𝑄𝑖𝑖,𝑡𝑡   power flow node balance at 
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node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇, are formulated below Eq. (109) and Eq. (110). Then, Eq. 

(111) details the mathematical conversion to express 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 from the voltage angle at each 

node.  

Since the pilot-site is considering sources connected at each node of the grid, the total 

active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇,  𝑃𝑃𝑖𝑖,𝑡𝑡, considers the active power generated, 

the active power demanded and the active power injected by the flexibility source Eq. 

(112). Regarding the reactive power, Eq. (113) also considers the reactive power 

generated at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 the reactive power consumed at node 𝑖𝑖 ∈ 𝐾𝐾 in 

period 𝑡𝑡 ∈ 𝑇𝑇 and the reactive power consumed or injected by the flexibility source.  

Hence, from the admittance equations, it is possible to calculate the apparent flow 

injected depending on the voltages at all the grid nodes Eq. (114).  Consider that the 

underscore means that the parameter or variable is a complex number. Whether the 

variable or the parameter is not written with an underscore, a real value is considered.  

, , , , , , , , ,
1

[ cos sin ]
K

i t i t k t i k i k t i k i k t
k

P U U G Bθ θ
=

= ⋅ ⋅ ⋅ + ⋅∑   (109) 

, , , , , , , , ,
1

[ sin cos ]
K

i t i t k t i k i k t i k i k t
k

Q U U G Bθ θ
=

= −∑   (110) 

, , , ,i k t i t k tθ θ θ= −    (111) 

, , , ,
gen dem ACT

i t i t i t i tP P P ϕ= − +    (112) 

, , , ,
gen dem REA

i t i t i t i tQ Q Q ϕ= − +    (113) 

*
*

, , , , , ,
1

K

i t i t i t i t i k k t
k

S U I U Y U
=

 = ⋅ = ⋅ ⋅ 
 
∑    (114) 

Line flow constraints 

The pilot-site grid is a MV distribution grid, based on underground cables of the type 

RHZ1. Hence, the line flow constraints follow the π-model of the grid, since both the 

longitudinal impedance and the transversal capacitance of the line have to be 

considered. For the sake of clarity, the π-model is shown in Figure 80. Each line of the 

distribution network is limited to the maximum allowed line current, 𝐼𝐼𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀.  
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Figure 80: π-model of the grid  
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Active Power bounds by the flexibility source 

The flexibility sources have both the possibility to inject or consume active power, 

according to up-regulation or down-regulation commands, to mitigate congestions along 

the distribution grid. Hence, each source is connected to a node 𝑖𝑖 ∈ 𝐾𝐾, and each node 

will have an upper and lower active power limitation, −𝑃𝑃𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑃𝑃𝑖𝑖,𝑡𝑡

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 in time 

period 𝑡𝑡 ∈ 𝑇𝑇.  

, ,
, , ,
Flex MAX ACT Flex MAX

i t i t i tP Pϕ− ≤ ≤    (117) 

Reactive Power bounds by the flexibility source 

The flexibility sources connected at  node 𝑖𝑖 ∈ 𝐾𝐾,  are able to inject or provide reactive 

power, 𝜑𝜑𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅. Hence, this variable is restricted between −𝑄𝑄𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑄𝑄𝑖𝑖,𝑡𝑡

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀.  

, ,
, , ,
Flex MAX REA Flex MAX
i t i t i tQ Qϕ− ≤ ≤    (118) 

The apparent power limitation S is not considered in this mathematical formulation. The 

active and reactive power limitations are considered as technology free. That means that 

the total amount of reactive and reactive power in each node is limited, but not 

considering each technology itself. Hence, some sources can provide 𝜑𝜑𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 like PV and 
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batteries and, other sources provide 𝜑𝜑𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 like DR and EV. The DSO does not consider 

the technology itself and its capacity limitations. The FO is the entity responsible for that.  

Voltage Magnitude  

In the AC-OPF algorithm, the nodal voltage is restricted by an upper limit and a lower 

bound to guarantee the correct operation of the system. In the flexibility requests 

calculation algorithm, the DSO contracts the flexibility services to prevent and 

mitigate congestions along the distribution grid. Hence, the DSO aims to minimize 

the congestion risks throughout the day, which can vary. For this reason, the 

voltage upper and lower bounds parameters consider also the time period 𝑡𝑡 ∈ 𝑇𝑇, 

resulting in the following parameters, 𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 and  𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 . These parameters will be 

provided by the DSO based on the level of risk they want to assume on congestions 

along the network.  

, , ,
MIN MAX
i t i t i tU U U≤ ≤    (119) 

Voltage angle  

To improve the solvability of the problem, the voltage angle constraint is included in this 

model. The voltage angle at node 𝑖𝑖 ∈ 𝐾𝐾, at time 𝑡𝑡 ∈ 𝑇𝑇,  𝜃𝜃𝑖𝑖,𝑡𝑡, is limited between the 

minimum value and the maximum,𝜃𝜃𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜃𝜃𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 respectively.  

, , ,
MIN MAX
i t i t i tθ θ θ≤ ≤    (120) 

11.7.2 German case study 

The German DSO already has in place an algorithm to forecast the electricity 

consumption for the day-ahead and they are working in the FR formulation. 

11.8 BRP case study 

11.8.1 Spanish case study 

The Spanish BRP already has in place an algorithm to forecast the hour-ahead 

consumption and its working in the FR formulation. 
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12 Conclusions 

In this part of the report D5.4, advanced operational models of flexibility resources are 

presented as a complement to D5.3A, where the general simplified models are 

presented. Chapter 3 detail the battery operational models which includes degradation 

due to cycle and calendar ageing. Also piecewise linearized efficiency of battery charging 

and discharging power are detailed. The constraints related to ON-OFF control and 

charging with minimum and maximum power limits for EV charge points and charging 

stations are explained in chapter 4. A detailed models of thermal loads which includes 

EWH and space heating are presented in chapter 5 and 6. The overall framework of 

optimization and the variable fixing issues and their solution approaches are presented 

in chapter 7 and 8. Chapter 9 discusses about pilot structures for different pilots. The 

objective functions of prosumer services are explained in chapter 10. Chapter 11 

presents the aggregated flexibility services, which can be offered to external agents on 

their requests.  Chapter 12 concludes the report summary. This report documents the 

detailed models that will be implemented in integrated INVADE platform. The user 

manual for the offline version of flexibility algorithm and the list of sets, parameters and 

variable used in the mathematical formulations are included in the appendix. 

. 
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13 Appendix: Offline software testing manual 

13.1 Introduction 

This document provides the procedure to run a test case, placement of relevant input 

data and their file structure for a test case and placement of results provided by the 

optimization. The second part of the document explains about building a specific model 

configuration built from the input data automatically. Further the last section of the 

document details the contents of the input and output data files.  

13.2 Building a test case and running 

The offline model is provided in a root folder named “Invade” which is a copy of the bit 

bucket repository. It contains all relevant working models and their old versions which 

are not in use. (The repository will be cleaned and all unnecessary files will be removed 

later after the development work is completed) 

In the “Invade” folder, as shown in the Figure 81 there is a subfolder named 

“master_RH” where the file for execution “Offline_example.py” (“Invade/master_RH 

/Offline_example.py”) placed.  

 

Figure 81: Folder structure of root folder 
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The same file has the path for input data (“Invade/master_RH /Data/TestCaseSite1”) and 

the path for output destination folder (“Invade/master_RH /Data/Output”) as shown in the 

Figure 82. The folder structure is shown in the Figure 83. These paths and folder names 

can be changed as per user convenience. 

 

Figure 82: Path details for input data for optimization (marked in RED (Top)) and output data from 
the optimization (marked in GREEN (Bottom)) 

 

Figure 83. Folder structure for input data and output result from the optimisation 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 137 of 170 

13.3 Solver selection and MIP gap input 

Figure 84: Solver and MIP gap configuration 

The user can change the solver and MIP gap in the file “Utilities.py” 

(“Invade/master_RH / Utilities.py”) as shown in the Figure 84. The given example shows 

a configuration with a commercial solver ‘Gurobi’ (encapsulated in red). The user can 

use different solvers for example ‘cplex’, ‘ipopt’ or ‘glpk’ which every is available in their 

computation and execution platform. The MIP gap necessary for the solution can be 

configured as per the requirement. The given example shows a configuration with MIP 

gap = 10 (encapsulated in green).  

13.4 Automatic model building 

The model building is taken care by the input data structure. The input data is organised 

in a folder and subfolder structure to represent the tree structure of the resource 

arrangement in a given test case.  

  At present there are 3 different types are considered, namely 1. Battery (Storage), 2. 

Charge Point (CP) and 3. PV (Generation). 
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13.5 Site implementation 

 

Figure 85. Site implementation 

A site is defined as a set of resources under one electricity price structure. For example 

in the given Figure 85, the site consists of three resources (Storage, CP and Generation). 

The prosumer part represents the inflexible loads in the site and electricity price 

information. The input data structure for the site configuration in Figure 85 is as shown 

in the Figure 86. 

 

Figure 86. Input data structure to configure the model for a test case represented in Figure 85 

The input data files at site level “TestCaseData.xlsx” contains the information to build 

constraints at site level. And each input data files inside the “site“ folder contains the 

details corresponding to each resource in the site. A detailed description of input files are 

given in the further sections. 
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Figure 87. Site configuration without inflexible load. 

A site may have any number and any combination of resources with or without inflexible 

loads. For example, the site shown in the figure 5, has three CPs and a Generation 

without inflexible load. The input folder structure to configure the site configuration given 

in the Figure 87 is as shown in the Figure 88. It is to be noted that the configuration still 

has a prosumer data in the input file “Prosumer.xlsx” which contains the electricity price 

information and “zero” values for the inflexible loads as the inflexible load parameter is 

active in the model. 

 

Figure 88. Input data structure to configure the model for a test case represented in Figure 87 

In every test case prosumer data is mandatory as it has electricity price information.  
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13.6 Input data file structure 

The section explains the data arrangement inside the excel files corresponding to 

different resources, inflexible load and electricity prices and general information 

applicable to the site.  

13.6.1 “TestCaseData.xlsx” 

The general information about the site is provided to the optimisation algorithm through 

the file “TestCaseData.xlsx”. This file is placed at the root input folder (In the above 

example cases ‘Invade/master_RH /Data/TestCaseSite1’). The file content and their 

description are listed in the following Table 22. The Figure 89 shows the arrangement of 

“TestCaseData.xlsx” and site information inside the input data folder “TestCaseSite1” 

Table 22: Description of contents in the file “TestCaseData.xlsx” 

 
Column  Content Description 

A  
Name of the folder 
containing resource 
details inside a site as 
shown in the Figure 8. 

B CapacityConstraintAppliesToResourceTypes 

The site level capacity 
constraint that 
applicable for the type 
of resources at sight 
level. The possible 
values at present is  
“All Resource Types” 

C Capacity constraint resource Key 

Capacity constraint 
resource Key – This 
information is derived 
from the INVADE 
platform. It is not used 
in the offline test. 

D init_n 
Length of time period. 
Present possible value is 
“FifteenMinutes” 

E init_p_vat 

Parameter that adds 
VAT to the amount 
bought PVAT It is 
mentioned in two files 
“TestCaseData.xlsx” 
and “Prosumer.xlsx” 
as platform provides in 
both places. The 
model validate only in 
the “Prosumer.xlsx” 
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Figure 89. Site information in the input file “TestCaseData.xlsx” 

13.6.2 Site configuration and resource information 

A site may have any number of resource among the three types 1. Battery (Storage) 2. 

Charge Point (CP) and 3. PV (Generation). The algorithm understands the type of 

recourse from the file name.  

The common file name format for all types of resources is “ResourceName_x.xlsx”, 
where “_x” in the file name denotes the resource number. 

The possible resource names are  

1. “Storage” – for battery 

2. “Charging” – for Charge points 

3. “Generation”- for PVs 

The resource number represents the number among set of same type of resources in 

the specific site. No two resources of same type in a site can have same resource 

number. (The same file name to multiple file will restrict this conflict) 

For example, if a battery is present in a site, the battery details are present in the input 

excel file with name “Storage_1.xlsx”. 

The description of each input file is given the following sections. 
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13.6.3 Prosumer.xlsx 

The “Prosumer.xlsx” input file contains the site level information including price related 

information. Each site will have only one “Prosumer.xlsx” file. And therefore it is not 

numbered. 

The description of each column is provided in the Table 23 as well as in the first row of 

the template file as shown in the Figure 90. The algorithm skips the first row while reading 

file. The second row serves as the identification string for parsing input data and from 

the third row onwards the numerical/string values of input parameters are considered. 

 

Figure 90. Image of columns in the input data file “Prosumer.xlsx” 

Table 23: Description of columns in the input data file “Prosumer.xlsx” 

Column Content Description 

A   Should be same as the number of time periods in 
other input files – Do not change the content 

B init_exp_cap Maximum export capacity [average kW] 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 
C init_imp_cap Maximum import capacity [average kW]𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐 
D init_m Limitation of basis for peak fee (𝑀𝑀) 

E init_n 

Minutes per time Periods. The possible value in 
the present version “FifteenMinutes”. Do not 
change. It is mentioned in two files 
“TestCaseData.xlsx” and “Prosumer.xlsx” as 
platform provides in both places. The model 
validate only in the “Prosumer.xlsx” 

F init_p_grid_buy 
Price at energy part of grid contract for buying 
electricity in period t  𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 

G init_p_grid_buy_high 

Price at energy part of grid contract for buying 
electricity in cases with subscribed power in 
period in period t if bought electricity is above 
subscribed level  𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑖𝑖𝑖𝑖ℎ 

H init_p_grid_buy_low 

Price at energy part of grid contract for buying 
electricity in cases with subscribed power in 
period in period t if bought electricity is below 
subscribed level  𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−𝑙𝑙𝑙𝑙𝑙𝑙 

I init_p_grid_sell 
Price at energy part of grid contract for selling 
electricity in period t 𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
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J init_p_peak 
Price at grid contract for peak fee 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(As of now it is not used in the objective function. 
Do not change. Reserved for future use) 

K init_p_retail_buy 
Price at energy part of retail contract for buying 
electricity in period t 𝑃𝑃𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏 

L init_p_retail_sell Price at energy part of retail contract for selling 
electricity in period t 𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

M init_p_tax 
Sum price for all taxes that are related to buying 
electricity in period t 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (Only one value is 
provided in the input, but a time series with same 
value is created inside alogorithm)  

N init_p_vat 

Parameter that adds VAT to the amount bought 
𝑃𝑃𝑉𝑉𝐴𝐴𝐴𝐴 It is mentioned in two files 
“TestCaseData.xlsx” and “Prosumer.xlsx” as 
platform provides in both places. The model 
validate only in the “Prosumer.xlsx” 

O observed_values 
Actual observed inflexible load from prosumer. 
(As of now it is not used in the objective function. 
Do not change. Reserved for future use) 

P teXX Forecasted inflexible load from prosumer 𝑊𝑊𝑙𝑙,𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

13.6.4 Storage_x.xlsx 

The “Storage_x.xlsx” input file contains the battery input parameters. 

The description of each column is provided in the Table 24 as well as in the first row of 

the template file as shown in the Figure 91. The algorithm skips the first row while reading 

file. The second row serves as the identification string for parsing input data and from 

the third row onwards the numerical values of input parameters are considered. Table 

24 describes each input column of the input file Storage_x.xlsx. The values of the period 

independent parameters are provided in the last row with a parsing string “Storage” as 

shown in the Figure 91 

 

 

Figure 91. Image of columns in the input data file “Storage_x.xlsx” 
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Table 24: Description of columns in the input data file “Storage_x.xlsx” 

Column Content Description 

A  
t in periods – Should be same as the number of time 
periods in other input files – Do not change the 
content. 

B ChargingEnergy Not used in the algorithm. For future use with 
receding horizon – Do not change 

C EnergyLevel 
Fill this column with initial SOC for all rows. 
Considered as a Time series for future use with 
receding horizon. 

D init_a_ch Efficiency parameter for charging storage unit b - 
Including battery and inverter [p.u.]  𝐴𝐴𝑏𝑏𝑐𝑐ℎ 

E init_a_dis Efficiency parameter for discharging storage unit b - 
Including battery and inverter [p.u.]  𝐴𝐴𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 

F init_o_max Maximum state of charge allowed for battery b [p.u.]  
𝑂𝑂𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 

G init_o_min Minimum state of charge allowed for battery b [p.u.]  
𝑂𝑂𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 

H init_p_b_ch 
Price for charging battery unit b at period t 
(Not in D5.3. But implemented as part of simple 
degradation model.) 

I init_p_b_dis 
Price for discharging battery unit b at period t 
(Not in D5.3. But implemented as part of simple 
degradation model) 

J init_q_ch 
Maximum charging power allowed for battery b [p.u.]  
𝑄𝑄𝑏𝑏
𝑐𝑐ℎ 

K init_q_dis 
Maximum discharging power allowed for battery b 
[p.u.] 𝑄𝑄𝑏𝑏

𝑑𝑑𝑑𝑑𝑑𝑑 

L init_s_ch Threshold in battery unit b charging process [p.u.] 
𝑆𝑆𝑏𝑏𝑐𝑐ℎ 

M init_s_dis Threshold in battery unit b discharging process [p.u.]  
𝑆𝑆𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 

Note:  

1. The optimization algorithm considers 𝑂𝑂𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 as targeted SOC at the last time 

period in the horizon. 

2. The Initial SOC (state of charge) of the battery has to be filled in all the rows of 

column C. Also the column is reserved for future rolling horizon implementation. 

13.6.5 Charging_x.xlsx 

The “Charging_x.xlsx” contains the charge point input parameters. 

The description of each column is provided in the Table 25 as well as in the first row of 

the template file as shown in the Figure 92. The algorithm skips the first row while reading 

file. The second row serves as the identification string for parsing input data and from 
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the third row onwards the numerical values of input parameters are considered. Table 

25 describes each input column of the input file Charging_x.xlsx. The values of the period 

independent parameters are provided in the last row with a parsing string “Storage” as 

shown in the Figure 92 

 

Figure 92. Image of columns in the input data file “Charging_x.xlsx” 

Table 25: Description of columns in the input data file “Charging_x.xlsx” 

Column Content Description 

A   
 t in periods – Should be same as the 
number of time periods in other input 
files – Do not change the content 

B ChargingEnergy 
Not used in the algorithm. For future 
use with receding horizon – Do not 
change 

C ChargingPointState 
Not used in the algorithm. For future 
use with receding horizon – Do not 
change 

D ForecastedChargingPointState Not in D5.3 status as 10 20 30. 
Forecasted charging point status  

E Q_cs_ch Maximum capacity constraint for 
charging station Not mentioned in 5.3 

F W_cp Baseline charging schedule for EV x in 
period t [kWh] 𝑊𝑊𝑣𝑣,𝑡𝑡

𝐸𝐸𝐸𝐸 

G init_cp_q_ch_max 
Maximum charging power allowed for 
EV unit x 𝑄𝑄𝑣𝑣

𝐸𝐸𝐸𝐸,𝑐𝑐ℎ 

H init_cp_q_ch_min 
Minimum discharging power allowed 
for EV unit x 𝑄𝑄𝑣𝑣

𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑 

I init_p_cp_ns 
Price for non-supplying 1 kWh of the 
expected charging demand of EV unit x 
𝑃𝑃𝑣𝑣
𝐸𝐸𝐸𝐸,𝑁𝑁𝑁𝑁 
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J init_p_cp_shift Price for shifting charging for EV unit x 
with 1 kWh 𝑃𝑃𝑣𝑣,𝑡𝑡

𝐸𝐸𝐸𝐸 

13.6.6 Generation_x.xlsx 

The “Generation_x.xlsx” contains the Generation unit (PV) input parameters. 

The description of each column is provided in the Table 26 as well as in the first row of 

the template file as shown in the Figure 93. The algorithm skips the first row while reading 

file. The second row serves as the identification string for parsing input data and from 

the third row onwards the numerical values of input parameters are considered. Table 

26 describes each input column of the input file Generation_x.xlsx. 

 

Figure 93. Images of columns in the input data file “Generation_x.xlsx” 

Table 26: Description of columns in the input data file “Generation_x.xlsx” 

Column Content Description 

A   
  t in periods – Should be same as the number of time 
periods in other input files – Do not change the 
content 

B init_p_gen_r Price for reducing production for generator unit g in 
period t 𝑃𝑃𝑔𝑔,𝑡𝑡

𝐺𝐺  

C observed_values Not used in the algorithm. For future use with 
receding horizon – Do not change 

D teXX Forcasted production 𝑊𝑊𝑔𝑔,𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

13.7 Running a test case 

The test case built can be run by simply executing the “Offline_example.py” in a 

“python” environment as shown on the Figure 94. The output files will be generated in 

the output folder path mentioned in the same file. 
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Figure 94. Runtime environment and result. 

13.8 Output file format 

The optimization algorithm produces two types of output files namely 

1. “Site_x_control_signals.xlsx” 

2. “Site_x_prosumer_costs_and_energy_balance.xlsx” 

The “Site_x_control_signals.xlsx” file contains the control signals to be sent to the 

resources. The other file “Site_x_prosumer_costs_and_energy_balance.xlsx” contains 

the details related to the quarterly and hourly cost related every resources. The following 

sections will describe the format of each output files. 

13.8.1 Site_x_control_signals.xlsx 

In “Site_x_control_signals.xlsx” file, the control signal for each resource for every time 

period is listed. The control signals are listed in the following resource order, Charge 

points (Charging_x), PV (Generation_x) and Battery (Storage_x). 

For charge points, the power regulation for every charge point is provided under the 

column name “EVChargingPowerRegulation_1”. The “OptimalCapacityRegulation_1” provides 

the power limit of the charging station with which the charging point x is associated with. 

(Do not read “OptimalCapacityRegulation_1” column, as Site Asset group is not yet 

implemented - reserved for future use)  

After listing control signal related to all charging points, the PV unit control signals are 

listed under the column name “ProductionPowerRegulation_x” 

Battery charging and discharging schedule are listed after the control signal last PV unit 

in the site. The charging and discharging schedule for the batteries are listed with the 
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column names “ChargingPowerRegulation_x” and “DishargingPowerRegulation_x”.  Table 27 

describes the columns in the output data file “Site_x_control_signals.xlsx” 

Table 27: Description of columns in the output data file “Site_x_control_signals.xlsx” 

Column name Description 

t Time period t 
EVChargingPowerRegulation_Charging_x The Energy delivery 

schedule at the charge 
point Charging_1 

OptimalCapacityRegulation_Charging_x Do not read this column 
reserved for future use 

ProductionPowerRegulation_Generation_x Power schedule for 
Generation_x 

ChargingPowerRegulation_Storage_x Storage_x charging 
power 

DischargingPowerRegulation_Storage_x Storage_x discharging 
power 

13.8.2 Site_x_prosumer_costs_and_energy_balance.xlsx 

In the second file “Site_x_prosumer_costs_and_energy_balance.xlsx”, all costs and their 

comparison before and after optimization are listed. This file has reports in five different 

sheets.  They are  

1. Sheet 1 – “quarterly_energy_balance” 

2. Sheet 2 – “hourly_energy_balance” 

3. Sheet 3 – “total_cost” 

4. Sheet 4 – “quarterly_cost” 

5. Sheet 5 – “hourly_cost_with_SP” 

Their content and meaning are listed in the further subsections. 

13.8.2.1 “quarterly_energy_balance” 

In this sheet, the energy information for every time period (at present the time period 

resolution is 15 minutes) before and after optimization are given. The energy information 

includes, main meter level and resource level details. The following Table 28 describes 

the meaning of each column reported. Table 28 describes the columns in the sheet 

“quarterly_energy_balance” in the output data file 

“Site_x_prosumer_costs_and_energy_balance.xlsx” 
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The unoptimized and optimized baseline consumption of flexible resources are listed 

next to each other. This listing starts after the column name “eb_inflex_load”, which lists 

inflexible load. All the members in one type of resource are listed in the incremental 

order.  The order of resource type in the listing is as follows 

1. Charging_x 

2. Generation_x 

3. Storage_x 

Table 28: Description of columns in the sheet “quarterly_energy_balance” in the output data file 
“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Column name Description 
t Time period t 
energy_baseline Aggregated energy of all resources (main 

meter level) 
energy_buy_base Amount of electricity would have been bought 

in period t [kWh] 𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 without optimization 

energy_sell_base Amount of electricity would have been sold in 
period t [kWh] 𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 before optimization 

energy_buy Amount of electricity will be bought in period t 
[kWh] 𝜒𝜒𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏 after optimization 
energy_sell Amount of electricity will be sold in period t 

[kWh] 𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 after optimization 
eb_inflex_load Prosumer Inflexible load 𝑊𝑊𝑙𝑙,𝑡𝑡

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
eb_EV_baseline_CS_Charging_x Baseline charging schedule for EV x in period 

t [kWh] 𝑊𝑊𝑣𝑣,𝑡𝑡
𝐸𝐸𝐸𝐸 

eb_EV_CS_Charging_x Optimized charging schedule for EV x in 
period t 

eb_pv_baseline_Generation_x (Forecasted) Baseline production 𝑊𝑊𝑔𝑔,𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for 

PV unit x 
eb_pv_Generation_x Optimized schedule for PV unit x in period t 
eb_charge_bat_Storage_x Optimized Charging schedule for Battery unit 

x in period t 
eb_discharge_bat_Storage_x Optimized Discharging schedule for Battery 

unit x in period t 

13.8.2.2 “hourly_energy_balance” 

In this sheet, the energy information for at hourly resolution before and after optimization 

are given. The energy information includes only main meter level details. The energy 

exchange details provides values before and after optimization including the details of 

energy above and below the level of “Limitation of basis for peak fee (𝑀𝑀)”. The following 

table describes the meaning of each column reported. The following Table 29 describes 

the meaning of each column reported. Table 29 describes the columns in the sheet 
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“hourly_energy_balance” in the output data file 

“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Table 29: Description of columns in the sheet “hourly_energy_balance” in the output data file 
“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Column name Description 
t_h Time period 
energy_buy_h_base Unoptimized total amount of 

energy buy 
energy_buy_low_base Unoptimized energy imported 

below “Limitation of basis for 
peak fee (𝑀𝑀) without 
optimization. 

energy_buy_high_base Unoptimized energy imported 
above “Limitation of basis for 
peak fee (𝑀𝑀) without 
optimization. 

energy_sell_base Unoptimized total amount of 
energy sell 

energy_buy Optimized amount of total energy 
buy  

energy_buy_low Optimized amount of energy 
imported below “Limitation of 
basis for peak fee (𝑀𝑀) 

energy_buy_high Optimized amount of energy 
imported above “Limitation of 
basis for peak fee (𝑀𝑀) 

energy_sell Optimized amount of total energy 
sell 

13.8.2.3 “total_cost” 

In this sheet, the total cost of energy before and after optimization, and the sum of cost 

of flexibility of all resources are given. The values give are for the whole optimization 

horizon. The following Table 30 describes the meaning of each column reported. Table 

30 describes the columns in the sheet “total_cost” in the output data file 

“Site_x_prosumer_costs_and_energy_balance.xlsx”. 

Table 30: Description of columns in the sheet “total_cost” in the output data file 
“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Column name Description 
Total electricity cost Overall optimized cost of 

energy at main meter level  

Total flexibility cost Aggregated cost of flexibility of 
all resources. 

Total cost baseline Unoptimized overall cost of 
energy at main meter level. 
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13.8.2.4 “quarterly_cost” 

In this sheet, the costs are calculated for energy exchange with grid, cost of flexibility 

and   for the individual time periods. 

The flexibility cost of flexible resources are listed after the column name “grid_sell”, which 

lists Optimized energy cost with price (𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏) at energy part of grid contract for 

buying electricity in period t. All the members in one type of resource are listed in the 

incremental order.  The order of resource type in the listing is as follows 

1. Charging_x 

2. Generation_x 

3. Storage_x – Charging 

4. Storage_x – Discharging 

Table 31 describes the columns in the sheet “quarterly_cost” in the output data file 

“Site_x_prosumer_costs_and_energy_balance.xlsx” 

 

Table 31: Description of columns in the sheet “quarterly_cost” in the output data file 
“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Column name Description 
grid_sell_base Unoptimized energy selling cost to grid for 

the period t 
cost_buy_total Total optimized cost including energy and 

cost of flexibility  (Objective function value) 
retail_buy Optimized energy cost with price 

(𝑃𝑃𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏) at energy part of retail contract 

for selling electricity in period t 
grid_buy Optimized energy cost with price 

(𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏) at energy part of grid contract 

for buying electricity in period t  
(Power subscription cost is not included as 
it is calculated for deviation in hourly 
values) 

taxes Tax part of the cost. 
cost_sell Sum of retail_sell and grid_sell 
retail_sell Optimized energy cost with price 

(𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) at energy part of retail contract 
for selling electricity in period t 

grid_sell Optimized energy cost with price 
(𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) at energy part of retail contract 
for selling electricity in period t 

cost_EV_shift_Charging_x Cost for shifting EV charging associated 
with charge point Charging_x 
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cost_pv_Generation_x Cost of reducing Generation associated 
with Generation_x. 

cost_charge_batteryStorage_x Cost for charging battery associated with 
Storage_x 

cost_discharge_batteryStorage_x Cost for discharging battery associated 
with Storage_x 

13.8.2.5 hourly_cost_with_SP(With subscription) 

In this sheet, the hourly cost for energy buy and sell for a subscribed power limit are 

listed. The cost for total energy, energy above subscribed limit and energy below 

subscribed limit for both with and without optimization are listed. The following Table 32 

describes the meaning of each column reported. 

Table 32: Description of columns in the sheet “hourly_cost_with_SP” in the output data file 
“Site_x_prosumer_costs_and_energy_balance.xlsx” 

Column name Description Description 
t_h Time period 
cost_grid_buy_SP_base Unoptimized cost of energy buy with 

power subscription limit (M)  
cost_grid_buy_low_SP_base Unoptimized cost of energy buy 

below “Limitation of basis for peak fee 
(𝑀𝑀) 

cost_grid_buy_high_SP_base Unoptimized cost of energy buy 
above “Limitation of basis for peak 
fee (𝑀𝑀) 

cost_grid_buy_SP Optimized cost of energy buy with 
power subscription limit (M) 

cost_grid_buy_low_SP Optimized cost of energy buy below 
“Limitation of basis for peak fee (𝑀𝑀) 

cost_grid_buy_high_SP Optimized cost of energy buy above 
“Limitation of basis for peak fee (𝑀𝑀) 

13.9 Testing the RH code including variable fixing 

To run the RH test, it is needed to make the following changes into the code: 

 Changes into the main code file: To add a for to iterate between t_s_horizon and

t_e_horizon

 To copy applied values of the current execution time to the next period input Excel

file

 To fix the variables for the past periods from 0 to t_execution (if needed)

 To add metered values from past periods to the baseline production/consumption

(merge observed_values and teXX)
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13.9.1 Changes into the main code file 

The objective has been to add the fewer changes into the current code to be able to test 

the RH behaviour.  

There is a global t_execution and an internal t_execution. The global includes all the 

periods during the test while the internal is always from 0 to the end of the optimization 

window. After the end of each day, internal t_execution is reset to 0. 

The optimization function is called as an independent process each iteration/period, and 

it creates a complete new model each time it is executed. The inputs for each period are 

saved in different folders with the same structure using the name TestCaseSiteX, where 

X is the number of the global execution period (see Figure 95). 

Figure 95: Input data structure to configure the model for a test case. 

13.9.2 To copy applied values of the current execution time to the next period 

It copies the optimization results from the current period to the inputs (observed_values 

or similar input parameters) of the next period Excel input.   

Generation: 

 Copy “eb_pv” from the output (Site_X_prosumer_cost.s_and_energy_balance.xlsx) to

“observed_values” of the inputs (Generation_1.xlsx)

InflexGeneration: 
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 Copy “eb_pv_inflex” from the output (Site_X_prosumer_costs_and_energy_balance.xlsx)

to “observed_values” of the inputs (InflexGeneration_1.xlsx).

Storage: 

 Copy the result of “eb_discharge_bat” - “eb_charge_bat” from the output

(Site_X_prosumer_costs_and_energy_balance.xlsx) to “ChargingEnergy” of the inputs

(Storage_1.xlsx).

 Copy “eb_soc_bat” from the output (Site_X_prosumer_costs_and_energy_balance.xlsx) to

“EnergyLevel” of the inputs (Storage_1.xlsx).

Charging: 

 Copy “eb_EV_CS” from the output (Site_X_prosumer_costs_and_energy_balance.xlsx) to

“ChargingEnergy” of the inputs (Charging_1.xlsx).

 Copy “eb_EV_CS” from the output (Site_X_prosumer_costs_and_energy_balance.xlsx) to

“ChargingPointState” of the inputs (Charging_1.xlsx).

Prosumer: 

 New inflexible load is calculated as the difference in the energy balance of all the other

variables from all devices. Copy the result of “energy_buy” - “energy_sell“ + “eb_pv” +

”eb_pv_inflex” + “eb_discharge_bat” - “eb_charge_bat” - “eb_EV_CS” from the output

(Site_X_prosumer_costs_and_energy_balance.xlsx) to “observed_values” of the inputs

(Prosumer_1.xlsx).

In addition to all these input updates, it is needed to update the previous battery SOC at the 

beginning of the simulation. This previous SOC is currently obtained from the last period of the 

“EnergyLevel” column of the inputs (Storage_1.xlsx). 

init_o_min_initial = {'Storage': Input['EnergyLevel'][timeInput.Nwindow-1]} 

For this reason, the last period of the “EnergyLevel” column of the inputs (Storage_1.xlsx) is 

always stored in the same column of the input file for t_execution+1 (see Figure 96). In this figure, 

one day has 24 periods and it takes 1 period to receive the metered values. It makes that in the 

2 first periods, initial SOC is not copied directly from the last period of the current “EnergyLevel” 

column. This last part is not yet implemented into the code, as it depends on how it is done in the 

platform. 
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Figure 96: How previous SOC at the beginning of the simulation is saved through the periods of 
the planning window. 

13.9.3 To fix the variables for the past periods 

Past period values can came from metered or calculated values. Calculated values are 

those past periods where metered values are not received yet. They can be present in 

one or more than one period and their values are directly extracted from the results of 

the optimization. 

As a general rule, only variables that have metered values are going to be fixed. The 

other variables are calculated from these variables or from other input parameters, so 

they do not need to be fixed. 

Device Variable 
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values 
fixed? 

Calculated 
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fixed value 

Additional 
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Battery sigma_soc Y Y EnergyLevel 

Battery sigma_ch Y/N Y/N ChargingEnergy 
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EV theta_es N N   
Prosumer chi_buy Y Y observed_values  
Prosumer chi_sell Y Y observed_values  
Prosumer delta_buy N N   
Prosumer delta_sell N N   
Prosumer chi_buy_low_h N N   
Prosumer chi_buy_high_h N N   

Generation psi Y Y observed_values  
InfleGen psi Y Y observed_values  

 

 Battery:  

The efficiency of charging and discharging is not constant and errors in the calculation 

of the SOC versus the metered values can cause infeasibilities. To avoid this, two options 

can be applied: 

1. Do not fix sigma_ch and sigma_dis 

2. Remove SOC constraint for past periods + fix sigma_ch and sigma_dis 

In the second option, it is needed to remove the SOC constraint for past periods if we 

also want to fix sigma_ch and sigma_dis. Then, errors in the charging/discharging values 

are absorbed by the inflexible load (see energy balance comment below). We prefer the 

second option. 

 Energy balance constraint: 

The only variable/parameter of the energy balance that is not fixed for past periods is the 

inflexible load of the prosumer (+ battery charge/discharge, if option 1 is chosen). 

The inflexible load is calculated as the difference between the main meter (chi_buy and 

chi_sell) and the consumption/generation of each device (sigma_ch, sigma_dis, 

theta_ch and psi). Thanks to this, all possible deviations can be easily added to the 

inflexible load “metered” value. It will avoid infeasible solutions due to the energy balance 

constraint. 

13.9.4 To add metered values from past periods to the baseline 

It is needed to mix metered, calculated and forecasted values as an input to the 

optimization algorithm, as it has to solve past and future periods. The current input Excel 

files only have forecasted and metered values columns. As in the offline test we do not 

have access to metered values, the metered and calculated values are put together in 

the metered values inputs, as explained in section 13.9.2. It needs to be adapted to work 

with the platform. 
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Figure 97: How input parameters are created from metered and forecasted values. 

It affects the following models: 

 Inflex. Load: 

init_w_load_inflex_RH is made of a mixture of metered and calculated 

(observed_values[t] from 0 to t_execution) and forecasted values (teXX[t] from 

t_execution to the end of the optimization window). 

 Generation: 

init_w_gen_r_RH is made of a mixture of metered and calculated (observed_values[t] 

from 0 to t_execution) and forecasted values (teXX[t] from t_execution to the end of the 

optimization window). 

 Infle. Generation: 

init_w_gen_inflex_RH is made of a mixture of metered and calculated 

(observed_values[t] from 0 to t_execution) and forecasted values (teXX[t] from 

t_execution to the end of the optimization window). 

 EV: 

W_cp_RH is made of a mixture of metered and calculated (ChargingEnergy[t] from 0 to 

t_execution) and forecasted values (W_cp[t] from t_execution to the end of the 

optimization window). 

ChargingPointState_RH is made of a mixture of metered and calculated 

(ChargingPointState[t] from 0 to t_execution) and forecasted values 

(ForecastedChargingPointState[t] from t_execution to the end of the optimization 

window). How to deal with differences in the forecasted and metered values of the CP 

status?? Sessions are obtained from the forecasted CP status. Especially, Tstart is 

obtained when a new EV is connected AND starts charging, as we forced to charge the 

EV once it is connected in the forecast. 

 

observed_values[t]

Planning 
window

Metered 
values

Forecasted values of 
the planning window

Calculated 
values

teXX[t]
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14 Appendix: Overview of sets, parameters and 
variables 

14.1.1 Sets 

𝑇𝑇 Set of periods/time slots in the planning horizon 

𝑇𝑇𝑐𝑐 Subset of periods where curtailment is allowed 

𝐵𝐵 Set of battery units 

𝐺𝐺 Set of generation units 

𝐺𝐺𝑖𝑖 Subset of generation units that are inflexible 

𝐺𝐺𝑓𝑓 Subset of generation units that are flexible 

𝐻𝐻 Set of hourly time periods in the planning horizon 

𝐼𝐼 Set of load shift intervals of electric water heaters (EWH) 

K  Set of charging power segments indexed by k 

𝐿𝐿  Set of load units 

𝐿𝐿𝑖𝑖 Subset of load units that are inflexible  

𝐿𝐿𝑒𝑒𝑒𝑒ℎ Subset of load units that are EWH 

𝐿𝐿𝑠𝑠ℎ Subset of load units that are space heaters (SH) 

𝑁𝑁 Set of charging sessions per charging point 

𝑉𝑉 Set of electric vehicles 

𝑉𝑉𝑖𝑖 Subset of electric vehicles that are inflexible 

𝑉𝑉𝑐𝑐 Subset of electric vehicles that are fully controllable and interruptible 
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14.1.2 Parameters 

Prosumer model parameters 

𝑃𝑃𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏 

Price at energy part of retail contract for buying electricity in period 

𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 

Price at energy part of grid contract for buying electricity in period 

𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−𝑙𝑙𝑙𝑙𝑙𝑙 

Price at energy part of grid contract for buying electricity in cases 

with subscribed power in period 𝑡𝑡 ∈ 𝑇𝑇 if bought electricity is below 

subscribed level [€/kWh]  

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑖𝑖𝑖𝑖ℎ 

Price at energy part of grid contract for buying electricity in cases 

with subscribed power in period 𝑡𝑡 ∈ 𝑇𝑇 if bought electricity is above 

subscribed level [€/kWh]  

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 Sum price for all taxes that are related to buying electricity [p.u.] 

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 
Parameter that adds VAT to the amount bought. E.g. 25% is 1.25 

[p.u.] 

𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Price at energy part of retail contract for selling electricity in period 

𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Price at energy part of grid contract for selling electricity in period 

𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐 Maximum import capacity [kW] 

𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 Maximum export capacity [kW] 

𝑀𝑀 Subscribed power for the Norwegian tariff structure per hour [kWh] 

𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Periods per hour [p.u.] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Baseline charging schedule per inflexible load 𝑙𝑙 ∈ 𝐿𝐿𝑖𝑖 in period 𝑡𝑡 ∈ 𝑇𝑇  

[kWh] 
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Battery model parameters 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑚𝑚𝑚𝑚𝑚𝑚 Minimum state of charge allowed for battery unit 𝑏𝑏 ∈ B [kWh] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum state of charge allowed for battery unit 𝑏𝑏 ∈ B [kWh] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Amount of electricity stored in battery unit 𝑏𝑏 ∈ B at the beginning of 

period 𝑡𝑡 = 0 decided in the previous optimization execution [kWh] 

𝑂𝑂𝑏𝑏
𝐵𝐵,𝑒𝑒𝑒𝑒𝑒𝑒 

Minimum amount of electricity stored in battery unit 𝑏𝑏 ∈ B at the end 

of the planning horizon [kWh] 

𝑄𝑄𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ Maximum charging power allowed for battery unit 𝑏𝑏 ∈ B [kW] 

𝑄𝑄𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Maximum discharging power allowed for battery unit 𝑏𝑏 ∈ B [kW] 

𝐴𝐴𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ Efficiency parameter for charging battery unit 𝑏𝑏 ∈ B [p.u.] 

𝐴𝐴𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Efficiency parameter for discharging battery unit 𝑏𝑏 ∈ B [p.u.] 

𝑆𝑆𝑏𝑏
𝐵𝐵,𝑐𝑐ℎ Threshold in battery unit 𝑏𝑏 ∈ B charging process [p.u.] 

𝑆𝑆𝑏𝑏
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Threshold in battery unit 𝑏𝑏 ∈ B discharging process [p.u.] 

𝑃𝑃𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑐𝑐ℎ Price for charging battery unit 𝑏𝑏 ∈ B at period 𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

𝑃𝑃𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Price for discharging battery unit 𝑏𝑏 ∈ B at period 𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

B
bw  

Parameter to control the constant voltage charge/discharge in 

battery b 

,
B
b kB  

End of segment k’s x-axis value representing the charging power for 

segment k in battery b [kW] 

,
B
b kµ  Slope for segment k in battery b 

B
bR  Battery replacement cost of battery b in [€/kWh] 
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,
B
b jc  Marginal aging cost of cycle depth segment j in [kWh] 

, ,
,

B SOC init
b jσ  

Initial state of charge of cycle depth segment j for battery in period 

t=0 in [kWh] 

, ,
,

B SOC end
b jσ  

Final state of charge of cycle depth segment j for battery b in period 

T in [kWh] 

,max
,

B
b jO  Maximum allowed state of charge of segment j for battery b [kWh] 

B
LfT  Battery life time in years 

yD  Days per year 

dH  Hours per day 

hS  Steps per hour 

,0B
bS  Constant in calendar ageing function 

,B SOC
bS  State of charge multiplier in calendar ageing function 

B
bρ  Battery degradation tuning factor for battery b, [0,1]B

bρ ∈  

Electric vehicle charging point model parameters  

𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 

Maximum charging power allowed for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 

[kW] 

𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 Minimum charging power allowed for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 [kW] 

𝑄𝑄𝑡𝑡
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ Total charging power per charging station each period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 

Price for deferring 1 kWh energy demand for one time period for 

charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 [€/kWh] 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 162 of 170 

 

𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑛𝑛𝑛𝑛 

Price for non-supplying 1 kWh of the expected charging demand of 

charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐  of session 𝑛𝑛 ∈ 𝑁𝑁  by the end of the 

charging sessions [€/kWh] 

𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 First period for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 of session 𝑛𝑛 ∈ 𝑁𝑁  [p.u.]  

𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒 

Departure period of each charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐  of session 𝑛𝑛 ∈

𝑁𝑁 [p.u.] 

𝑉𝑉𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

First period of consuming electricity for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 

of session 𝑛𝑛 ∈ 𝑁𝑁  [p.u.] 

𝑉𝑉𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑛𝑛𝑛𝑛 

Last period of consuming electricity for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 

of session 𝑛𝑛 ∈ 𝑁𝑁  [p.u.] 

𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶 

Baseline charging schedule for charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐 in period 

𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Electric vehicle charging point inflexible model parameters  

𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Baseline charging schedule per inflexible charging point unit  𝑣𝑣 ∈

𝑉𝑉𝑖𝑖 in period 𝑡𝑡 ∈ 𝑇𝑇  and [kWh] 

Electric water heater model parameters 

𝐶𝐶𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

Binary parameter equal to 1 if disconnection of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ 

is allowed in period 𝑡𝑡 ∈ 𝑇𝑇, else 0. 

𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 

Maximum duration of flexibility activation of the EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ 

in time periods [p.u.] 

𝐷𝐷𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 

Minimum rest time between two successive shifting intervals 𝑖𝑖 ∈ 𝐼𝐼 

of the EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in time periods [p.u.] 

𝑄𝑄𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 Minimum power level of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ [kW] 

𝑄𝑄𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum power level of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ  [kW] 
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𝑃𝑃𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 

Price for shifting EWH demand volume for the unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ with 1 

kWh [€/kWh] 

𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 First period for EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in shift interval 𝑖𝑖 ∈ 𝐼𝐼 [p.u.]  

𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 Last period for EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in shift interval 𝑖𝑖 ∈ 𝐼𝐼 [p.u.] 

𝑉𝑉𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 

Last period in EWH shift interval 𝑖𝑖 ∈ 𝐼𝐼 where the EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ 

has a baseline consumption [p.u.] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

Baseline consumption of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ when 𝐶𝐶𝑙𝑙,𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 in 

time period 𝑡𝑡 ∉ �𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒� [kWh] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Restricted baseline consumption of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in time 

period 𝑡𝑡 ∈ �𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒� [kWh] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 

Baseline consumption of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in time period 𝑡𝑡 ∈ 𝑇𝑇 

[kWh] 

Photovoltaic generator flexible model parameters 

𝑊𝑊𝑔𝑔,𝑡𝑡
𝐺𝐺  

Baseline production from flexible generation unit 𝑔𝑔 ∈ 𝐺𝐺𝑓𝑓 in period 

𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝑃𝑃𝑔𝑔,𝑡𝑡
𝐺𝐺  

Price of reducing generation output of the unit 𝑔𝑔 ∈ 𝐺𝐺𝑓𝑓 during period 

𝑡𝑡 ∈ 𝑇𝑇 [€/kWh] 

Photovoltaic generator inflexible model parameters 

𝑊𝑊𝑔𝑔,𝑡𝑡
𝐺𝐺,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Baseline production from generation inflexible unit 𝑔𝑔 ∈ 𝐺𝐺𝑖𝑖 in period 

𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Space heater model parameters 

𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 

Maximum duration of flexibility activation of the space heater unit 

𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ in time periods [p.u.] 
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𝐷𝐷𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 

Minimum rest time between two successive flexibility activations of 

space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ in time periods [p.u.] 

𝑁𝑁𝑙𝑙
𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑚𝑚 

Maximum number of flexibility activation of space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ 

in planning horizon [p.u.] 

𝑃𝑃𝑙𝑙
𝑆𝑆𝑆𝑆,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Price for flexibility activation of space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ with 1 kWh 

[€] 

𝑇𝑇𝑙𝑙
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Starting period where heater control is allowed for space heater unit 

𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ [p.u.] 

𝑇𝑇𝑙𝑙
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 

Ending period where heater control is allowed for space heater unit 

𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ [p.u.] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑙𝑙 

Energy level of the room in kWh for space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ 

corresponding to lower threshold  temperature 𝑇𝑇𝑡𝑡𝑙𝑙  in period 𝑡𝑡 ∈ 𝑇𝑇 

[kWh] 

𝑊𝑊𝑙𝑙,0
𝑆𝑆𝑆𝑆,𝑟𝑟 

Energy level inside the room for space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ  in time 

interval 𝑡𝑡 = 0 [kWh] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠 

Energy level of the room in kWh for space heater unit 

𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ  corresponding to setpoint  temperature 𝑇𝑇𝑡𝑡𝑠𝑠 in period 𝑡𝑡 ∈ 𝑇𝑇 

[kWh] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑢𝑢 

Energy level of the room for space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ   corresponding 

to upper threshold  temperature 𝑇𝑇𝑡𝑡𝑢𝑢 in period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝑊𝑊𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑜𝑜𝑜𝑜𝑜𝑜 

Heat energy loss from the room for space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝑊𝑊𝑙𝑙
𝑆𝑆𝑆𝑆,ℎ 

Maximum heat energy delivered by the space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ in 

the given time period [kWh] 
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MV network model parameters 

𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Total active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 Generated active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Demanded active power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Total reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kW] 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 Generated reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kVAR] 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Demanded reactive power at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kVAR] 

𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 Maximum voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑈𝑈𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 Minimum voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑈𝑈𝑖𝑖,𝑡𝑡 Voltage at node 𝑖𝑖 ∈ 𝐾𝐾 in period 𝑡𝑡 ∈ 𝑇𝑇 [kV] 

𝑌𝑌𝑖𝑖𝑖𝑖 Admittance value for line 𝑖𝑖 − 𝑘𝑘 [S] 

𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡 Voltage angle difference between nodes 𝑖𝑖,𝑘𝑘 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝜃𝜃𝑘𝑘,𝑡𝑡 Voltage angle at node 𝑘𝑘 in period 𝑡𝑡 ∈ 𝑇𝑇 [rad] 

𝑍𝑍𝑖𝑖,𝑘𝑘 Impedance value for line 𝑖𝑖 − 𝑘𝑘 [Ω] 

 

 

  



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4A- Flexibility management algorithms Page 166 of 170 

 

14.1.3 Variables 

Prosumer model variables 

𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 Amount of electricity bought in period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Amount of electricity sold in period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜒𝜒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
Basis for calculation of peak fee in cases where this is a part of 

the grid contract [kW] 

𝜒𝜒ℎ𝑙𝑙𝑙𝑙𝑙𝑙 
Amount of electricity bought in hour h below the subscribed 

power M [kWh] 

𝜒𝜒ℎ
ℎ𝑖𝑖𝑖𝑖ℎ 

Amount of electricity bought in hour h above the subscribed 

power M [kWh] 

𝛿𝛿𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 

Binary variable = 1 if site is importing/buying electricity in period 

𝑡𝑡 ∈ 𝑇𝑇, else 0 

𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Binary variable = 1 if site is exporting/selling electricity in period 

𝑡𝑡 ∈ 𝑇𝑇, else 0 

Battery model variables  

𝜎𝜎𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑐𝑐ℎ 

Amount of electricity charged to battery unit 𝑏𝑏 ∈ B in period 𝑡𝑡 ∈ 𝑇𝑇 

[kWh] 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 

Amount of electricity discharged from battery unit 𝑏𝑏 ∈ B in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜎𝜎𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑠𝑠𝑠𝑠𝑠𝑠 

Amount of electricity stored in battery unit 𝑏𝑏 ∈ B at the end of 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝛿𝛿𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑐𝑐ℎ Binary variable = 1 if battery unit 𝑏𝑏 ∈ B is being charged in period 

𝑡𝑡 ∈ 𝑇𝑇, else 0 

𝛿𝛿𝑏𝑏,𝑡𝑡
𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Binary variable = 1 if battery unit 𝑏𝑏 ∈ B is being discharged in 

period 𝑡𝑡 ∈ 𝑇𝑇, else 0 
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, ,
,

B ch bat
b tσ  Power supplied to battery b from the inverter in time step t [kW] 

, ,
,

B dis bat
b tσ  Power withdrawn from battery b sent to the inverter in time step t 

[kW] 

, ,
,

B ch inv
b tσ  Power supplied to inverter belonging to battery b in time step t 

[kW] 

, ,
,

B dis inv
b tσ  Power withdrawn from inverter belonging to battery b in time step 

t [kW] 

, ,
, ,

B ch inv
b t kσ  Power supplied to inverter belonging to battery b in time step t in 

segment k [kW] 

, ,
, ,

B dis bat
b t kσ  Power withdrawn from battery b sent to the inverter in time step t 

in segment k [kW] 

,
, ,

B ch
b t kγ  Binary variable representing activation of charging segment k in 

battery b in time step t 

,
, ,

B dis
b t kγ  Binary variable representing activation of discharging segment k 

in battery b in time step t 

,
, ,

B SOC
b t jσ  Energy stored in segment j in battery b at time step t [kWh] 

,
, ,

B ch
b t jσ  Amount of electricity charged to segment j in battery b at time 

step t in [kW] 

,
, ,

B dis
b t jσ  Amount of electricity discharged from segment j in battery b at 

time step t in [kW] 

,
, ,

B cyc
b t jβ  Cyclic ageing cost in time step t for battery b in segment j [€] 

,
B
b tv  Binary variable to prohibit simultaneous charging and discharging 

for battery b in time step t 

,
,

B SOC
b tσ  Energy stored in battery b at time step t in battery b[kWh] 
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,
,

B cal
b tβ  Calendar battery degradation for battery b in time step t [€] 

,
,

B tot
b tβ  Total cycle and calendar battery ageing cost for battery b in time 

step t [€] 

Electric vehicle charging point model variables 

𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒 Amount of electricity supplied to the charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐   in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ Amount of electricity charged to the charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐  in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜃𝜃𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑐𝑐𝑐𝑐 Amount of accumulated EV  energy during the charging process 

in the charging point unit 𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐   in session 𝑛𝑛 ∈ 𝑁𝑁  (charging 

demand) [kWh] 

Electric vehicle charging point inflexible model variables 

𝜃𝜃𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶,𝑐𝑐ℎ−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Amount of electricity charged to the inflexible charging point unit 

𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖  in period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Electric water heater model variables 

𝜏𝜏𝑙𝑙,𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸 Weighted average delay of EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in shift interval 𝑖𝑖 ∈

𝐼𝐼 in number of time periods [p.u.] 

𝜔𝜔𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 Amount of electricity consumed from EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in time 

period 𝑡𝑡 ∈ �𝑇𝑇𝑙𝑙,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑙𝑙,𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒� [kWh] 

𝜔𝜔𝑙𝑙,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Real amount of electricity consumed from EWH unit 𝑙𝑙 ∈ 𝐿𝐿𝑒𝑒𝑒𝑒ℎ in 

time period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Photovoltaic generator flexibility model variables 

𝜓𝜓𝑔𝑔,𝑡𝑡
𝐺𝐺  

Amount of electricity produced from generating unit 𝑔𝑔 ∈ 𝐺𝐺𝑓𝑓 in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Photovoltaic generator inflexible model variables 
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𝜓𝜓𝑔𝑔,𝑡𝑡
𝐺𝐺,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Amount of electricity produced from generating unit 𝑔𝑔 ∈ 𝐺𝐺𝑖𝑖 in 

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

Space Heaters 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Binary variable equal to 1 if flexibility activation of space heater 

unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ  starts in the beginning of period 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐, else 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟𝑟𝑟𝑟𝑟 Binary variable equal to 1 if flexibility activation of space heater 

unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ   is running in period 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐, else 0 

𝛿𝛿𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒 Binary variable equal to 1 if flexibility activation of space heater 

unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ   ends in the beginning of period 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐, else 0 

𝑤𝑤𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆,𝑟𝑟 Energy level inside the room for space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ in   

period 𝑡𝑡 ∈ 𝑇𝑇 [kWh] 

𝜔𝜔𝑙𝑙,𝑡𝑡
𝑆𝑆𝑆𝑆 Electrical energy delivered to the space heater unit 𝑙𝑙 ∈ 𝐿𝐿𝑠𝑠ℎ  in   

period 𝑡𝑡 ∈ 𝑇𝑇 (Same as the heat energy delivered as the COP of 

the electric heater is 1) [kWh] 

Flexibility costs 

𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Total cost for utilizing internal flexibility [€] 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Total cost for controlling EV charging [€] 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 Total cost for shifting EV charging [€] 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑛𝑛𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Total cost for kWh not supplied for EV charging [€] 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Total cost for EV charging [€] 

𝜁𝜁𝐸𝐸𝐸𝐸𝐸𝐸 Total cost for shifting EWH demand volume [€] 

𝜁𝜁𝑆𝑆𝑆𝑆 Total cost for shifting space heater demand volume [€] 

𝜁𝜁𝐺𝐺 Total cost for utilizing generation flexibility in the planning horizon 

[€] 
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𝜁𝜁𝐵𝐵 Total cost for utilizing battery flexibility in the planning horizon [€] 

𝜁𝜁𝐵𝐵,𝑐𝑐ℎ Total cost for charging batteries in the planning horizon [€] 

𝜁𝜁𝐵𝐵,𝑑𝑑𝑑𝑑𝑑𝑑 Total cost for discharging batteries in the planning horizon [€] 

𝜁𝜁𝐵𝐵,𝑠𝑠𝑠𝑠𝑠𝑠−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 Total cost for stored energy [€] 

 

MV network  

𝜑𝜑𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 Total active power injected at node i at time t from flexibility 

sources [kW]  

𝜑𝜑𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 Total reactive power injected at node i at time t from flexibility 

sources [kVAR] 
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Abbreviations and Acronyms 

Acronym Description 

ABC Artificial bee colony 

BD Benders decomposition 

BURO Bounded uncertainty-based robust optimization 

DBESS Distributed battery energy storage system 

DE Differential evolution 

DER Distributed energy resource 

DG Distributed generation 

DOD Depth-of-discharge 

DSO Distribution system operator 

ESS Energy storage systems 

FBS Forward-backward sweep 

LP Linear programming 

LV Low voltage 

MILP Mixed integer linear programming 

MINLP Mixed integer non-linear programming 

NLP Non-linear programming 

NRES Non- renewable distributed energy source 

OPF Optimal power flow 

PDF Probability density function 

PV Photovoltaic 

RES Renewable energy source 

RO Robust optimization 

SOC State of charge 

SOCP Second order cone programing 
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Nomenclature 

1) Indices and Sets

(b,j), t, l, k, p Indices of bus, time, linearization segments of voltage magnitude 

term, circular constraint and term of degradation of battery, 

respectively   

ϕb, ϕt, ϕl, ϕk, ϕp Sets of bus, time, linearization segments of voltage magnitude term, 

circular constraint and term of degradation of battery, respectively 

m, nf Index and total number of the iteration of the primal sub-problem to 

be feasible, respectively 

r, ni Index and total number of the iteration of the primal sub-problem to 

be infeasible, respectively 

2) Parameters

A Bus incidence matrix (if line existed between buses b and j, Ab,j is 

equal to 1, and 0 otherwise) 

Amin Minimum boundary rate of the stored energy of battery  

cs Annual investment cost (in $/MWh/year) 

g, b Line conductance and susceptance in per unit (pu), respectively 

Pch-max, Pdis-max Maximum charging and discharging rate of battery in pu, 

respectively 

PD, QD Active and reactive load in pu, respectively 

RES The output power of RES in pu 

SGmax, SLmax Maximum loading of distribution line and station in pu, respectively 

T Operating horizon, i.e., 6, 12, 24 or 48 hours  

Vmax, Vmin, ∆Vmax Maximum and minimum voltage magnitude, and maximum value of 

voltage deviation in pu, respectively 
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Vref Voltage of reference (station) bus in pu 

X, Y Horizontal and vertical value of different points of cycle life loss 

curve, respectively  

ωmax Maximum capacity of battery in pu 

ηch, ηdis Efficiency parameter for charging and discharging of the battery, 

respectively 

λch, λdis Charging and discharging price of the battery, respectively in 

$/MWh 

3) Variables: All variables are in per unit (pu)

D Depth of discharge without unit 

E Stored energy of battery  

Pch, Pdis Amount of electricity charged and discharged from battery 

PG, QG Active and reactive power of the station, respectively 

PL, QL Active and reactive power of lines, respectively 

V, ∆V, θ Magnitude, deviation (pu) and angle of voltage (in rad), respectively 

ω Capacity of battery  

λsub, µsub Dual variables of equality and inequality constraints in the primal sub-

problem 

ρ, γ  Cycle life loss and auxiliary variable for storage degradation cost, 

respectively, without unit 

4) Functions
f Cycle life loss 

Jp, Jsub Master problem and sub-problem objective functions in pu 

β1 Operation or charging cost of DBESS in pu   
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β2 Revenue of DBESSs due to selling of discharging power in pu  
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Executive summary 

This report was commissioned to include the flexibility planning of distributed battery 

storage in smart distribution networks. The objective is to find the cost-efficient 

placement and sizing of battery storage systems. This leads to an improved efficicency 

of the existing power system and reduce issues caused by variable renewable energy 

sources in the physical electricity systems as well as at the electricity markets. The basic 

battery storage planning strategy principles were already included in D5.3 Simplified 

battery operation and control algorithm. Whereas this deliverable cmpares two decicion 

strategies in association with distributed and centralized battery optimal siting and sizing. 

Moreover, this report adds several functionalities such as robust optimization method to 

deal with uncertainities and the cost of degradation, which are essential for the planning 

algorithem to make proper investment decisions. 

The document contains a detailed explanation of the bilevel robust algorithm for optimal 

investement decisions on battery storage systems including optimal sizing and 

placement. The algorithm is implemented from a distribution system operator perspective 

to increase the network flexibility. In order to explain the battery planning strategy, first, 

the deterministic planning model of the distributed battery energy storage systems is 

explained. This is a non-linear problem, which makes it computationaly difficult to be 

solved especially for large-scale systems. Hence, an equivalent linear programming 

model based on the Benders decomposition approach is proposed. Second, in order to 

deal with uncertain parameters including forecasted loads, energy and 

charging/discharging prices and the output power of RESs, a bounded uncertainty-based 

robust optimization framework is developed. The robust optimization framework 

represents a tractable uncertainty modeling structure. Finally, the proposed scheme is 

applied to 19-bus LV CIGRE benchmark grid to investigate the capability and efficiency 

of the model.  

This model is able to help the INVADE pilots, i.e., the German and the Spanish pilot to 

find the cost-efficient investment decisions. 
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1 Introduction 

Variable and uncertain renewable energy sources (RESs) in electricity networks are 

expected to experience a substantial growth due to emerging market for Green 

Certificates. This is infact one of the main focus in INVADE project. RESs variable 

generation along with customers’ incoming proactive role in power system operation, 

and their expanding technology options such as solar photovoltaics panels, the 

deployment of plug-in electric vehicles and smart appliances, drive the need for higher 

power system flexibility. The flexibility term defined in INVADE D5.1 as “the modification 

of generation injection and/or consumption patterns in reaction to an external price or 

activation signal in order to provide a service within the electrical system” [1]. Flexibility 

could be provided by: supply side, network side, and demand side and storage 

availability. Indeed, adding flexible resources into the networks can improve the flexibility. 

Some important flexible resources are demand response programs, distributed battery 

energy storage systems and non- renewable distributed energy sources (NRESs), e.g., 

micro-turbines and fuel cells, in the demand and smart distribution network sides. Among 

these flexible resources, batteries are capable of providing high flexibility due to their 

inherent fast dynamics combined with fast control based on the power electronic 

converters [2]. However, allocating more distributed battery energy storage systems 

(DBESSs) to the smart distribution networks imposes extra costs, accordingly, it is crucial 

to establish investment planning model to determine how much flexibility from DBESSs 

might be needed and of where to place them in the network. Finding the optimal 

investment level requires consideration not only of short-term power system operation 

procedures, but also long-term investment planning to recover costs. Moreover, the 

flexibility of DBESSs and their associated costs are system-dependent. Accordingly, it is 

essential to develop methodologies and procedures to measure economic and technical 

flexibility benefits of DBESSs and their potential capacity to adequately host uncertain 

RESs, e.g., photovoltaic (PV) systems and wind power generation. In other words, it is 

important to make compromise between upgrading the system flexibility levels of 

DBESSs and escaping extra investment in supply and grid reinforcements. In this regard, 

the concentration areas of this work are to answer two main questions: “How does 

integrating RESs will affect the power system operation and planning procedures?” and 

“How to allocate DBESSs as the flexibility resources to accommodate a higher 

penetrations of RESs in the distribution grids?”. To this end, the first step is to determine 

the optimal location and size of batteries in the distribution networks planning studies [2]. 

However, the battery planning problem generally is kind of probabilistic or stochastic 
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optimization problems due to the presence of uncertain parameters that calls for some 

scenario-based stochastic programming modelling of uncertain parameters that 

assumes there is a probabilistic description of the uncertainty based on the probability 

density functions (PDFs). Generally, the scenario-based stochastic modelling of planning 

problem enforces the high computational burden and calculation time and increase the 

complexity of the optimization solution methodology. Robust optimization (RO) is a new 

approach for modelling uncertainty in optimization problems that works with a 

deterministic, set-based description of the uncertainty to construct a solution that is 

feasible for any realization of the uncertainty in a given set [3].          

Significant research works have been concentrated on the planning of battery energy 

storage systems requirement as well as evaluating their effects in the power system 

operation in the presence of RESs. For instance, a two-stage stochastic optimization 

problem of the integrated investment planning of PVs, battery energy storage systems 

and gas-fired micro turbines has been proposed in a multicarrier gas and electricity in 

[4]. The first stage of the proposed framework in [4] deals with the optimal investment 

planning of the energy storage systems to decide their size and location. Then, according 

to the results of the first stage, the optimal operation is executed based on the power 

flow equations in both gas and electricity grids. Different operational considerations of 

integrating PVs in the low voltage distribution networks have been addressed in [5] 

including the changes in the voltage profile, reverse power flow, and energy losses. Also, 

in [5], a localized battery energy storage system has been suggested as a possible 

solution to improve the system operation conditions in the presence of high penetration 

of PVs. To this purpose, the battery is charged when production of photovoltaic is more 

than consumers’ demands and discharged when consumers’ demands are increased. It 

is noted that while the investment costs of batteries are high, hence using an objective 

function based on both economic and environmental goals is important to the placement 

and sizing of batteries. In addition to the above researches, the optimal sizing of a hybrid 

photovoltaic and battery storage system has been studied from prosumer viewpoints for 

residential and non-residential customers in [6]. To determine the optimal sizing and 

location of battery systems connected to the distribution grids based on AC power flow 

equations, an optimal planning scheme has been presented in [7]. It has used a 

relaxation method based on the second order cone programing (SOCP) of the optimal 

power flow (OPF) algorithm. Also, a relaxation method for the optimal power flow has 

been used in [8] to decide on the optimal placement and sizing of battery storage systems 

while considering the uncertain natures of the customers’ demands and RESs’ 

generations.  



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4B - Flexibility Planning of Distributed Battery Storages in Smart Distribution Networks Page 11 of 49 

From the perspective of the optimization solution methodology for battery storage 

planning, different approaches have been conducted in the available researches in the 

area. For instance, the evolutionary algorithms such as differential evolution (DE) 

algorithm [9], artificial bee colony (ABC) algorithm [10] have been used for the storage 

system planning based on AC OPF equations. Also, in [11]-[12], the storage planning is 

presented based on Benders decomposition (BD) approach wherein the master problem 

and sub-problem of this scheme, respectively considers the storage planning and the 

optimal power flow both on the electricity markets [11] and low voltage (LV) distribution 

networks [12]. Both the proposed BD approaches in [11] and [12], are in the form of 

mixed integer linear programming (MILP) modelling for a DC OPF and a simple 

linearized forward-backward sweep (FBS) AC OPF formulations, respectively.  

Furthermore, to deal with the uncertainty modelling in the storage planning problems, 

different frameworks have been adopted. Robust OPF formulations for distribution 

networks using non-linear adaptive RO and linear bounded uncertainty-based RO have 

been expressed in [13] and [14], respectively. The proposed non-linear RO in [13] has a 

complex viewpoint on the duality gap and complementarity (equilibrium) constraints. 

However, the linear RO in [14] benefits from a simple formulation and a low calculation 

time. The robust operation problem for energy storage systems (ESSs) considering the 

uncertainty of load profiles have been presents in [15]. In [16], a developed optimization 

tool, termed ROSION-Robust Optimization of Storage Investment On Networks, employs 

the RO to minimize the investment in the storage units that guarantees a feasible system 

operation without load or renewable power curtailment for all scenarios in the convex hull 

of a discrete uncertainty set.  

To have an overall view on the available researches in the subject of energy storage 

planning problem, the taxonomy of recent works in the area are listed in Table 1.  

As inferred from Table 1, there are different main research gaps for available literature 

about storage system planning as follows: 

- In some researches, the planning problem of the storage system is based on the 

DC OPF [4]-[6] and [11]. However, the DC OPF is not suitable for the distribution 

networks while it ignores the power losses and reactive power. Accordingly, the 

AC OPF has been adopted in [7]-[10] and [12], where [7]-[8] and [9]-[10] are using 

a relaxation method and evolutionary algorithms, respectively. Nevertheless, these 

methods are based on the random search iteration methods which are not suitable 

for the robust modeling. Furthermore, as above mentioned, the simplified linear AC 

OPF suggested in [12] employs the FBS OPF formulation which fits to the structure 
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of the radial distribution networks rather than the bidirectional flow ones. 

- The robust operation of the distribution networks have been adopted in [13]-[15]. 

Also, the uncertainty modeling of the RESs have been directed using the robust 

planning of storage systems in [16].     

As a complimentary work to the above researches, this research develops a robust 

planning of DBESSs from the viewpoint of DSOs to increase the network flexibility. In the 

first step, a deterministic model of the proposed storage planning problem is formulated 

based on the structure of distribution grids illustrated in Figure 1. In this step, the 

difference between the DBESS planning, degradation and operation (charging) costs 

and revenue of DBESS owing to selling its stored energy to the network is minimized as 

an objective function subject to the constraints of AC OPF in the presence of RESs and 

DBESSs, and technical limits of the network, RESs and DBESSs. As shown in Figure 1 

(a), the main assumptions of the proposed storage planning problem are as follows: 

– The network includes different kinds of prosumers with the integrated RESs, e.g., 

PV systems, as well as flexible and inflexible loads.  

- Each bus is a candidate to install battery as shown in Figure 1 (a). 

Table 1. Taxonomy of recent works in the area 

Ref. No. Flexibility 
Robust 
model 

Improve of 
the 

network 
indexes 

Powel flow 
Problem 
model 

Solving method 
AC DC 

[4]-[6] No No Yes No Yes LP Simplex method 

[7]-[8] No No Yes Yes No LP Relaxation method 

[9]-[10] No No Yes Yes No NLP Evolutionary algorithms 

[11] No No Yes No Yes MILP Benders 
decomposition 

[12] No No Yes Yes No MILP Benders 
decomposition 

[13] No Yes Yes Yes No NLP Benders 
decomposition 

[14] No Yes Yes Yes No LP Benders 
decomposition 

[15] No Yes Yes No Yes LP Simplex method 

[16] No Yes Yes No Yes MILP Simplex method 

Proposed 
method Yes Yes Yes Yes No 

LP based on 
BD approach 

Benders 
decomposition 
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(a) 

 

(b) 

Figure 1: a) Low/medium voltage grid, b) different time horizons in planning model of battery sizing 
and siting. 

Furthermore, the optimal sizing and siting of the DBESSs require the resolution of a 

temporal and spatial problem based on Figure 1 (b). The temporal problem involves a 

an integrated sequential time intervals to confirm consistency of the battery state of 

charge (SOC) between different consecutive time intervals, here it is assumed to be one 

hour for the DBESS planning problem. Therefore, the proposed problem is modeled as 

a non-convex NLP form that is not suitable for the robust optimization model owing to 

the high calculation time, consequently, this report suggests an equivalent LP model 

based on the BD approach by means of the first-order expansion of Taylor's series to 

linearize power flow equations and develop a polygon for linearization of circular 

inequalities of the problem. Moreover, to model the uncertainties of active and reactive 

loads, energy or charging/discharging prices and output power of RESs, a bounded 

uncertainty-based robust optimization (BURO) framework is proposed. Briefly, the main 
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contributions of this report with respect to the previous works in the area are summarized 

as follows: 

- Developing a computationally-efficient optimization model for the investment 

planning of DBESSs in the distribution networks as a LP form based on the BD 

approach. 

- Presenting a robust model based on BURO framework for DBESS planning on 

account of different uncertainties.   

2 Modelling of Distributed Battery Energy Storage 
Systems (BESS) Planning  

The main planning objective of the DSOs is to maximize the distributed generation (DG) 

or distributed energy resources (DERs) penetration with minimal cost, grid congestion 

and overvoltage. Accordingly, the conventional practice of DSOs to integrate 

considerable amounts of DGs is significant investments for the network reinforcement 

and expansion. The installation of battery storage in the low/medium voltage level is an 

interesting alternative to fulfill the above planning objective of DSOs because it avoids 

or at least postpones the need for extensive conventional network reinforcements. Thus, 

the planning strategy should include both the optimal placement and sizing of batteries 

complying with grid and storage constraints. To effectively reach this goal, it is necessary 

to implement multi-period OPF solve the optimal placement and sizing problem, taking 

into account optimal operation of the battery over a sufficient long operating horizon. The 

objective of the optimization problem is to calculate revenues from battery operation and 

find the best maximum net benefit in battery investment in the low/medium voltage grid 

model shown in Figure 1 (a). The grid consists of a group of prosumers that might have 

DERs such as PV generators and flexible and inflexible loads. Each prosumer has a 

meter placed at the connection point to the network. Moreover, it is assumed that each 

bus is a candidate to install battery shown with dotted red circle in Figure 1 (a).   

As we have already discussed, the optimal sizing and placement of battery requires the 

resolution of a temporal and spatial problem. The temporal problem implies a coupling 

of multiple time steps to ensure coherence of the battery state of charge (SOC) between 

each consecutive time step, which is typically one hour for an investment planning 

problem. One the other hand, in order to find the investment decision that is economic 

viable we need to compare annual benefit with equivalent annual investment costs. The 
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long planning horizons and intertemporal coupling (storage) lead to an intractable 

planning problem if formulated as sub-section 2.1. Hence, in this section, we will explain 

how we can solve this issue. A typical solution [12] is to decompose the problem with 

respect to time. The decoupling for battery management algorithm could be chosen to 

be applied in different operational time horizons, e.g., 6 hours, 24 hours, and the time 

granularity for the battery management model can range from 15 minutes to one hour. 

These time horizons are shown in [12] and Figure 1 (b). The coupled time steps of the 

battery management algorithm are then simulated for each planning horizon in order to 

successfully complete an annual analysis. Hence, the proposed problem can be written 

as 2.1 to 2.3.  

2.1 Original Single-level Model of Flexibility Planning of BESS 

In this section, the modelling of the optimal placement and sizing of DBESS is presented 

in (1). The objective function of the investment planning of DBSS optimization problem 

is to minimize the difference between the DBESS annual cost and revenue as shown in 

(1a). The DBESS cost includes the investment and operation terms, and DBESS 

revenue is equal to the selling of battery stored energy (discharging) to the network. In 

addition, the proposed optimization problem is constrained by AC power flow equations 

in the presence of RESs and DBESSs, network operation limits and operation and 

planning equations of DBESSs. Accordingly, the proposed original model can be written 

as follows: 

cos cos Re

, ,min .
b t b t b

Annual investment t Operational t of storage venue of storage

s ch ch dis dis
b b t b t t b t

b t b t b
J c P P

ϕ ϕ ϕ ϕ ϕ

ω λ λ
∈ ∈ ∈ ∈ ∈

= + −∑ ∑∑ ∑∑
  

 
(1a) 

S.to: 

( ), , , , , , , , ,
b

dis ch
b t b j b j t b t b t b t b t

j
PG A PL P P PD RES b t

ϕ∈

− + − = − ∀∑  (1b) 

, , , , , ,
b

b t b j b j t b t
j

QG A QL QD b t
ϕ∈

− = ∀∑  (1c) 

( ) ( ) ( )( )2
, , , , , , , , , , , ,cos sin , ,b j t b j b t b t j t b j b t j t b j b t j tPL g V V V g b b j tθ θ θ θ= − − + − ∀  (1d) 

( ) ( )( )2
, , , , , , , , , , , ,( ) cos sin , ,b j t b j b t b t j t b j b t j t b j b t j tQL b V V V b g b j tθ θ θ θ= − + − − − ∀  (1e) 
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, 0 ,b t b referencebus tθ = ∀ =  (1f) 

( ) ( ) ( )22 2 max
, , , , , , ,b j t b j t b jPL QL SL b j t+ ≤ ∀  (1g) 

( ) ( ) ( )22 2 max
, , ,b t b t bPG QG SG b t+ ≤ ∀  (1h) 

min max
, ,b tV V V b t≤ ≤ ∀  (1i) 

, , 1 , ,
1 ,ch dis

b t b t ch b t b t
dis

E E P P b tη
η−= + − ∀  (1j) 

max
,0 ,ch ch

b t bP P b t−≤ ≤ ∀  (1k) 

max
,0 ,ch dis

b t bP P b t−≤ ≤ ∀  (1l) 

min , ,b b t bA E b tω ω≤ ≤ ∀  (1m) 

,0 ,b b TE E b= ∀  (1n) 

max0 b bω ω≤ ≤ ∀  
(1o) 

The objective function is the difference between the sum of investment and operation 

cost of storage systems and storage systems revenue as shown in (1a). The constraints 

(1b) to (1f) represent the load flow equations [17, 18] that include active power balance 

(1b), reactive power balance (1c), active and reactive power flow of lines (1d) and (1e), 

and the value of the voltage angle in the reference bus (1f). In this model, DGs or 

photovoltaic systems (PVs) are considered as PQ buses (the real power |P| and reactive 

power |Q| are specified which is also known as a Load Bus) in different nodes. However, 

if DGs or PVs are involved in the voltage control strategy, they should be adopted as PV 

buses. 

The system operation limits including bus voltage, line power flow, and substation power 

have been included in (1g) to (1i) [17, 18]. The constraints (1g) and (1h) refer to avoid 

the thermal overload of distribution lines and station, while a failure may be occurred due 

to overloading. Voltage control is typically requested when solar PV systems generate 

significant amounts of electricity. This will increase the voltage level in the grid. However, 

in high load situations, there is a risk that the voltage might decrease below the 
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permissible level, which has a negative consequence on safeguard of operating the 

system; therefore, constraint (1i) ensures that the voltage levels are maintained within 

the voltage permissible limits. 

The temporal constraints of operating batteries are presented in (1j) to (1n) [11, 12]. The 

temporal problem implies a coupling of multiple time steps to ensure coherence of the 

battery state of charge (SOC) or stored energy of battery between each consecutive time 

step. The spatial problem implies the consideration of all nodes as possible placement 

locations for storage devices. As we have already discussed a typical operating time 

horizon can range from six hours to two days. The time steps of T are then coupled in 

order to successfully complete an annual analysis. The stored energy of the battery in 

period t depends on the stored energy in the previous period, and charging or 

discharging in current period. These impacts are replicated by (1j). The charging and 

discharging and the stored energy must be within minimum and maximum limits as 

expressed in (1k) to (1m). An additional constraint is added to avoid yearly (if T is 8760 

hours) accumulation effects by forcing the stored energy of the first and last time step of 

the operating time horizon be equal as stated in equation (1n). Moreover, constraint (1o) 

presents the limitation of storage sizing. 

2.2 Linearized Model 

The original problem, (1), is NLP due to non-linear terms in (1d), (1e), and circular 

inequality constraints (1g) and (1h). Moreover, NLP problems are intrinsically more 

difficult to solve compared to linear problems, and there is no guarantee to reach optimal 

solution. Also, it is not suitable for the robust optimization, and applying BD approach for 

this case may result in large duality gaps and it needs to use complementarity 

(equilibrium) constraints in the problem [13], accordingly, solving the proposed problem 

is hard. Therefore, in the next step, an equivalent linear model is developed as follows: 

– The linearized OPF model for the distribution networks is developed based on the 

first-order expansion of Taylor's series [3, 19] 

– Circular inequality constraints are linearized based on a polygon approximation 

method [3, 14],  

Details of the above linearization processes have been explained in [3] and [14], 

respectively. After applying these linearization techniques, the linear primal sub-problem 

can be written as follows: 
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cos cos Re

, ,min .
b t b t b

Annual investment t Operational t of storage venue of storage
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b b t b t t b t

b t b t b
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(2a) 

S.to: 

(1b), (1c), (1f), (1j) to (1o)  (2b) 
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, , , , , , , , , , , ,
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PL g m V V V V V b b j t
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θ θ
∈

 
= − ∆ − ∆ − − ∀  

 
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(2c) 

( ) ( ) ( )2min min min
, , , , , , , , , , , ,

l

b j t b j l b t l j t l b j b t j t
l

QL b m V V V V V g b j t
ϕ

θ θ
∈

 
= − − ∆ − ∆ − − ∀  

 
∑  

(2d) 

( ) ( ) max
, , , , ,cos sin , , ,b j t b j t b jk PL k QL SL b j t kα α×∆ × + ×∆ × ≤ ∀  (2e) 

( ) ( ) max
, ,cos sin , , ,b t b t bk PG k QG SG b j t kα α×∆ × + ×∆ × ≤ ∀  (2f) 

max
, ,0 , ,b t lV V b t l≤ ∆ ≤ ∆ ∀  (2g) 

In the above problem, the objective function is same to equation (1a), shown in (2a). The 

constraint (2b) is similar to linear constraints in (1). Also, the constraints of (2c) to (2g) 

are equivalent linear equations with constraints of (1d), (1e), (1g), (1h), (1i), respectively.  

It is noted that based on the reported results in [3, 14], the calculation error of the voltage 

and power using equivalent LP model with respect to the original NLP is about 0.5% and 

2.5%, respectively. It seems these error vales are negligible in planning studies. 

2.3 Simple Modelling of Battery Degradation in Planning Studies 

Degradation stress factors are all the operation practices or circumstances that 

accelerate the degradation in battery and thus shorten the lifetime of the cell. By 

identifying the stress factors the battery operating conditions and practices can be 

optimized within the application limits so that the degradation of the battery is minimized. 

Therefore, in this section, the simple modelling of the optimal placement and sizing of 

DBESS considering the storage degradation is written as follows:  
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( ) ( )( )
coscos
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,
, 1 ,b t

b t
b

E
D b t

ω
 

= − ∀ 
 

 
(3b) 

 (2b) to (2g) (3c) 

The objective function has been expressed in (3a), and as stated above it is equal to the 

difference between the sum of investment, degradation and operation cost of the storage 

systems and their revenue. It is noted that the term of f  in the degradation cost equation 

is cycle life loss that is equal to the inverse of cycle life of battery, and it depends on 

depth-of-discharge (DOD) as shown in Figure 2 [20], and f (Dt-1) is zero at  t = 1. Also, 

the cycle life is defined the number of cycles, each to the specified discharge and charge 

termination criteria under a specified charge and discharge regime, that a battery can 

experience before deteriorating its specified nominal life criteria [2]. In addition, the DOD 

is calculated based on the constraint (3b), and the constraint (3c) is the same as the 

constraints of the problem (2).   

It is noted that the related equations to the storage degradation cost part in the objective 

function of (3) and the constraint (3b) are non-linear functions. The term of f in the storage 

degradation cost of the objective function is linearized based on the piecewise 

linearization method [20] according to Figure 2, where details of this linearization process 

have been explained in [20]. Therefore, the new problem model is as follows: 

cos cos cos Re

, , ,min . . .
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s s ch ch dis dis
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(4a) 
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Figure 2: Cycle life loss as a function of the DOD [20]. 

, , , , ,b p b t p b t
p P
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(4c) 
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(4f) 

, 0 ,b t b tγ ≥ ∀
 

(4g) 

The term γ in objective function is the same as ( ) ( )( )1max ,0t tf D f D −−  in (3a). Moreover, 

the constraint of (4b) is similar to the constraints of (3). Also, the storage degradation 

cost part of (3a) has been replaced (4a) with additional constrains of (4c) to (4g), wherein 

Xp and Yp refer to the horizontal and vertical axis values of the points P1 to P6 in Figure 

2, and w is a continuous variable to choose the right linear segment based on the 

piecewise linear approximation in Figure 2, where it varies between 0 to 1. Also, The 

term ρ is the same as the f(D).  

It is noted that the problem (4) is non-linear due to the terms ,.b b tω γ  and ,b t

b

E
ω

, but these 

terms are linearized in sub-section 3.1.   
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2.4 Uncertainty Modelling  

In the problem of (4), the parameters of active and reactive load, PD and QD, charging 

and discharging price, λch and λdis, and output power of RES, RES, are as uncertainty. 

In this section, the BURO model uses for modelling of the uncertainty parameters. 

Consider the following mixed integer linear programming (MILP) problem [14]:  

,
min/ max T T

x y
c x d y+  (5a) 

S.to: 

Ex Fy e+ =  (5b) 

Ax By p+ ≤  (5c) 

x x x≤ ≤  (5d) 

{0,1}y∈  (5e) 

Where, the elements of matrixes A, B, p, i.e., ai,m, bi,n and pi, are considered as uncertain 

parameters, and these parameters are denoted as ,i ma , ,i nb  and ip , respectively. Note 

that the indices of m, n and i are used for coefficients of the continuous (x) and binary (y) 

variables and uncertain parameter (p). Also, ai,m, bi,n and pi show the nominal or 

forecasted values of the uncertain parameters and the terms ,i ma , ,i mb  and ip  are called 

“true” values of the uncertain parameters. It is noted that the true values of the uncertain 

parameters can be defined as follows in the proposed robust model [14]:   

, , , , , ,, ,i m i m i m i n i n i n i i ia a a b b b p p pσ σ σ− ≤ − ≤ − ≤

   (6) 

where based on (6), the terms ,i ma , ,i mb  and ip  are limited by upper and lower limits, and 

σ  is the uncertainty level which is σ > 0. Finally, the solution (x, y) will be a robust solution 

if the following conditions are satisfied: 

(i) The original problem, (5), has a feasible (x, y),  

(ii) For the ,i ma , ,i mb  and ip  based on (6), the inequality constraint, (5c), with an error 

of at most δ×max[i, |pi|] must be satisfied, that δ  ≥ 0 is the feasibility tolerance 

and it allows a small amount of infeasibility in the uncertain inequality (5c) [14].  

Therefore, the constraint (5c) for the true value of the uncertain parameter and the worst-
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case values of the uncertain parameters are as follows:  

, , , ,
1 1 1 1

.max[ , ]i m m i m m i n n i n n i i
m M m M n K n K

a x a x b y b y p i p iδ
∉ ∈ ∉ ∈

+ + + ≤ + ∀∑ ∑ ∑ ∑ 

   (7) 

, , , , , ,, ,i m m i m m i m m i n n i n n i n n i i ia x a x a x b y b y b y p p pσ σ σ≤ + ≤ + ≥ −

   (8) 

Wherein, M1 and K1 are the set of indices of x and y, respectively, with uncertain 

coefficients in the i-th inequality constraint. Thus, (5c) for the worst-case values of the 

uncertain parameters can be written as follows: 

( ) ( ), , , , , ,
1 1 1 1

.max[ , ]

i m m i m m i m m i n n i n n i n n
m M m M m K m K

i i i

a x a x a x b y b y b y

p p i p i

σ σ

σ δ
∉ ∈ ∉ ∈

+ + + + +

≤ − + ∀

∑ ∑ ∑ ∑
 

(9) 

Note that |xm| is defined by um as –um ≤ xm ≤ um to be added to (9). Finally, the BURO 

model for (5) with tuning parameters of σ and δ, RO(σ,δ), is as follows:  

,
min/ max T T

x y
c x d y+  (10a) 

S.to: 

 (5b) to (5e)  (10b) 

( ) ( ), , , , , ,
1 1 1 1

.max[ , ]

i m m i m m i m m i n n i n n i n n
m M m M m K m K

i i i

a x a x a u b y b y b y

p p i p i

σ σ

σ δ
∉ ∈ ∉ ∈

+ + + + +

≤ − + ∀

∑ ∑ ∑ ∑
 

(10c) 

1m m mu x u m M− ≤ ≤ ∀ ∈  (10d) 

It is noted that the proposed equation (4) is non-linear, where its linear form will be 

presented in sub-section 3.1, and accrodingly, the linear form of the proposed robust 

model, (10), will be discussed more later in the sub-section 3.1.    

3 Bi-level Benders Decomposition (BD) Methodology 

It is noted that the proposed problem can be decomposed with respect to time in order 

to solve the optimization algorithm in a reasonable computational time. Hence, we can 

decompose the problem using BD; accordingly, the sizing problem is split into a tractable 

master problem and sub-problems. The outline of the proposed algorithm is shown in 

Figure 3. 
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Figure 3: Applying BD approach for the robust optimal sizing of the DBESSs 

The BD is a commonly used optimization technique. J. F. Benders initially introduced the 

BD algorithm for solving large-scale MIP problems [21]. The basic idea is to separate 

integer variables and real variables or relax the tough constraints in the optimization 

model and treat larger optimization problems via decomposition in order to accelerate 

the calculation process. The BD algorithm has been successfully used in different ways 

to take the advantage of underlying problem structures for various optimization problems, 

such as network design, optimal transportation problem, plant location and stochastic 

optimization. In applying the BD algorithm, the original problem will be decomposed into 

a master problem and several sub-problems, based on the LP duality theory. The sub-

problems are the LP problems. The process of solving the master problem begins with 

only a few or no constraints. The sub-problems are used to determine if optimal solutions 

can be obtained under the remaining constraints based on this solution to the master 

problem. If feasible, we will get an upper bound solution of the original problem, while 

forming a new objective function (feasibility cut) for the next calculation of the master 

problem. If infeasible, a corresponding constraint (infeasibility cut), which is most 

unsatisfied, will be introduced to the master problem. Then, a lower bound solution of 

the original problem is obtained by re-solving the master problem with more constraints. 

The final solution based on the BD algorithm may require iterations between the master 

problem and the sub-problems. When the upper bound and the lower bound are 

sufficiently close, the optimal solution of the original problem is achieved [12]. 

It is noted that the BD approach can be applied to NLP problem, but based on [13], it is 

possible that there is a duality gap and complementarity (equilibrium) constraints in the 

problem, and solving the proposed problem is hard. Hence, it is of advantage to apply 

the BD approach to an LP problem, as the LP model can guarantee to reach global 

optimal solution. Therefore, the master problem expresses the DBESS planning, but the 

sub-problem represents the optimal operation of distribution network with an equivalent 

LP model. 
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3.1 BD Structure  

To accelerate the optimization solution procedure, the proposed original optimization 

model is decomposed by means of BD approach. Accordingly, the sizing problem is split 

into a tractable master problem and sub-problems based on the illustrated flowchart in 

Figure 3. The master problem deals with the DBESS investment planning problem and 

the sub-problem executes the robust optimal operation of distribution networks based on 

the results of the master problem. Here, it is considered that all buses of the system is 

capable of installing batteries. Therefore, in the following subsections, the LP model is 

developed to guarantee obtaining the global optimal solution. 

Master Problem: The DBESS planning is modelled in the master part as (11) to 

determine the sizing of DBESS (ω).    

minp lowerJ z
ω

=  (11a) 

S.to: 

.
b

s
lower b b

b
z c

ϕ

ω
∈

≥ ∑  (11b) 

max0 b bω ω≤ ≤ ∀  (11c) 

( ) ( ) ( ). ( , ) 1,2,...,
b

s m m m
lower b b sub sub sub f

b
z c J m n

ϕ

ω λ µ
∈

≥ + ∀ =∑  (11d) 

( ) ( ) ( )( , ) 0 1,2,...,r r r
sub sub sub iJ r nλ µ ≤ ∀ =  (11e) 

The objective function of the master problem has been expressed in (11a) that is equal 

to the total investment cost of DBESSs in the smart distribution networks based on (11b). 

Moreover, the constraint (11c) presents the size range of the DBESSs in the network. It 

is noted that (11b) and (11c) is called the “initial master problem”. In the next step, the 

feasibility cut of (11d) is added to the initial master problem if the primal sub-problem or 

dual sub-problem is feasible [21], otherwise, the infeasibility cut of (11e) is fed to the 

initial master problem if the primal sub-problem is infeasible or the dual sub-problem is 

unbounded [21]. Accordingly, the output decision variable, ω, is calculated in the master 

problem and it is transmitted into the sub-problem as a constant parameter. 

Deterministic Sub-Problem: The objective function of the deterministic sub-problem is 

the sum of storage degradation cost, storage operational cost and storage revenue as 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4B - Flexibility Planning of Distributed Battery Storages in Smart Distribution Networks Page 25 of 49 

mentioned in (4a) that should be minimized subject to (4b) to (4g) without (1o) as 

constraints. Therefore, the linear primal sub-problem can be written as follows:      

cos cos Re
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b t b t b b t kk PG k QG SG b j t kα α µ×∆ × + ×∆ × ≤ ∀  (12h) 

max
, , , ,0 : , ,v

b t l b t lV V b t lµ∆≤ ∆ ≤ ∆ ∀  (12i) 

, , 1 , , ,
1 : ,ch dis e

b t b t ch b t b t b t
dis

E E P P b tη λ
η−= + − ∀  (12j) 

max
, ,0 : ,ch ch ch

b t b b tP P b tµ−≤ ≤ ∀  (12k) 

max
, ,0 : ,ch dis dis

b t b b tP P b tµ−≤ ≤ ∀  (12l) 

min , , ,: , ,b b t b b t b tA E b tω ωω ω µ µ≤ ≤ ∀  (12m

) 
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,0 , : ec
b b T bE E bλ= ∀  (12n) 

,
, ,1 : ,b t dod

b t b t
b

E
D b tλ

ω
 

= − ∀ 
   

(12o) 

, , , , ,: ,x
b p b t p b t b t

p P
X w D b tλ

∈

= ∀∑
 

(12p) 

, , , , ,: ,y
b p b t p b t b t

p P
Y w b tρ λ

∈

= ∀∑
 

(12q) 

, , ,1: ,w
b t p b t

p P
w b tλ

∈

= ∀∑
 

(12r) 

, , , 1 , 1 1,
: , , 0b t b t b t b t tb t

b tγγ ρ ρ µ ρ− − =≥ − ∀ =
 

(12s) 

, 0 ,b t b tγ ≥ ∀
 

(12t) 

Noted that the λ and µ (in front of the constraints (12)) are dual variables of the 

constraints. Also, the terms of ,.b b tω γ  and ,b t

b

E
ω

 in equations (12a) and (12o) are in the 

linear form in problem (12). Because, the term ω is a parameter in (12), where it is 

obtained from the master problem, (11). Therefore, the above dormulation is LP.   

Robust Sub-Problem: In the proposed deterministic problem, (11) and (12), the charging 

and discharging price, λch and λdis, active and reactive loads, PD and QD, and active 

power of RESs, RES, are uncertain parameters. Accordingly, the proposed problem of 

(11) and (12) should be written as stochastic or robust models. Also, the model (11) 

includes only variable ω, as a “hear and now” variable, that is independent of the 

uncertain parameters [22]. Consequently, the robust model is not implemented on the 

master problem (11). However, all the variables of the deterministic sub-problem, (12), 

depend on the uncertain parameters that are called “wait and see” [22]. Therefore, the 

proposed robust model should be applied on the sub-problem. To this end, in the first 

step, the sub-problem should be converted to the standard form (5) to present the final 

robust model as follows: 

 

cos cos Re

, 1 2min . .
t b

Degradation t of storage Operational t of storage venue of storage
s

sub b b b t
t b

J c
ϕ ϕ

ω γ β β
∈ ∈

= + −∑∑


 
(13a) 
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S.t: 

1
, 1 :

t b

ch ch
t b t

t b
P β

ϕ ϕ

λ β µ
∈ ∈

≤∑∑
 

(13b) 

2
, 2 :

t b

dis dis
t b t

t b
P β

ϕ ϕ

λ β µ
∈ ∈

≤∑∑
 

(13c) 

( ), , , , , , , , ,: ,
b

dis ch p
b t b j b j t b t b t b t b t b t

j
PG A PL P P PD RES b t

ϕ

µ
∈

− + − ≥ − ∀∑  (13d) 

, , , , , ,: ,
b

q
b t b j b j t b t b t

j
QG A QL QD b t

ϕ

µ
∈

− ≥ ∀∑  (13e) 

Eq. (12d) to Eq. (12t) (13f) 

Where, equations (13a), (13b) and (13c) are equivalent to the objective function in (12a), 

because, β1 and β2 are equal to the left side of (13b) and (13c), respectively, while the 

Jsub is minimized. Moreover, (13d) and (13e) are in the form of a ≥ b that is equivalent to 

a = b due to minimization of the objective function. Finally, the robust problem model is 

based on section 2.4 or RO(σ,δ) is as follows: 

 

cos cos Re

, 1 2min . .
t b

Degradation t of storage Operational t of storage venue of storage
s

sub b b b t
t b

J c
ϕ ϕ

ω γ β β
∈ ∈

= + −∑∑


 
(14a) 

S.t: 

, 1 : ch

t b t

rch ch ch
t b t t t

t b t
P u

ϕ ϕ ϕ

λ σ λ β µ
∈ ∈ ∈

 
+ ≤  

 
∑ ∑ ∑

 

(14b) 

, 2 : dis

t b t

rdis dis dis
t b t t t

t b t
P v

ϕ ϕ ϕ

λ σ λ β µ
∈ ∈ ∈

 
+ ≤  

 
∑ ∑ ∑

 

(14c) 

, , : ,
b b

uch ch u
b t t b t tt

b b
P u P t

ϕ ϕ

µ µ
∈ ∈

− ≤ ≤ ∀∑ ∑
 

(14d) 

, , : ,
b b

vdis dis v
b t t b t tt

b b
P v P t

ϕ ϕ

µ µ
∈ ∈

− ≤ ≤ ∀∑ ∑
 

(14e) 

( )

{ }
, , , , , , , , , ,

, , ,max , : ,
b

p

dis ch
b t b j b j t b t b t b t b t b t b t

j

r
b t b t b t

PG A PL P P PD RES PD RES

t PD RES b t

ϕ

σ

δ µ

∈

− + − ≥ − + −

− − ∀

∑
 

(14f) 
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{ }, , , , , , , ,max , : ,q

b

r
b t b j b j t b t b t b t b t

j
QG A QL QD QD t QD b t

ϕ

σ δ µ
∈

− ≥ + − ∀∑  (14g) 

Eq. (13b) to Eq. (13f) (14h) 

The above problem is called primal sub-problem, SP1. It is noted that feasible region of 

SP1 will be changed by changing the output variables of the master problem [22]. 

Nevertheless, the dual form of SP1, named SP2, has a feasible region which is not 

dependent on the output variables of the master problem [22]. Therefore, the dual sub-

problem (SP2) is used as follows:         

( )

{ }
{ }( )

max
, , , , , ,

max
, , min , , ,

, , , ,,0
,

, ,
,

, , ,

max ,max

max ,

p

p q ch ch
b t b t b t b t b t b b t

dis dis dod w
b b t b b t b b t b t b t

ec
b t b t b t b t rb b

b t
b t b tsub

b t b t b t

PD RES QD P

P A

PD RES PD RESE

t PD RESJ

QD QD t QD

ω ω

λ µ

µ µ µ

µ ω µ ω µ λ λ

σλ
µ

δ

σ δ µ

−

−

− + + +

+ + + + +

 − + −+   +
 − −=  

+ − ,

max max max
, , , , , , , ,

b t

q

b t l k b

b t

r
b t

v sg sl
b t l b b t k b j b j t k

b t l k j
V SG SL

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

µ µ µ

∈ ∈

∆

∈ ∈ ∈ ∈ ∈

   
   
   
   
   
                  
    + ∆ + +        

∑ ∑

∑∑ ∑ ∑ ∑

 

(15a) 

S.t: 

1
11 :chrβµ µ β− − ≤
 

(15b) 

2
21 :disrβµ µ β− − ≤ −
 

(15c) 

0 :ch urch u
t t tt

u tσλ µ µ µ+ + = ∀
 

(15d) 

0 :dis vrdis v
t t tt

v tσλ µ µ µ+ + = ∀
 

(15e) 

( ), , , , ,cos 0 : ,p

k

rp sg
b t b t b t k b t

k
k PG b t

ϕ

µ µ α µ
∈

+ + ×∆ = ∀∑  (15f) 

( ), , , , ,sin 0 : ,q

k

rq sg
b t b t b t k b t

k
k QG b t

ϕ

µ µ α µ
∈

+ + ×∆ = ∀∑  (15g) 

( ) ( ), , , , , , , , , ,cos 0 : , ,p

b k

rpl p sl
b j t b j b t b t b j t k b j t

b k
A k PL b j t

ϕ ϕ

λ µ µ α µ
∈ ∈

− + + ×∆ = ∀∑ ∑  (15h) 
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( ) ( ), , , , , , , , , ,sin 0 : , ,q

b k

rql q sl
b j t b j b t b t b j t k b j t

b k
A k QL b j t

ϕ ϕ

λ µ µ α µ
∈ ∈

− + + ×∆ = ∀∑ ∑  (15i) 

2
, , , , ,

1 0 : ,p disr vrp dis dis v e dis dis
b t b t t t t b t b t b tt

dis

P b tβµ µ µ λ µ λ µ µ λ µ
η

+ + + + − + + ≤ ∀  (15j) 

( ) 2
, , , , ,0 : ,p disr urp ch ch u e ch ch

b t b t t t t ch b t b t b tt
P b tβµ µ µ λ µ λ µ µ η λ µ− + + + + − − + ≤ ∀  (15k) 

, , 1 , , , ,
1 0 : , & 1e e ec dod

b t b t b t b t b b b t b t b
b

z E b t z t Tω ωλ λ µ µ λ λ
ω+− + + + + ≤ ∀ = ∀ =  

(15l) 

, , ,0 : ,dod x
b t b t b tD b tλ λ+ ≤ ∀  

(15m) 

, , , , , , ,0 : , ,w x y
b t b p b t b p b t b t pX Y w b t pλ λ λ− − ≤ ∀  

(15n) 

, ,, , 1
(1 ). 0 : , , 1y

b t b t t Tb t b t
y b t yγ γλ µ µ ρ =+

− + − ≤ ∀ =  
(15o) 

,,
. : ,s

b b b tb t
c b tγµ ω γ≤ ∀  

(15p) 

( ) ( ) ( )( )2min
, , , , , , , , , , ,0 :

, , & 1

pl pl ql ql
b j b j t j b t b j b j t j b t b t b t

b

V b g s

b j t s b refrence bus

θλ λ λ λ λ θ− + − + =

∀ = ∀ =
 

(15q) 

( )( ) ( )( )min min min min
, , , , , , , , , , , ,

, ,0 : , , ,

v pl pl ql ql
b t l b j l b j t j b t b j l b j t j b t

b t l

g m V V b m V V

V b j t l

µ λ λ λ λ∆ − − − + − −

≤ ∆ ∀
 

(15r) 

, 0, 0freeλ µ µ= ≥ ≤  (15s) 

Problem (15) is the dual form of LP model of primal sub-problem. Jsub is the objective 

function of the dual problem, and the constraints (15b) to (15r) represent the dual 

constraints of the variables in the primal sub-problem which is indicated in the same 

equation. Constraint (15s) presents the limit of the dual variables which is determined by 

the constraints of the original problem. 

3.2 BD Algorithm and Implementation 

There are three possible cases after solving SP2 based on the dual problem theory as 

follows [21]: 
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(i) SP2 is infeasible, thus, the original problem (4) is either infeasible or has an 

unbounded objective function. In this condition the process should be stopped. 

(ii) SP2 has a feasible solution and its objective function is bounded. For this case, the 

feasibility cut (16) should be generated and added to the master problem of the previous 

iteration.   

( ) ( )
ˆ ˆ,

ˆ ˆˆ ˆ. ( ,Feasibility c ) ( , ) .(1ut ): 5
sub sub

b

s m m
lower b b sub sub sub sub sub sub

b
z c J J Eq a

λ µ
ϕ

ω λ µ λ µ
∈

≥ + ∀ =∑

 

(16

) 

(iii) SP2 has a feasible solution but its objective function is unbounded. Accordingly, thus, 

SP3, (17) should be solved firstly, and in the next step, the infeasibility cut (18) should 

be generated and added to the master problem.  

{ }
.(15 )

, .(15 ) .(15 ), [ 1,1], [1, ), ( , 1]

: subJ Eq a

Eq a to Eq qλ µ λ µ µ

Ω=

∀Ω = − = ∞ = −∞ −

SP3



 
(17) 

( ) ( )
ˆ ˆ,

ˆ ˆˆ ˆ( , ) 0Infeasi ( , ) .(1bility cu 7t: )
sub sub

r r
sub sub sub sub sub subJ J Eq a

λ µ
λ µ λ µ≤ ∀ =  (18) 

where λ̂  and µ̂  are optimal values of λ  and µ  in SP2/SP3.  

It is noted that the convergence criteria for the BD algorithm is to satisfy 
upper lowerz z ε− ≤

, where ε  is the BD’s convergence tolerance, and zupper is the value of the objective 

function mentioned in (19). Noted that, the second part of (19) refers to Jsub for SP2. Also, 

the value of zlower is determined in the last iteration based on the results of solving 

optimization problem of (11). That is, the BD convergence check is obtained if SP2 is 

feasible. The flowchart of implementing BD for the proposed problem is shown in Figure 

4. 

ˆ ˆ,
ˆ ˆˆ ˆ ˆ. ( , ) ( , ) .(12 )

sub sub
b

s
upper b b sub sub sub sub sub sub

b
z c J J Eq a

λ µ
ϕ

ω λ µ λ µ
∈

= + ∀ =∑  (19) 

4 Case Study and Discussion 

4.1 Standard test network and data 

The 19-bus LV CIGRE benchmark grid illustrated in Figure 5 [12] is used for simulation 
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studies. The grid parameters are shown in Table 2. Also, the problem data is listed in 

Table 3.  

 
 

 
Solve initial master problem  

Solve SP2 (15)  

Solution situation    

Solve master problem with feasibility or infeasibility cut (11)  

Stop    

Infeasible     

upper lowerz z ε− ≤  

Feasible     

Solution    

Yes     

Add feasibility cut (16)  

No     

Solve SP3 (17) and add 
infeasibility cut (18)  

Unbounded     

 

Figure 4: BD algorithm to solve the proposed robust problem. 

 
Figure 5: 19-bus LV CIGRE benchmark grid [19]. 
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This research configures the distribution network with a high photovoltaic penetration 

assuming that it can exploit the full roof top area of a single household based on [12]. 

Hourly load percent for one year used for a house based on [23]. Also, hourly energy 

(charging and discharging) price for one year is based on NordPool market in zone of LT 

[24]. 

It is noted that in this research, the hourly power percent of PV for one year is based on 

[25]. 

4.2 Simulation Results: Computational Efficiency 

The proposed deterministic and robust models are coded in GAMS 23.5.2 software and 

they are solved using the CPLEX solver in GAMS [26].  

A. The Results of The Different Deterministic Models: In this section, the storage

maximum capacity and PV capacity are considered 300 kWh and 20 kW, respectively.

Moreover, the simulation of the proposed model applied on one year with 8760 hours,

and the objective function present the annual profit of all storage systems. Also, number

of linearization segments of the voltage magnitude term and circular constraints are

equal to 5 and 30, respectively, in the LP model based on BD approach. Results of this

section have been presented in Table 4 to compare different cases in NLP and LP based

on the BD deterministic models. As shown in Table 4, it can be inffered that:

• The NLP solvers such as CONOPT, COUENNE, IPOPT, MINOS and SNOPT

[26] have different results in convergence iteration, calculation time, objective

function value and model status, while the total number of equations and

variables is the same for all solvers.

• Also, the model status of NLP is locally optimal with the objectiove function value

of 4102.562 EUR/year in the best condition that is occurred in IPOPT solver.

• But, the optimal situation with the lower value of the objective function (3331.220

EUR/year) has been obtained by LP model using BD approach, where the best

solver for this case is CPLEX due to the low execution time with respect to the

solvers of CBC and CONOPT [26].
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• Therefore, the LP model based on BD approach with the CPLEX solver is suitable 

and reliable for the proposed deterministic or robust problem model based on 

Table 4.     

 

 

 

Table 2. Line and substation parameters of the LV CIGRE benchmark grid [19]. 

Substation parameters 

Start 
Node 

End 

Node 

Resistance 

[ohm] 

Reactance 

[ohm] 

Voltage 

[kV/kV] 

Max power 

[MVA] 

R0 R1 0.0032 0.0128 20/0.4 0.5 

Line parameters 

Start 

Node 

End 

Node 

Resistance 

[ohm/km] 

Reactance 

[ohm/km] 

Length 

[m] 

Max current 

[A] 

R1 R2 0.405 0.205 35 398 

R2 R3 0.405 0.205 35 398 

R3 R4 0.405 0.205 35 398 

R4 R5 0.405 0.205 35 398 

R5 R6 0.405 0.205 35 398 

R6 R7 0.405 0.205 35 398 

R7 R8 0.405 0.205 35 398 

R8 R9 0.405 0.205 35 398 

R9 R10 0.405 0.205 35 398 

R3 R11 2.05 0.212 35 158 

R4 R12 2.05 0.212 30 158 

R12 R13 2.05 0.212 35 158 
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R13 R14 2.05 0.212 35 158 

R14 R15 2.05 0.212 35 158 

R6 R16 2.05 0.212 30 158 

R9 R17 2.05 0.212 30 158 

R10 R18 2.05 0.212 30 158 

 

 

Table 3. Problem data 

Storage units 18 

Maximum storage capacity (kWh) 10 to 300 

Storage roundtrip efficiency (charging and 
discharging) 

0.88 [12] 

Annual investment cost of storage (EUR/MWh/year) 5000 [12] 

Charge and discharge rate (kW) Maximum storage capacity [12] 

Amin (%) 15% 

Prediction horizon (hour) 8760 

Year  1 year 

Time step (hour) 1 

Maximum power of PV (kW) 10 to 20 

Power percent of PV  Hourly pattern for one year is based on [25] 

Load of house (kW, kVAr) (5, 1) [12] 

Minimum and maximum voltage (per unit) 0.9 and 1.1 [12] 

Base power (MVA) 0.5 

Base voltage (kV) 0.4 

 

B. The BD convergence in Different Robust Models: Figure 6 shows the convergence 

progress of the proposed BD algorithm for the different cases of the robust distributed 

storage planning problem. Based on this figure, the BD convergence iteration is 19, 31 
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and 36 for RO(σ,δ) = (0,0.02), (0.0) and (0.1,0), respectively. Note, RO(0,0.02), RO(0.0) 

and RO(0.1,0) express the impact of the feasibility tolerance (δ) in robust model, 

deterministic model, and impact of uncertainty level (σ) on the robust solution. Therefore, 

it can be said that RO(0,0.02) calculates the optimal solution with the lower number of 

iterations due to incresing fiseability space with respect to the fiseability space of the 

deterministic model. But, the fiseability space decreases in RO(0.1,0) with respect to the 

fiseability space of the deterministic model due to increased uncertainty level in 

compration with the deterministic model. As a result, the number of iterations of the BD 

convergence is high in this robust model.  

Table 4. Comparison of different solvers results for deterministic model  

Model Solver 
Total 

number of 
equations 

Total 
number of 
variables  

Convergence 
iteration 

Calculation 
time (s) 

Objective 
function 

(EUR/year) 

Model 
status 

NLP CONOPT 5363547 3009801 390 461.437 5371.324 Locally 

optimal 

COUENNE 5363547 3009801 - - - Infeasible 

IPOPT 5363547 3009801 54 517.845 4102.562 Locally 

optimal 

MINOS 5363547 3009801 412 2384.671 4864.483 Locally 

optimal 

SNOPT 5363547 3009801 -  - - Infeasible 

LP 
based 

on 
BD 

CPLEX 52*, 
3006324** 

20*, 
7573638** 

31 18.013 3331.220 Optimal 

CBC 52*, 

3006324** 

20*, 

7573638** 

31 19.438 3331.220 Optimal  

CONOPT 52*, 

3006324** 

20*, 

7573638** 

31 22.764 3331.220 Optimal  

* This number shows the number of the master problem’s equations or variables (in the iteration that the problem is converged) 

** This number shows the number of the sub-problem’s equations (variables) 
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Figure 6: BD converge for different cases of the robust model 

4.3 Simulation Results: Technical Aspect 

A. The Value of Uncertain Parameters in Different Robust Models: In this section, 

the values of the uncertain parameters in the different cases of the robust model are 

shown in Table 5. Based on the this table, active and reactive loads as well as energy 

price (active power of PV) are increased (decreases) in the scenario with RO(0.1,0) with 

respect to the scenario of deterministic model, i.e., RO(0,0). Because, the uncertainty 

level (σ) has been increased in RO(0.1,0) in comparison with RO(0,0). It is noted that the 

proposed objective function, (4a), minimizes (maximizes) the total storage economic loss 

(profit), hence, it is expected that the profit will be high if discharging revenue of all 

storages is high and the total storage cost (charging, storage degradation and 

investment) is low.  

It is noted that the discharging revenue of all storages will be increased if the active load 

and energy price increase and the active power of PV reduces. The reason is that the 

storage systems have stored the produced energy of their related PVs, thus the revenue 

is zero in this condition, nevertheless, in the case of supplying loads by the storage 

systems in the discharging mode, and then the revenue is not zero for such condition. 

Also, the profit is low in the worst case scenario of RO(0.1,0) if the load and energy price 

(PV power) are decreased (increased). 

In addition, the active and reactive loads as well as energy price (active power 

generations of PVs) are decreased (increased) in the scenario with RO(0,0.02) with 

respect to the scenario of deterministic model, RO(0,0), since, the feasibility tolerance 

(δ) is increased in RO(0,0.02) with respect to RO(0,0). It is noted that increasing δ will 

expand the feasibility region of the proposed problem, thus, it is expected that the profit 
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will be improved, i.e., it is increased with respect to RO(0,0). Consequently, increasing δ 

will increase (reduces) the load and energy price (PV power).  

Table 5, The value of uncertain parameters in different robust models for one year with PV capacity 
of 10 kW   

Parameter RO(0,0) RO(0,0.02) RO(0.1,0) 

Total active load of network (pu) 5.584 5.695 5.025 

Total reactive load of network (pu) 1.117 1.139 1.005 

Total average active power of PVs (pu) 4.415 4.327 4.857 

Total energy price (EUR/MWh) 446510.88 455441.098 401859.792 

  B. Sizing and Placement based on Distributed Strategy: In the distributed strategy, 

it is considered that the batteries can be installed in different buses of the system. Figure 

7 shows the total size of all distributed storage systems in the network based on the size 

of each PV and the maximum storage capacity (MSC) for different cases of the robust 

model. In the case of RO(0,0) without considering the storage degradation as seen in 

Figure 7 (a), the total size of all distributed storage systems is constant if PV size changes 

from 0 to 12 kW. However, this value will be reduced for the PV size above 12 kW in the 

part with “Profit of Storage > 0”. For the reason that the system operation limits, i.e., (1g) 

to (1i), constrain the increment of the size of some distributed storage systems in these 

conditions. For example, if the system operation limits such as voltage, line flow and 

station power limits are ignored from the proposed problem, hence, the total size of all 

distributed storage systems would be equal to 18×MSC, where 18 is the number of 

storage locations. Therefore, it can be said that the system operation limits are important 

in specifying the total size of all distributed storage systems. Moreover, it is noted that 

the charging cost will increase if the PV size is increased, because, the PV energy is 

more than load energy if the PV size increased. Hence, the excess energy of the PVs 

will be stored in the storage systems, thus, the charging cost of the storage systems 

based on equation (4a) will be increased. Also, discharging the revenue of the storage 

systems will be reduced in this condition, because, the more portion of the supplied 

energy to loads is generated by PVs. Therefore, it is possible to have negative profit for 

the storage systems. Accordingly, the larger sizes of the total distributed storage systems 

would be not suitable in the larger sizes of PVs. This statement has been shown in Figure 

7 (a) in the part with “Profit of Storage < 0”. 
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In addition, the total size of all distributed storage systems is increased if the maximum 

storage capacity increases based on Figure 7. Finally, it is noted that the PV size 

(PVmax) will be increased if the MSC increases as shown in the section of “Profit = 0” in 

Figure 7. Because, the profit of the right side of this curve is negative, thus, it can be 

inferred that in the curve with “Profit = 0”, the PV size is the maximum for different values 

of MSC. Figure 7 (b) shows the total size of all distributed storage systems in the network 

versus PV size for different cases of the robust model. Based on this figure, the storage 

size of the cases RO(0,0) with/without considering the storage degradation is the same. 

Nonetheless, the storage size will be increased (reduced) if δ (σ) increased. 

 

 

 
(a) 

 
(b) 

Figure 7: Total size of all distributed storage systems in the network versus each PV sizes, a) 

RO(0,0) without storage degradation, b) robust models 
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Also, the maximum PV size is high and low in the cases of RO(0,0.02) and RO(0.1,0), 

respectively. In other words, according to Figure 7 (b), the profit of the storage is non-

positive (≤ 0) if the PVmax is more than 22, 20, 23 and 19 kW for the cases RO(0,0) 

without storage degradation, RO(0,0), RO(0,0.02), and RO(0.1,0), respectively.    

In Table 6, the annual investment and charging as well as the degradation cost, annual 

discharging revenue and annual profit of all distributed storage systems are depicted for 

different robust model. Based on this table, the annual investment cost of the storage 

will be increased in the case of higher maximum capacities. But, the annual investment 

cost and storage size are reduced by increasing the PV size or PV penetration rate in 

different robust models. Because based on Figure 7, the total size of all distributed 

storage systems is increased for the higher maximum storage capacities and it would be 

decreased by increasing the size of PV. In addition, increasing PV penetration rate and 

maximum storage capacity in the different robust models caused that the annual 

charging cost and discharge revenue of the all distributed storage systems increased 

based on Table 6. Indeed, the charging power of storage systems is increased if the PV 

penetration rate is increased to satisfy the constraints (1g) to (1i), and the discharging 

power of storage systems is increased to minimize the objective function of (4a) and to 

satisfy the constraints (1g) to (1i). Moreover, the degradation cost of all storage system 

is reduced (increased) if PVmax (MSC) increases.  

Table 6, Comparison of economic results for the distributed storages 

Model 
RO(0,0) without storage 

degradation 
RO(0,0) 

MSC (MWh) 0.15 0.30 0.15 0.30 

PVmax (kW) 10 20 10 20 10 20 10 20 

Investment cost (EUR/year) 5562 4138 7062 5638 5562 4138 7062 5638 

Charging cost (EUR/year) 12298 20264 15414 23380 12298 20264 15414 23380 

Degradation cost (EUR/year) - - - - 8 7.2 10.5 10.1 

Discharging revenue (EUR/year) 26487 25138 33714 32365 26478 25128 33702 32351 

Profit (EUR/year) 8627 736 11238 3347 8610 719 11216 3323 

Model RO(0,0.02) RO(0.1,0) 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D5.4B - Flexibility Planning of Distributed Battery Storages in Smart Distribution Networks Page 40 of 49 

MSC (MWh) 0.15 0.30 0.15 0.30 

PVmax (kW) 10 20 10 20 10 17 10 19 

Investment cost (EUR/year) 5674 4202 7125 5702 5243 4128 7232 6145 

Charging cost (EUR/year) 12145 19795 15231 22973 12429 16498 16241 23715 

Degradation cost (EUR/year) 8 7.2 10.5 10.1 8.2 7.35 10.65 10.26 

Discharging revenue (EUR/year) 26873 25469 34233 32840 24451 21771 30966 30224 

Profit (EUR/year) 9046 1465 11867 4155 6771 1138 7432 352 

 

 

In comparison between cases RO(0,0) without and with storage degradation, the 

investment and charging cost of the storage systems is the same based on Table 6, and 

the discharging revenue is reduced in RO(0,0) with respect to the RO(0,0) without 

storage degradation. Because, the discharging mode or contribution of the storage 

system would be reduced in RO(0,0) with respect to the RO(0,0) without storage 

degradation due to the second part of equation (4a). Hence, the discharging power, Pdis, 

and discharging revenue only changes in RO(0,0) in comparison with RO(0,0) without 

storage degradation. Also, there is a degradation cost in RO(0,0), therefore, the storage 

systems profit in RO(0,0) is less than RO(0,0) without storage degradation. Moreover, 

the charging cost of the storage systems reduces/increases in RO(0,0.02)/RO(0.1,0), 

and the investment cost and discharging revenue of storage systems reduces/increases 

in RO(0.1,0)/RO(0,0.02). For the reason that the load and energy price/PV power 

increases with increasing δ/σ and reduces with increasing σ/δ based on Table 5. 

Therefore, charging cost/discharging revenue and investment cost are increased with 

increasing σ/δ. Also, the degradation cost is almost the same in cases RO(0,0), 

RO(0,0.02) and RO(0.1,0).  

 

C. Sizing and Placement Based on Centralized Strategy: In this strategy, it is 

considered that the one battery can be installed in the optimal location of the system. 

Hence, equation (11c) rewritten as max0 b bxsω ω≤ ≤  , where xs is a binary variable for 

storage installation. Thus, the storage installed if xs = 1, otherwise, it is not installed. 

Moreover, the constraint of 1b
b

xs =∑  should be added to the master problem, (11), for 
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the centralized strategy. Therefore, the output variables of the master problem are xs 

and ω. Based on this strategy, the results of the centralized storage systems planning 

have been expressed in Table 7 and Figure 8. In Table 7, the optimal location of storage 

system is bus 1 for different cases of the robust model for the smaller sizes of the PVs, 

but, the location of the storage would be changed to bus 4 in the larger sizes of the PVs 

for different cases of the robust model. According to the try-and-error approach (similar 

to the analysis in Figure 7 (b) for the distributed strategy), the maximum PV sizes in the 

centralized strategy are determined to be 18.3, 18.2, 18.8 and 16 kW for cases of 

RO(0,0) without storage degradation, RO(0,0), RO(0,0.02) and RO(0.1,0), respectively. 

Based on these assumptions, as results of Table 7 show, in the case of PVmax = 10 kW, 

the investment and charging cost of the storage systems is the same for the cases of 

RO(0,0) without storage degradation and RO(0,0), while the discharging revenue has 

been reduced in RO(0,0) with respect to the RO(0,0) without storage degradation. Also, 

there is a degradation cost in RO(0,0), therefore, the storage systems profit in RO(0,0) 

is less than RO(0,0) without the storage degradation. Moreover, the charging cost of the 

storage systems has been reduced/increased in RO(0,0.02)/RO(0.1,0), and the 

investment cost and discharging revenue of the storage systems have been 

reduced/increased in RO(0.1,0)/RO(0,0.02), respectively. Also, the degradation cost is 

almost the same in cases RO(0,0), RO(0,0.02) and RO(0.1,0). Consequently, as results 

of Table 7 show the profit of the storage is based on different costs and revenues. 

 

Table 7, Comparison of economic results for the centralized storages 

Model 
RO(0,0) without 

storage 
degradation 

RO(0,0) RO(0,0.02) RO(0.1,0) 

MSC (MWh) Inf Inf Inf Inf 

PVmax (kW) 10 18.3* 10 18.2* 10 18.8* 10 16* 

Optimal location (bus) 1 4 1 4 1 4 1 4 

Optimal storage capacity 
(MWh) 

3.262 0.543 3.262 0.545 3.275 0.546 3.250 0.532 

Investment cost (EUR/year) 16311 2717 16311 2727 16516 2731 16250 2659 
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Charging cost (EUR/year) 37587 13900 37587 13668 38249 14326 34223 11733 

Degradation cost 
(EUR/year) 

- - 22.26 24.67 22.2 24.75 22.6 24.47 

Discharging revenue 
(EUR/year) 

77447 16658 77440 16586 78842 17109 70383 13432 

Profit (EUR/year) 23550 41 23523 168 23995 28 19907 15 

* Display the maximum value of PVmax in different cases of the robust model 

 

 

 

Figure 8: Size of centralized storage system based on PV size for different robust models 

Figure 8 shows the storage system size versus the PV size for the case that the optimal 

location of the storage system is bus 1 for the PV size between 0-12 kW at cases RO(0,0) 

without the storage degradation, RO(0,0) and RO(0,0.02), and it is bus 1 for the PV size 

between 0-11 kW at RO(0.1,0). Also, the storage size is constant for the PV size between 

0-12 kW and 0-11 kW at cases RO(0,0) without storage degradation, RO(0,0) and 

RO(0,0.02), and RO(0.1,0), respectively. In the Figure 8, the graph has been split to two 

regions by a dotted line. Indeed, the left side and right side of the dotted line refer to the 

regions that the optimal location of the storage is bus 1 and bus 4, respectively. Also, it 

is observed in the figure that the storage size are reduced if the PV size goes above 12 

or 11 kW for the cases RO(0,0) without storage degradation, RO(0,0) and RO(0,0.02), 

and RO(0.1, 0), respectively.   
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D. Investigating Network Indexes and Flexibility: For this purpose, at first, the main 

assumptions for this study are: maximum size of the storages is 150 kWh for two days 

(48 hours), the maximum power of PVs is 10 kW, and the energy price, load percent and 

PV power percent are based on the data of 30 Sept. and 1 Oct. 2017 in [23]-[25]. Also, 

it is assumed that the objective function of (12a) has been changed to the minimization 

of the voltage deviation using ( )
248

,
1b

b t ref
b t

V V
ϕ∈ =

−∑∑  to investigate the effects of 

charging/discharging profile of storages on the network indexes. Considering this 

objective function will affect the storage profile in a way to improve network indexes and 

enhance PV penetration conditions. Based on the above assumptions, the simulations 

have been executed and the results have been illustrated in Figure 9 and Figure 10.  
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(c) 

Figure 9: Effects of storages on the network indexes: a) daily pattern of active power of station 
bus, b) daily pattern of network active power loss, c) daily pattern of mean voltage of network 

buses. 

 

Figure 10: Daily pattern of the stored energy in all storage systems. 
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RO(0,0.02). As shown in Figure 9 (a), the PVs inject their generations in the periods of 

10:00–17:00 of 30 Sept. and 9:00–16:00 of 1 Oct. This fact results in the higher network 
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without the storage system with respect to the case we have only network as shown by 

Figures 9 (b) and (c). However, adding storage in cases RO(0,0), RO(0.1,0) and 

RO(0,0.02), has improved the profiles of the voltage and active power loss and station 

power as shown in Figure 9. For the reason that, in the low load conditions, the PVs have 
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storages injects back the stored energy to the network in peak load times as shown in 

Figure 10. Indeed, as Figure 10 shows the storage systems are charged in period of 

10:00 to 17:00 of 30 Sept. and 9:00 to 16:00 of 1 Oct. by PVs based on Figure 9 (a). 

Also, the storage systems inject the energy back to the network in periods of 18:00 of 30 

September to 8:00 of 1 October and 17:00 to 24:00 of 1 October. Accordingly, the load 

profile is flat, where this statement shows the high flexibility in cases RO(0,0), RO(0.1,0) 

and RO(0,0.02). Also, the storage has been operated in a way that the active power of 

the station, active power loss and voltage in cases RO(0,0.02) and RO(0.1,0) have been 

increased with respect to RO(0,0) for some hours, and decreased in some other hours 

as shown by Figures 9 (a)-(c). This is because of the existing uncertain parameters in 

different robust models. Also, the daily pattern of the stored energy in all storage systems 

is almost the same for cases RO(0,0) and RO(0,0.02), but it is increased/decreased at 

periods 1:00-35:00/36:00-48:00 in RO(0.1,0) with respect to the cases of RO(0,0) and 

RO(0,0.02).  

E. Comparison between centralized and decentralized BESS planning: The 

comparison results of both centralized and distributed strategies of placing storage 

systems in the network have been addressed in Table 8. As table shows, in the case of 

unlimited capacity assumption for the storage systems for both strategies, the maximum 

size of PV is 18 and 38 kW (according to the try-and-error approach), and the total 

storage size (obtained by the optimization) is 0.583 and 5.033 MWh for the centralized 

and distributed storage systems, respectively. In addition, the results confirm the 

superiority of the distributed strategy for placing storage systems in terms of the voltage 

deviation and energy loss with respect to the centralized storage planning. 

Table 8, Comparison of centralized and distributed storage planning strategies 

Case Centralized storage planning Distributed storage planning 

Maximum storage capacity (kWh) Inf. Inf . 

Maximum size of PV (kW) 18 38 

Total storage size (MWh) 0.583 5.033 

Minimum voltage deviation, i.e., 

( )
248

,
1b

b t ref
b t

V V
ϕ∈ =

−∑∑  , (pu)  

0.2231 0.1011 

Annual energy loss (kWh) 3476.3 2647.5 
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5 Conclusions 

This research presents a robust planning of distributed battery energy storage systems 

(DBESSs) from the viewpoint of distribution system operator to increase the network 

flexibility. It is part of T5.3 in INVADE project, which focuses on planning phase of 

flexibility algorithm. Accordingly, based on the proposed deterministic robust model, the 

difference between the DBESS planning, degradation and operation (charging) costs 

and revenue of DBESS due to selling of its discharge power is minimized as the objective 

function subject to the problem constraints including the AC power flow equations in the 

presence of RESs and DBESSs, and limits of network indexes, RESs and DBESSs 

constraints. The original problem is in the form of NLP, accordingly, the equivalent LP 

model based on the BD approach has been proposed using the first-order expansion of 

Taylor's series for linearization of power flow equations and the polygon for linearization 

of circular inequality.  

Results imply the LP model based on the BD approach can obtain optimal solution with 

a satisfactory calculation speed. In addition, to deal with the uncertainty sources 

(including active and reactive load, energy or charging/discharging price and output 

power of RESs), the bounded uncertainty-based robust optimization has been 

developed. The storage system size is high/low in low/high value of PV size. Considering 

the theoretical properties of the proposed model and the results of the case studies 

carried out, the conclusions below are in order: 

– The obtained results underscore the importance of considering distributed strategy 

for placing storages in the distribution networks. Therefore, one should be aware 

that a system with enough storage capacity to cover power mismatches in the case 

of uncertain renewable energy sources, may not be able to utilize the available 

storage capacity due to congestions in the network. This is one of the main issues 

addressed in this report, and is important in INVADE exploition activities. 

– The obtained results illustrate that sizing and sitting of DBSSs highly depend on 

the adjusting parameters of the uncertainty in the robust models, this should be 

further included in decisions made by the INVADE pilot planners. 

– The results pinpoint the necessity of an accurate AC power flow method for an 

economically proper system operation. 

– Moreover, the distributed storage systems can improve the network and flexibility 

indexes with respect to the centralized storage system. Indeed, the distributed 

storage systems can control the network and flexibility indexes locally with dividing 
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costs between multiple customers or companies in comparison with the centralized 

storage system. Noted that, this strategy could be a suitable scheme to utilize the 

possible benefits of the mobile storages of electric vehicles in parking lots which 

are located in different sites of the INVADE platforms, and in specific in the Dutch 

and Norwegian pilots.     
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