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David R. Cox

Nuffield College, New Road, Oxford, OX1 1NF, UK
E-mail: david.cox@nuffield.ox.ac.uk

It is a pleasure to comment on a very interesting, meticulous, and wide-ranging account
of confidence distributions. Just as the contribution was being completed I was saddened
to hear of the death of Professor Singh; our field has lost an enthusiastic and original
worker.

It can be hard to trace the history, but the paper of Fisher (1930) is, despite its partly
misleading title, perhaps the first to show a formal distribution for a parameter with a clear
empirical interpretation not based on inverse probability. The interpretation seems to be that
which we now associate with confidence intervals; the quagmire of fiducial probability really
only came later when the formal distributions were manipulated like probability distributions.
An interesting distinction between Fisherian discussions and those in the spirit of Neyman
and Pearson is that Fisher usually begins with a reduction by sufficiency where available,
whereas in Neyman–Pearson theory sufficiency typically emerges as the aftermath of an
imposed optimality criterion. The former approach seems preferable when applicable, partly
for reasons of economy and partly because the conceptual arguments for sufficiency seem at
least as or more intuitively compelling and much more general than the optimality criteria
of Neyman–Pearson theory. Would there have been any general implications for the present
paper had greater weight been placed from the start on sufficiency, including asymptotic
sufficiency?

Another general issue about Neyman–Pearson theory raised by the discussion concerns the
role of confidence coefficients (and α levels) in that theory. Thus the interpretation of an upper
1 − ε confidence limit is that we calculate it for each set of data, make the statement that the
parameter is less than the limit. We do that again and again and will be wrong only a long-run
proportion ε of times; no other statement is allowed about individual cases. Each statement is
either true or false and all we know is long-run correctness. I recall that Neyman in his verbal
presentations strongly emphasized this behaviouristic interpretation. But is that a specification
of a hypothetical process that illuminates the operational definition of a confidence limit or
is it an instruction on how confidence limits are actually to be used? The latter suggests we
have in each application to choose a single specific ε appropriate for that application. The
former interpretation gives much more flexibility for summarization of evidence, and it was
the view that this was usually the appropriate notion that led to the suggestion (Cox, 1958)
of the term confidence distribution. Indeed in the conference lecture on which that paper was
based, the suggestion that when 95% confidence limits for a normal mean are found then,
even if the parameter is outside the calculated range, it will not be too far outside was greeted
with some scepticism. For tests the corresponding issue is the use of p-values as contrasted
with accept–reject at some single especially appropriate α level. Interestingly in applications
Neyman took a quite flexible approach.
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Some conditions are, however, needed for the confidence distribution to be an appropriate
summary, as is mentioned at the end of the present paper. The ratio of normal means, discussed
briefly in the paper, is probably the simplest example. Suppose we observe (X , Y ) independently
normally distributed with unit variance and unknown means (µX , µY ) and that interest lies in
θ = µY /µX . Consider two simple examples. First suppose that x = 0.5 and y = 100. It is clear
that the sign of µX is not well determined but that µY is relatively close to 100. It follows
that the only reasonable inference about θ is that it lies outside a suitable interval including
zero. Of course precise statements are possible. An even more extreme example is when, say,
x = y = 0.5. Then no real value of θ can reasonably be dismissed. Thus the confidence region
at most levels is the whole real line. In one interpretation this is degenerate; we knew this without
the data. A better interpretation is that the analysis provides a strong warning that no value of
θ should be considered incompatible with these specific data. This may be an important, if
very disappointing, conclusion. In other special cases the appropriate inference may be that the
parameter lies within one of a number of disjoint intervals. The issue and its resolution has an
interesting theory and history with topical relevance to the use of instrumental variables, for
example, in the context of Mendelian randomization.

The general point here is simply that the objective is to provide simple and interpretable
summaries of what can reasonably be learned from data (and an assumed model) and that this
is not always achieved by unqualified specification of a distribution.
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An important, perhaps the most important, unresolved problem in statistical inference is the
use of Bayes theorem in the absence of prior information. Analyses based on uninformative
priors, of the type advocated by Laplace and Jeffreys, are now ubiquitous in our journals.
Though Bayesian in form, these do not enjoy the scientific justification of genuine Bayesian
applications. Confidence distributions can be thought of as a way to ground “objective Bayes”
practice in frequentist theory.

Xie and Singh carry out the grounding process with energy and insight. Starting with their
attractive Definition 2.1, familiar confidence interval theory is restated in a less familiar
confidence distribution format. Connections with Bayesian and fiducial ideas are made along
the way, but the main development is entirely frequentistic.
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As the authors point out, all of this has something to do with the bootstrap. Let {θ̂∗
i , i =

1, 2, . . . , B} represent B bootstrap replications of θ̂ , an estimator of parameter θ (possibly
in the presence of nuisance parameters). The α-th empirical quantile of the θ̂∗’s is then the
upper endpoint of a first-order accurate-level α confidence interval. In this sense, the bootstrap
distribution is an approximate confidence distribution.

The BCa density, Efron & Tibshirani (1998), improves the confidence accuracy by reweighting
the B θ̂∗ values. Let Ĝ be this empirical cdf, and z0 and a be the bias correction and acceleration
constants in my 1987 paper. Rather than equal weights 1/B, the BCa density puts weight
proportional to

φ(zθ i/(1 + azθ i ) − z0)
(1 + azθ i )2φ(zθ i + z0)

[zθ i = %−1Ĝ(θ̂∗
i ) − z0]

on θ̂∗
i . The reweighted bootstrap distribution then becomes a second-order accurate confidence

distribution. Efron (2012) discusses this construction in the context of objective Bayes inference.
I was shocked to learn of Professor Singh’s sudden death—a friend and colleague, I have

followed his papers with interest since his pioneering work on bootstrap second-order accuracy,
and will miss his good-hearted presence, both personally and in the literature.
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1 Introduction

A distribution for a parameter, a distribution of a parameter, a distribution describing a
parameter, and variants: the notion is anathema to some, controversial to others, and a field of
development for others.

The notion needs a statistical model, a concept central to much of statistics but not all.
A statistical model records possible distributions, thus possible probabilities, for variables
in an application of interest; and it has a parameter that represents the unknown in the
application context, and it assumes that some value of the parameter is the “true” value,
the value that corresponds to the actual distribution in the context, all to some reasonable
approximation.
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Then with observed data, we have the central challenge of statistics: Statistical Inference.
For this challenge the discipline of statistics has long maintained the hope that the unknown
parameter value can be described also by a probability distribution, as a density, a distri-
bution function, or even a quantile function. And this is the direction followed by Xie and
Singh.

The earliest attempt was clearly Bayes (1763): his device was to act as if the context also
included a random source for the parameter value, this source acquiring the name: prior
distribution. He was severely criticized by many for making such an arbitrary addition, for
example, Boole (1854) and Venn (1866), but generally supported by others including the pre-
eminent Laplace (1812). See Fisher (1956) and Bernardo & Smith (1994) for two rather different
surveys of this area of statistics, once called Inverse Probability.

Fisher (1930, 1935) introduced an alternative to the Inverse Probability procedure, in part
to avoid the arbitrariness of an introduced prior, and called it fiducial probability: small
modifications suggested by Neyman (1937) then led to confidence as we now know it. Both
use the formal inversion of a pivot to get probabilities on the parameter space, for Fisher to
get a full distribution while for Neyman to get probabilities now called confidence but just
for sets inverse to a pivot set. The Neyman adjustment provided repetition validity for the
now widely accepted confidence methodology, and the Neyman diagram became the defining
logic.

Xie and Singh propose that we revert to the basic inversion of a pivot, thus producing a
distribution on the parameter space as with fiducial; this has much appeal and does provide a
rich alternative to the Bayes route to posterior distributions on the parameter space. But both
approaches widely overlook the associated risks that have been documented in Neyman (1937),
Dawid et al. (1973), Fraser (2011), and others. Thus the extension of the name confidence to
fiducial distributions should not be without recognizing associated risks that apply generally for
distributions for a parameter, Bayes or otherwise.

But also quite generally, concepts for statistical inference have rarely been introduced in any
resemblance of definitive form. Typically they arise in an optimistic form, are developed in
various directions, often with conflicts among promotors; inverse probability and confidence
are a clear instance. This general pattern is often concerned with territory, and seems to contrast
with what might be viewed as a pure evolutionary development, seeking the best at each step
and fine tuning the risks.

2 Pivot Inversion: Fiducial, Confidence, Structural, and Other Variants

When examining statistical methodology there is merit in looking at very simple examples
first, and being sure the methods are coherent and sensible there. Accordingly consider a sample
from a Normal(θ, σ0) model together with observed data that gives ȳ0; the distribution func-
tion from the obvious variable is %{(ȳ − θ)/(σ0/n1/2)}, where % is the standard Normal
distribution function.

From a very practical viewpoint, we could record just the statistical position of the data
with respect to possible values for the parameter θ ; we would then obtain the p-value function
p(θ ; ȳ0) = %{(ȳ0 − θ)/(σ0/n1/2)}. In particular if the parameter value θ0 were of interest and
we had p(θ0; ȳ0) = 15.9%, we would know that 15.9% of the distribution indexed by θ0 was to
the left of the data point and 84.1% was to the right of the data value. Thus we would have the
“statistical position” of the data value in the distribution labelled by the θ0 value. Is there more
information than this? In various ways the p-value function provides the full statistical story for
the particular data value relative to the model.
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From the confidence viewpoint (Neyman, 1937), we might choose a statistical position α
and seek the corresponding θ value by inverting %{(ȳ − θ)/(σ0/n1/2)} = α, thus obtaining
θ̂β = ȳ0 − zασ0/n1/2, where β = 1 − α; accordingly (−∞, θ̂β) is a β confidence interval for
θ . The change from α to β corresponds to ȳ and θ having opposite signs in the distribution
function and is typically of no interest in the presence of two-sided symmetric confidence
intervals. In particular here, if α = 15.9% then z15.9% = −1 and (−∞, ȳ0 + σ0/n1/2) is the
84.1% confidence interval for θ . We have deliberately illustrated with a one-sided confidence
interval to emphasize that an individual bound of a two-sided confidence interval can often
be important in its own right and thus needs its particular repetition meaning!

From the fiducial approach (Fisher, 1935), we can invert the distribution function or more
generally invert a pivot. Thus for the example we would have that θ is Normal(ȳ0, σ0/n1/2) or in
quantile form that θ = ȳ0 − σ0z/n1/2, where z is a generic standard Normal variable. Fiducial
intervals would be obtained then by using quantile intervals for z to obtain intervals for θ , or
more generally by directly integrating over intervals of interest to get corresponding probability
levels. The fiducial approach was criticized by Bayesians, mostly because providing distributions
for a parameter was then viewed as Bayesian territory, and partly on technical grounds (Lindley,
1958) that it did not conform to certain Bayesian rules. In particular, certain ways of choosing an
interval of interest, either Bayes or frequency, can lead to repetition frequency that is different
from the value used in its calculation, in other words it doesn’t do what it claims!

The structural approach (Fraser, 1961, 1979) follows confidence and fiducial closely but
restricts attention to transformation-parameter models with an identified error distribution;
the restriction avoids various complications that can arise with fiducial and confidence
distributions. For the example the structural approach would give the parameter distribution
θ = ȳ0 − σ0z/n1/2, where z is a generic standard Normal variable and thus agrees with confi-
dence and fiducial; it has a stronger repetition interpretation coming from the transformation
error model, but also like confidence does depend on the set being chosen on the pivot space
rather than on the parameter space.

For the Bayesian approach, Fraser (2011) argues that personal and other prior-type information
should be kept separate and not used to do the statistical analyses for one’s particular convenience.
A completed frequency analysis can of course be accompanied by available personal or prior-
type information, thus available for an end user to use or combine as deemed appropriate. It
is also argued that an appropriate choice of prior can give approximate and sometimes exact
confidence intervals, with repetition validity. For the example, the flat prior π(θ) = 1 leads to
agreement with the confidence, the fiducial, and the structural result, θ = ȳ0 − σ0z/n1/2.

For the example, the five approaches lead essentially to the same result, with seemingly just
the minor difference, whether intervals are required to come from pivot sets or can be chosen
freely. For the second more general route where a distribution is produced for the parameter,
risks do exist for all five approaches: this was highlighted in Dawid et al. (1973) as coming
from marginalization and in Fraser (2011) as coming from parameter curvature. Xie and Singh
are thus recommending that we ignore the restriction to confidence sets or equivalent, and free
confidence to allow the production of parameter distributions. Certainly distributions are easier
to think about, are largely in accord with Fisher’s original proposal, and are more in the freedom
of the Bayes approach, but they do overlook inherent risks as the preceding references indicate.

3 Promoting Confidence Distribution

Is confidence just probability? In many ways it is, and many users do treat it as probability,
even when clearly aware that statistics courses and statistical culture say otherwise! Is a Bayes
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posterior value just probability? Well it is called such, just as confidence itself was originally
called probability. In either approach, the events underlying the probability statements are events
in the past: the θ value came from somewhere or came from the prior when it is part of the
given, and its value is realized but inaccessible; and the data value is a realized and known
constant. So we are talking about a concealed true value, and we are evaluating it based on
antecedent randomness. Xie and Singh are clearly interested in upgrading the probability status
of confidence and they have devoted many pages to the task. I extensively support this initiative
but with cautions as indicated.

But in doing this, Xie and Singh steer clear of the long-standing stigma associated with
fiducial, and this leads them to draw a rather difficult dividing line. Is fiducial really different
from confidence when presented in distribution-function form? Or are they making issues with
the over-enthusiasm in some of Fisher’s arguments for his proposal, where he was the first to
seriously confront the arbitrariness in the Bayes (1763) approach, the from-nowhere introduction
of a mathematical object called a prior in order to have a bespoke probability at the end of an
argument? The amazing thing is the huge following that this Bayes approach engendered,
including many elite thinkers: “make up a prior and solve the problem!” A staggering affront to
the scientific process. Fisher should be given full credit for his innovative contribution against
this background, and saying that he did not get the wording of his promotion in comfortable
accord with some present views now seems somewhat irrelevant.

Xie and Singh, in promoting the confidence distributions, present three definitions. The
first is the classical definition CL and defines the confidence distribution function as the
distribution function version of the confidence quantile function θ̃β , where (−∞, θ̃β(y0)) is a β
level confidence interval. But isn’t this just what Fisher (1930) did? The second definition (2.1)
identifies a confidence distribution function H (θ ; y) as a distribution function in θ for each
given y and as a pivot with a uniform distribution for each θ . But this also closely identifies
with what Fisher (1930) offered: fiducial but with Fisher’s promotion replaced by a claim that
the argument is pure frequentist. Of course it is pure frequentist just as Fisher (1930) was pure
frequentist, except for Fisher’s accompanying claim to having purer probabilities, which was
then a direct confrontation to the Bayes aficionados of the time. The third definition (2.2)
essentially gives just the quantile equivalent say θ̃u(y) of the distribution function where u is
Uniform (0, 1). Aren’t confidence quantile and confidence upper bound just different labelling
for the same object?

Confidence distributions can have many properties: the distribution function should of course
be Uniform(0,1), but also it should inherit continuity when present in the model, should
use all available information, and should generally be sensible. These properties aren’t really
addressed in the authors’ proposal. A promotion of confidence distributions should acknowledge
these inherent issues and also mention marginal and conditional conflicts as discussed in the
literature.

4 Some Details

(i) Signed Likelihood Root. Example 2.5 considers a full exponential model with canonical
parameter ϕ and defines the Signed Likelihood Root r for a scalar θ as r = sign(θ̂ −
θ)[2*(ϕ̂θ )]1/2. This uses the profile log-likelihood *(ϕ̂θ ) inside a square root and can lead
to the square root of a negative number. The usual expression works from the shortfall from
the maximum profile and has a change of sign, thus r = sign(θ̂ − θ)[2{*(ϕ̂) − *(ϕ̂θ )}]1/2.
The usual expression for q comes in two common versions, one useful for computation
and the other for understanding.
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(ii) Clean and coherent. In the Introduction the authors refer to their approach as “. . . clean
and coherent”. As described in the sections above, the promotional material on fiducial
has been deleted but documented risks inherent in fiducial have also been deleted; this is
not clean and coherent.

(iii) The bootstrap. The bootstrap as in Section 2.3 provides an approximation to the
distributions described by a model, and in doing this the bootstrap can also eliminate
the influence of nuisance parameters. It can be applied to statistics or to pivots, with faster
effect using suitable pivots. It can be used with least squares, or with maximum likelihood
statistics, or with statistical quantities, or anywhere where distributions are wanted. Of
course confidence calculations are just one such use but there are many others including
of course testing. So there is no particular attachment of the bootstrap to confidence
distribution functions other than providing an approximate means of calculation for such.

(iv) Information. The discussion of information in Example 2.4 has disturbing departures
from standard usage. The observed Fisher information is usually defined as −*θθ (θ̂) in
the scalar full parameter case and designated as i(θ̂ ) or j(θ̂); the subscripts denoting
differentiation. The authors use a per-data-value version of information which involves
a division by n and they take i or j to be the reciprocal of the usual information
in the literature, that is, changing from the variance of the score to the variance of
the maximum likelihood value. This provides an uncomfortable connection with the
literature.

(v) As an ordinary probability function. The authors claim in Section 3 that a confi-
dence distribution function “can be manipulated as an ordinary probability distribution
function”. This claim is counter to much material in the literature; see (ii) above; by
ignoring properties documented in the literature one gains greater freedom but risks are
introduced.

(vi) Modern definition of confidence distribution. As noted earlier the “modern definition of
confidence distribution” from Section 3 involves a pivotal quantity with a fixed Uniform
(0, 1) distribution which is then inverted. But this is just fiducial probability without the
fiducial probability claims. How is this modern? Fiducial leaving out the usual claims,
and also leaving out the risks?

(vii) Mathematical coincidence. In Section 3.3, Xie and Singh discuss a property of a location
model f (y − θ), namely that the p-value p(θ̂α) is equal to the Bayesian survivor value
s(θ̂α) using a flat or constant prior π(θ) = c, in other words that confidence is equal to
Bayes posterior, in this special location structure where Bayes happens to have repetition
reliability. They refer to the equality as a “mathematical coincidence”; and also claim that
this “hing(es) on the normal assumption”. The “coincidence” suggestion is substantially
misleading and the claim of hinging on the “normal assumption” is not correct. With a
location model the fiducial density is f (y0 − θ) which is exactly the likelihood L(θ ; y0).
This is not a “mathematical coincidence”: it is a direct consequence of the minus sign in
“y − θ” which gives the confidence-Bayes equality and does not relate to Normality. A
more general claim is that the location property is the background for the approximate
repetition validity of the general Bayes approach, see Fraser (2011).

(viii) Optimality. The authors devote an entire Section 5 to optimality for confidence dis-
tributions. This considers the stochastic concentration of two confidence distribution
functions. But it neglects a large literature on confidence in the conditioning and
asymptotics literature, all of which has evolved more or less directly from the confidence
literature.

(ix) Vector parameters. In their summary the authors state “It is still an open question how
(or whether) one can define a multivariate confidence distribution”. This was a crucial
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issue in Fisher’s fiducial and in part led to confidence (Neyman, 1937); and it has a long
history.

(x) Behrens–Fisher and combining confidence distributions. With a sample from a Normal
(µ, σ 2), the methods discussed in Section 2 lead to the confidence distribution µ =
ȳ − tsy/n1/2 , where t is a generic Student variable with n − 1 degrees of freedom. If one
then were interested in the difference δ = µ2 − µ1 of the means of two Normal populations
one could quite reasonably, following Xie and Singh, combine the confidence distributions
obtaining δ = ȳ2 − ȳ1 − t2sy2/n2

1/2 + t1sy1/n1/2
1 , where t1 and t2 are independent Student

variables with the appropriate degrees of freedom. This arose with Behrens (1929) and was
recommended by Fisher (1935) and was central to the developing stigma that unfortunately
became attached to fiducial methodology: the combined distribution did not behave with
frequency properties. For some extensive recent simulations, background references, and
discussion see Fraser et al. (2009). The message: combining confidence distributions is
attractive but the resulting distribution may not inherit the initial frequency properties.

5 Discussion

Statistics has a wealth of exploratory procedures and methods: the Bayes where priors are a
free choice, the processing-filtering where computing power is dominant, and more. This paper
as part of seeking a broader role for confidence uses Fisher’s original definition of fiducial,
seeks to avoid the stigma of fiducial by renaming it confidence, supplies a new promotion in
place of the Fisher arguments, and views the result as just frequentist confidence.

The present comments might be viewed as critical but they are largely concerned with detail,
present and absent. From a larger viewpoint, the authors seek to raise the stature of confidence
to compete directly with Bayes posterior distributions, a laudable endeavour that avoids the
arbitrary mathematical priors in Bayes. Of course Bayes has the property of being approximate
confidence (Fraser, 2011), and this arguably provides the sole support for the use of the term
probability in the Bayes analysis contest. Xie and Singh are then in effect saying why not switch
directly to confidence distributions and enjoy the flexibility of describing the parameter by a
distribution. This deserves support, but should not ignore the reality that this would introduce
to confidence theory some of the documented risks of the Bayes approach, as a price for the
flexibility.
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This outstanding paper by Professors Xie and Singh is a comprehensive review of history
and important applications of confidence distributions. They demonstrate that confidence
distributions deserve to be widely taught and practiced as a powerful tool applicable by all
researchers concerned with statistical inference and data discovery. My comments will present
a confidence quantile interpretation of confidence distributions.

1 Confidence Distributions are Fundamental Methods

We discuss below in Section 6 the connection of confidence distributions to fundamental
research by Jerzy Neyman and R. A. Fisher, based on review by Neyman (1941). Their
controversy may have been caused by concern over priority for ideas. Today the question
should not be about credit for methods, but a framework for tools which are simple and powerful
for applications.

In our view the basic definition of a confidence distribution has two parts: it is a conditional
distribution of a parameter θ given data θ̂ , denoted symbolically as a random variable θ | θ̂ ; we
do not assume that there exists an unconditional distribution for the parameter θ , because the
value of the parameter is a non-random number.

In applications our interpretation of a confidence distribution is Bayesian (in the sense of
describing our knowledge about a parameter, given data, by a probability distribution). Our
computation is frequentist because we do not assume a prior distribution for the parameter.
The importance of this objective frequentist approach for the practice of statistical inference is
demonstrated by the results of Xie and Singh for combining information about a parameter from
several estimators (Section 4 of my discussion presents a confidence quantile version of their
recipe).

I note that my discussion is based on my research (called Nonparametric Modeling using
Quantiles and Mid-distributions) whose goal is: to unify many cultures of Statistical Science;
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Big and Small data science; parametric and non-parametric modelling of univariate, multivariate,
high-dimensional variables which can be discrete or continuous.

2 Internal Representations of Probability Distributions

To describe a probability law (and its random variable Y ) one usually uses following functions,
which we call external representations: Probability mass function p(y) = p(y; Y ); Probability
density function f (y) = f (y; Y ); Distribution function F(y) = F(y; Y ); Quantile (inverse dis-
tribution) function Q(u) = F−1(u), 0 < u < 1; Mid-distribution function Fmid(y) = F(y) −
0.5p(y).

We find very useful an additional representation of Y continuous, which we call an internal
representation (in the spirit of modelling by stochastic differential equations):

Y = g(θ, WY ), (1)

where θ are unknown parameters, WY has known probability distribution, and g is known.
Example: Let Y = Gamma (shape = ν, scale = θ), a random variable with distribution Gamma,
with unknown θ and known ν. The internal representation of Y is

Y = θ WY , WY = Gamma (shape = ν, scale = 1) has known distribution. (2)

Given random sample Y1, . . . , Yn , let V (also denoted θ̂ ) be estimator of θ . Express sampling
distribution of V as internal representation

V = h(θ, WV ). (3)

Let V ∗ denote observed value of V . We regard our knowledge of θ given V ∗ as a probability
distribution, denoted θ | V ∗, which we call the confidence distribution of θ given sample. We
interpret θ | V ∗ to have properties analogous to a conditional distribution (concept that statis-
ticians apply intuitively, not using the rigourous mathematical definition as a Radon–Nikodym
derivative).

3 Confidence Quantiles, Estimating Equations, and Pivots

Our goal of a formula for the confidence distribution θ | V ∗ is accomplished symbolically by
an internal representation θ | V ∗ = h−1(V ∗, WV ), or computationally by its quantile function
Q(P; θ |V ∗), called the confidence quantile. A comprehensive outline of the calculus of quantile
functions is given in Parzen (2004).

THEOREM 1: To state an estimating equation for a confidence quantile construct a pivot T (θ, θ̂)
with the properties:

(A) T (θ, θ̂ ) = Z , pivot has same distribution for all θ ;
(B) T (θ, θ̂∗) is increasing in θ , for each fixed θ̂∗.

Then estimating equation for confidence quantile Q(P; θ | θ̂∗) is

T [Q(P; θ | θ̂∗), θ̂∗] = Q(P; Z ), 0 < P < 1. (4)

Often Z is N (0, 1); then median Q(0.5; Z ) = 0. Median of confidence quantile satisfies

T [Q(.5; θ | θ̂∗), θ̂∗] = 0. (5)
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IMPORTANT FACTS: Confidence distribution is a pivot with Z = U , Uniform(0,1). General
pivot is p-value(θ, θ̂ ) = Pr [θ̂ > θ̂∗ | θ] when it obeys stochastic order condition that it is an
increasing function of θ . Under stochastic order condition, explicit formula for confidence
distribution is

F(θ ; θ | θ̂∗) = 1 − F(θ̂∗; θ̂ | θ). (6)

3.1 Graphical Calculation of Confidence Quantile

Solve estimating equation graphically by two plots:

(1) T = Q(P; Z ), 0 < P < 1;
(2) T = T (θ, θ̂∗) as a function of θ .

Given P determine T from (1); then from (2) given T determine θ , which is our desired
Q(P; θ | θ̂∗). Repeat this for selected values of P .

Example 3.2 of Xie and Singh considers statistical inference of parameter θ of model Y =
Gamma(ν, θ). Point estimator of θ is M(Y ), sample mean. Its sampling distribution has internal
representation

n M(Y ) = θ WM , WM = Gamma(nν, 1). (7)

Write the confidence distribution of Xie and Singh (with our ν equal their p0):

P = Hn(θ0) = 1 − F(n M(Y ); Gamma(nν, θ0)). (8)

Confidence quantile is θ0 = H−1
n (P) with explicit formula:

1 − P = F(n M(Y ); Gamma(nν, θ0))
n M(Y ) = Q(1 − P; Gamma(nν, θ0)) = θ0 Q(1 − P; Gamma(nν, 1)).

Conclude that Q(P; θ | M(Y )) = θ0 = n M(Y )/Q(1 − P; Gamma(nν, 1)), which equals

M(Y ) Q(P; n/Gamma(nν, 1)).

Internal representation for confidence quantile:

θ | M(Y ) = n M(Y )/Gamma(nν, 1). (9)

4 Combining Estimators Confidence Quantile

In their Section 6, equation (7), Xie and Singh propose a general recipe for combining k
independent confidence distributions Hj (θ) of a parameter θ . Their recipe can be stated in
terms of confidence quantiles. Statistician chooses monotonic transformation gc to be a quantile
function Q0(u). A pivot is defined

T (θ) =
k∑

j=1

Q0(Hj (θ)). (10)

Fix P; compute θ = Q(P; θ | combinedconfidencedistributions) by estimating equation T (θ) =
Q(P; Z ), random variable Z defined from k independent Uniform(0,1), U j by Z =

∑
j Q0(U j ).

The quantile function of Z is a sample quantile computed by simulation. The question of choice
of transformation Q0 should be investigated in each example by comparing several choices
for Q0.
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5 Regression Parameters Confidence Distribution, Prediction

A regression model Y = Xβ + e has ordinary least squares parameter estimators β̂ satisfying
normal equations

X ′ X β̂ = X ′Y .

Write X ′Y = X ′ Xβ + X ′e. Obtain internal representation for sampling distribution of β̂:

β̂ = β + X#e, X# = (X ′ X )−1 X ′ generalized inverse of X . (11)

Confidence distribution of β has internal representation

β | β̂∗ = β̂∗ − X#e. (12)

These concepts can be extended to Bayesian parameter estimation and confidence distributions
for prediction of future observations obeying the regression model. An algorithm is given by
Marriott & Spencer (2001) for Bayesian predictive distributions for a linear regression model.
Their results can be interpreted: a conjugate prior distribution is equivalent to augmenting
the data; their formulas for posterior distributions of parameters and for prediction of future
observations can be quickly derived using update formulas for mean and covariance of combined
sample from means and covariances of prior and current sample.

6 Confidence Distributions and Fiducial Inference

How to interpret the mathematics of confidence distributions may have been the basis of the
controversy between Neyman and Fisher about fiducial inference. We adapt Neyman (1941),
equations (10) and (11), about Fisher’s reasoning. For statistical inference of mean µ of model
N (µ, σ ), σ unknown and estimated by S, sample mean M(X ), define

T (µ, M(X )) =
√

n(M(X ) − µ)/S; (13)

Pivot, for all µ, has distribution T (n − 1), Student distribution (n − 1) degrees freedom. Then
P = Pr[M(X ) > M(X )∗ | µ] = Pr[T (n − 1) > T (µ, M(X )∗] implies

1 − P = F[T (µ, M(X )∗); T (n − 1)], T [µ, M(X )∗] = Q(1 − P; T (n − 1)). (14)

We argue that for fixed P this is an estimating equation for µ = Q(P; µ|M(Y )∗) which we solve
to obtain

µ | M(X )∗ = M(X )∗ − Q[1 − P; T (n − 1)]S/
√

n = M(X )∗ + Q[P; T (n − 1)]S/
√

n. (15)

7 Conclusion

Confidence distribution and confidence quantiles provide powerful objective methods of
statistical inference that deserve to be widely practiced and taught in statistics courses.
Their reasoning starts at the same mathematical place as did fiducial inference, but their
interpretation is very different. Publications on confidence quantiles by Parzen are Parzen
(2008, 2009). Major lectures by Parzen about confidence quantiles include: 2004 Rice
University Erich Lehmann symposium lecture “Data Modeling, Quantile/Quartile Functions,
Confidence Intervals, Introductory Statistics Reform”; 2005 JSM Noether Prize lecture “All
Statistical Methods, Parameter Confidence Quantiles”; 2006 University of Connecticut ASA
Distinguished Statisticians Colloquium lecture “Objective Bayesian/ Frequentist Statistics: My
Way with Quantiles”; 2008 Texas A&M Parzen Prize Day lecture “United Applicable Statistics,
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Confidence Quantiles, Philosophy of Statistical Science, Statistical Education”; 2009 University
of Maryland Kedem Celebration lecture “United Applicable Statistics, Mid Distribution, Mid
Quantile, Mid P Confidence Intervals Proportion p”; 2012 Interface Computer Science and
Statistics lecture “Modeling, Dependence, Classification, United Statistical Science, Many
Cultures”.

References

Marriott, J. & Spencer, N. (2001). A note on Bayesian prediction from the regression model with informative priors.
Aust. NZ J. Stat., 43, 473–480.

Neyman, J. (1941). Fiducial argument and the theory of confidence intervals. Biometrika, 32, 128–150.
Parzen, E. (2004). Quantile probability and statistical data modeling. Statist. Sci., 19, 652–662.
Parzen, E. (2008). United statistics, confidence quantiles, Bayesian statistics. J. Statist. Plann. Inference, 137,

2777–2785.
Parzen, E. (2009). Quantiles, conditional quantiles, confidence quabtiles for p, logodds(p). Commun. Stat. Theory

Methods, 38, 3048–3058.

[Received November 2012, accepted November 2012]

International Statistical Review (2013), 81, 1, 52–56 doi:10.1111/insr.12003

Christian P. Robert
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“We have shown how confidence distributions, as a broad concept, can subsume and be associated
to many well-known notions in statistics across different schools of inference.” M. Xie and K. Singh

I must first acknowledge I am rather baffled about the overall reason of this review and that
this bafflement will necessarily impact the following discussion. Indeed, and this is not truly a
coincidence!, I happen (and so do the authors of the review) to have discussed the related paper
by Fraser (2011) a few months ago: while I strongly disagreed on the conclusions of this paper,
the central point made by Don Fraser was quite clear, namely to show that Bayesian posterior
statements were ungrounded. The current paper is mostly missing this type of clear message and
it does not convey a true sense of support for using confidence distributions. I find instead that the
paper meanders rather aimlessly around the definition of confidence distributions, which are in
short dual representations of frequentist confidence sets, and that it never reaches any definitive
conclusion about the appeal of relying on those confidence distributions . . . For instance, I had
to wait till Section 4 to be introduced to inference based on confidence distributions and I find
the description anticlimactic: using confidence distributions to:

(i) construct confidence intervals is hardly surprising, since this is how those distributions
are constructed;

(ii) derive point estimators does not show any advance beyond convergence in probability;
(iii) conduct testing of hypotheses simply provides a recovery of the usual p-value both in the
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one- and two-sided cases, and again is hardly surprising given the duality between tests
and confidence procedures.

Similarly, optimality is defined as to mirror uniformly most powerful unbiased (UMPU) test
optimality (Lehmann, 1986). The most fruitful connection witness applications of confidence
distributions appear later in Section 7, in particular with the reinterpretation of bootstrap (Section
7.3), although I am far from convinced that “the concept of confidence distribution is much
broader” than the one of bootstrap distribution. Furthermore, the very concept of confidence
distributions is restricted (at least in the paper) to unidimensional entities, and seems to possess
as many avatars as there are ways of constructing confidence intervals. So, by the end of this long
review, I do remain skeptical about the innovation (for frequentist theory) brought by adopting
the perspective of confidence distributions.

“Clearly a confidence distribution does not have to be a Bayes posterior distribution, as there are
numerous ways to derive it.” M. Xie and K. Singh

The fundamental difficulty I have with confidence distributions is the same I have with
fiducial distributions, namely one of missing a proper target. Some objective Bayes approaches
like matching priors (see, e.g., Robert, 2001) are often criticized for having as sole purpose to
mimic a frequentist coverage, hence questioning the relevance of going the Bayesian way. It
seems to me that this methodology of confidence distributions suffers from the same if reverse
drawback: as with Fisher’s fiducial distributions, one tries to produce a posterior distribution
without following a Bayesian modelling approach, that is, without selecting a reference prior
distribution, hence questioning the relevance of not going the Bayesian way! As a result, either
the constructed confidence distribution corresponds to a valid Bayesian posterior distribution,
in which case it is highly preferable to conduct the choice and assessment of this prior on
a preliminary and open basis (rather than defaulting to an implicit black-box prior). Or the
confidence distribution does not correspond to a genuine prior distribution, in which case it is
then incoherent in terms of mere probability theory, thus likely to suffer the same woes as most
empirical Bayes approaches (like inefficiency and over-fitting). Things somehow turn for the
worse when the authors consider a “true” prior distribution π(θ), which may be a confidence
distribution resulting from past experiments, and combine it with the confidence distribution
associated with the current data, shying away from the genuine likelihood: if nothing else,
multiplying two densities of the same random variable together is an impossibility from a
probabilistic perspective.

The object of a confidence distribution does thus remain a full mystery for me, as I do not see
how to use it with any confidence either as a Bayesian procedure or as a frequentist procedure. In
the former perspective, it does not necessarily correspond to a prior distribution and to perceive
the confidence distribution as a way “to assist the development of objective Bayes approaches”
is misguided, in that the corresponding “priors” (if any) would then be data-dependent, hence
loose the basic coherence of the Bayesian approach. In the latter perspective, having a probability
distribution on a fixed parameter θ does not make sense. Except when reinterpreting it as a
bootstrap distribution, that is, with a randomness endowed by the observation into θ̂ rather than
from the parameter. I must add that the authors of the review do not indicate that the methodology
has met with widespread use, beyond their own circle.

In Section 6.2, the fact that expert opinion is available to build prior distributions would sound
to me as the most natural way to engage into licit Bayesian activities since the construction of
this prior is then validated by the real world. To replace the exact likelihood with a confidence
distribution is a way to shoot oneself in the foot, by throwing away a coherent and valid scheme for
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Figure 1. Contour plots for the prior (light brown), likelihood (red), and posterior (blue) on (p1, p2)based on 100 binomial
observations xi ∼ B(100, pi ) with x1 = 35 and x2 = 67 and an independent prior, p1 ∼ Be(2, 3) and p2 ∼ Be(3, 4).

another one wasting some of the information provided by the data (and contradicting Birnbaum’s
likelihood principle in addition!).

“The result is a mathematical coincidence, hinged on the normal assumption.” M. Xie and K. Singh

The authors seem to consider that having genuine posterior distributions turn into exact
confidence distributions cannot have a deeper explanation than being a freak, that is, “a
mathematical coincidence”. While being a spectator for this kind of exercise, I would think
there are deeper reasons for this agreement, first and foremost in connection with the Bayesian
interpretation of the best unbiased estimator of Pitman (1938). Furthermore, the work of Welch
& Peers (1963) shows that prior distributions can be chosen towards an agreement with the
frequentist coverage.

“We can have multiple confidence distributions for the same parameter under any specific setting.”
M. Xie and K. Singh

As acknowledged by the authors, the notion of confidence distributions suffers from the same
taint of ad-hocquery as most frequentist (and empirical Bayes, see Robert, 2001) procedures,
namely that the confidence distribution can be defined in many ways. Section 5 introduces an
ordering of those confidence distributions but it unfortunately is an incomplete ordering, as
most frequentist orderings are, and it is thus unlikely that two arbitrary solutions can be ordered
according to this principle. The strong connection with UMPU tests—whose own optimality
proceeds from an unnatural restriction on testing procedures—reflects this difficulty.
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Figure 2. Same legend as Figure 1 when using a dependent prior with p1 ∼ Be(2, 3) and p2|p1 ∼ N (p1, 0.1) restricted to
(0, 1).

“A counterintuitive ‘discrepant posterior phenomenon’ that is inherent in a Bayesian approach can
be avoided in a confidence distribution-based approach.” M. Xie and K. Singh

The counter-example discussed in Section 6.2 is only relevant in uncovering the approximation
due to the confidence distribution-based approach, rather than pointing out an inherent flaw in
the Bayesian approach. Indeed, the fact that the posterior distribution is concentrated away from
both the prior and the posterior concentrations seems to be (as far as I can infer given the sparse
description contained in the paper) due to the use of a profile likelihood, which is an imprecise
notion throwing away some of the information contained in the data. When checking on a regular
Bayesian analysis of this beta-binomial model, I could not spot any discrepancy, using either
independent (Figure 1) or dependent (Figure 2) priors. In any case, the more global issue of
having partial prior information like marginal priors on proportions p0 and p1 does not seem to
be such “a challenging question for Bayesian analysis”. Indeed, given those two marginals, it is
always possible to select one parameterized family of copula distributions and to estimate the
parameters of this copula as part of a global Bayesian analysis (Silva & Lopes, 2008).

“The review is not intended to re-open the philosophical debate that has lasted more than two
hundred years. On the contrary, it is hoped that the article will help bridge the gap between these
different statistical procedures.” M. Xie and K. Singh

In conclusion, I fear the authors have not made a proper case in favour of confidence
distributions. The notion carries neither consistency nor optimality features of its own, while
it fundamentally relies on the choice of another frequentist confidence or p-value procedure.
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Worse, the very construction of the confidence distribution as an inversion of the confidence
interval, that is, Hn(·) = τ−1

n (·), reproduces the common and mislead semantic drift from
“(−∞, τn(α) contains the true value θ0 with probability α” to “θ0 belongs to the fixed interval
(−∞, τn(α) with probability α”. Further, as reflected by the discussion at the end of Section 6,
the review reflects deep misunderstandings about Bayesian inference. Indeed, speaking of a
“truthful joint prior” or of a “prior that is in agreement with the likelihood evidence” shows
that the prior is considered as a mythical (if true) unique entity, rather than as the choice of a
reference measure, which is how I do understand priors.

In Memoriam

Between the time I met for the first time with Prof. Singh in Rutgers in early April 2012
and the time I wrote this review, Prof. Singh most sadly passed away. Although I did not know
him well, I think he would have appreciated the intellectual challenge raised in this intellectual
dispute and responded accordingly. I am quite sorry this opportunity will never occur.
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Min-ge Xie and Kesar Singh are to be congratulated on an excellent job in explaining
what confidence distributions (CDs) are and how and why they might be highly useful in
statistical work. The authors have also pulled together published work on CDs and related
topics in their comprehensive and useful review. We share their optimism regarding the general
and so far too modestly explored usefulness of CDs, along with related concepts such as
confidence likelihoods, as broadly applicable tools for modern statistics, conceptually and
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operationally. These uses include proper frequentist parallels to Bayesian posterior distributions
and a sounder methodology for combining different information sources. Below we offer some
remarks pertaining to some of the many themes touched on in the article, along with some
pointers to further extensions. Further methodological advances and application stories are in
our forthcoming book Confidence, Likelihood, Probability. Finally we use the opportunity to
humbly join ranks with those expressing grief over Kesar’s untimely death.

1 Distribution Estimators

“Distribution estimator” is a good term. The goal of a statistical analysis of a set of data is
often to interpret the data by selecting an appropriate statistical model within a chosen family
of models, and estimate the parameters of primary interest via the selected model, accounting
as honestly and as fully as possible for the uncertainties in the estimates, preferably also the
uncertainty due to model selection. A distribution for such a focus parameter, a confidence
distribution (CD), aims at expressing what has been learned regarding the parameter, including
what the pattern and amount of uncertainty is, conditional on the model or the family of models
used. Such a distribution estimate provides a full inferential result. What more could be asked
for?

The most commonly used distribution estimators are Bayesian posterior distributions. Fisher
introduced his fiducial distribution as a distribution estimator to overcome problems with
Bayesian analysis which then was, and actually often still is based on flat priors to represent non-
informativity. Neyman found that fiducial distributions of one-dimensional parameters provide
confidence intervals, hence the term “confidence distribution”. Xie and Singh say that in the
long history of CDs they have been misconstrued as a fiducial concept. Is it really helpful to
distance CDs so sharply from fiducial distributions?

A CD with cumulative distribution function H (x, θ) for a one-dimensional parameter θ ,
based on the observed data x , has the property H (X , θ) ∼ U [0, 1]. This is interpreted in the
Neymanian way, that the distribution estimator provides confidence intervals by its quantiles,
and also p-values for one-sided hypotheses. This is certainly a purely frequentist interpretation,
distinct from Fisher’s fiducial interpretation, but as mathematical objects CDs and fiducial
distributions are equivalent. The H (X , θ) is indeed a pivot, and Fisher (1930) found his fiducial
distributions by the same pivot. As Fisher, Xie and Singh view CDs for observed data as
probability distributions subject to ordinary probability calculus. We will discuss this below.
Taken as a pure mathematical object, the CD is subject to ordinary probability calculus. It
turns out however that distributions derived from the CD are not in general CDs, not even in
the one-dimensional case. Fisher constructed multivariate fiducial distributions by combining
one-dimensional fiducial distribution via conditioning. According to Xie and Singh it is an
open question how (or whether) multivariate CDs could be defined. Before looking at some
illustrative examples, we briefly recap the fiducial debate to recall where Fisher went wrong.

We think that Fisher (1930) saw his one-dimensional fiducial probability as epistemic:
“There are two different measures of rational belief appropriate to different cases. Knowing
the population we can express our incomplete knowledge of, or expectation of, the sample in
terms of probability; knowing the sample we can express our incomplete knowledge of the
population in terms of likelihood . . . There are, however, certain cases in which statements in
terms of probability can be made with respect to the parameters of the population”. These cases
are when a pivot exists, and a fiducial distribution is obtained, representing the rational belief.

In papers from 1935, Fisher combined one-dimensional fiducial distributions to multivariate
ones, and claimed them to be unique when based on minimal sufficient statistics. From a normal
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sample, the empirical variance s2 and the mean x̄ are the statistics. From the chi-squared pivot
(n − 1)S2/σ 2 a fiducial distribution with density f (σ ; σ̃ ) is obtained, with σ̃ = σCD the random
variable carrying the fiducial distribution for σ (and similar notation for other parameters
below). Given σ = σ̃ , (µ − X̄ )/(̃σ/

√
n) is a normal pivot, yielding the normal fiducial density

f (µ | σ ; µ̃ | σ̃ ). This makes

f (µ, σ ; µ̃, σ̃ ) = f (µ | σ ; µ̃ | σ̃ ) f (σ ; σ̃ )

the bivariate fiducial probability density for the two unknown parameters. This step-by-step
method was found not to yield unique multivariate fiducial distributions. Dempster (1963)
found for example a different fiducial distribution by in the first step to find a distribution
for θ = µ/σ and in the second step a conditional fiducial distribution for σ given θ̃ . Since
multivariate fiducial distributions were supposed to be subject to ordinary probability calculus
the two distributions should have been equivalent if unique.

Are fiducial distributions ordinary probability distributions, as Fisher claimed, in the sense
that fiducial distributions can be transformed by ordinary probability calculus to new fiducial
distributions? Pitman (1939) found this to be not generally true. He characterized the functions
of the parameters of a location-scale model for which the distribution derived from the joint
fiducial distribution indeed are fiducial distributions, but for other functions the machinery
fails. Furthermore Stein (1959) showed in the length problem to be considered later that the
distribution of ‖µ̃‖ is badly upwards biased when obtained from the joint normal fiducial
distribution for a normal mean vector µ.

Due to these and certain other problems, including Fisher’s claim of uniqueness which was
found to be untrue, the fiducial method has been de-merited and broadly forgotten during the
last 40 years. Xie and Singh say however that fiducial inference provides a systematic way to
obtain a CD. We agree, but due to its delicate nature, any distribution obtained by the fiducial
argument must be checked, and perhaps modified, before declared to be a CD. Hannig (2009)
checks by simulation the distributions he obtains by his generalized fiducial argument, and finds
them to be good approximate CDs.

One-dimensional CDs are invariant to monotonic transformations m, say m(θCD) ∼ {m(θ)}CD
in suggestive notation. This invariance was emphasized by Fisher (1930) and is indeed important
for CDs. As claimed, distributions derived from a CD by ordinary calculus do however not
automatically inherit the property of being CDs. As the following example shows, this is the
case even in dimension 1. Consider g(µ) = λ = |µ|, where µ̃ ∼ N(x̄, σ 2/n) is carrying the CD
for µ, obtained from a normal sample of known variance. Clearly,

G(x, λ) = P(−λ ≤ µ̃ ≤ λ) = %

(
λ − x̄
σ/

√
n

)
− %

(−λ − x̄
σ/

√
n

)

is the derived cumulative distribution for λ given x . For any true value λ0 = |µ0|, the G(X , λ0)
does not have a U [0, 1] distribution and is hence not a CD. When λ0/(σ/

√
n) = 1, for example,

its support is [0, 0.683] (and only for larger values of this ratio, where it is easier for data to tell
us clearly whether µ is positive or negative, does the distribution of G(X , λ0) come close to the
uniform). In this example a bona fide CD is available from a pivot based on |X̄ |, and

H (x, λ) = %

(
λ − |x̄ |
σ/

√
n

)
+ %

(−λ − |x̄ |
σ/

√
n

)

is a distribution function with point mass at λ = 0. Since H (X , λ0) ∼ U [0, 1], H is indeed a
CD.
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2 The Length Problem

In their Section 3.3, the authors argue that a posterior distribution can be treated as an
approximate CD. This is essentially a consequence of so-called Bernshtein–von Mises theorems,
that the posterior distribution of

√
n(θ − θ̂ ) tends to the same multinormal limit distribution

as does
√

n(θ̂ − θ0), where θ0 is the reference value governing the generation of data and
θ̂ the maximum likelihood estimator. By the delta method such a result carries over to focus
parameters, say γ = g(θ), so the consequent posterior distribution for γ is close to the appropriate
%(

√
n(γ − γ̂ )/̂κ), which hence is a valid asymptotic CD. This is actually a sketch of a proof for

rather more general results than those outlined in the article’s Section 3.3 and Example 2.4, as
the reach of the Bernshtein–von Mises theorems is considerable wider than for i.i.d. setups.

Such approximations will typically only work well if the sample size is large compared to
the dimension of the parameter vector, however, and it is easy to construct examples where the
posterior distribution is far away from proper CDness. For such an illustration, consider the
length problem looked at above in dimension 1, but now in dimension p. Let X ∼ Np(µ, I )
with θ = ‖µ‖2 being the parameter of interest. The distribution G(X , θ) obtained from the
joint CD for µ gets further away from being a CD the larger the dimension p. This was
noted by Stein (1959). Taking the case of θ0 = p as an illustration (e.g., with each component
µi = 1), for p = 10, G(X , θ0) has support [0, 0.560] and a distribution piling up close to
zero, with median equal to 0.0075. For p = 100, the support for G(X , θ0) is [0, 0.518] and
its median is exceedingly close to zero. To be a proper CD, G(X , θ0) should have been
uniformly distributed on [0, 1]! A clean CD is however available. With 1p(·, θ) being the
distribution function of the non-central chi-square distribution with df = p and parameter of
non-centrality θ , H (x ; θ) = 1 − 1p(‖x‖2, θ) is indeed a CD. It has point confidence at θ = 0
but is otherwise continuous. Despite the point mass at zero in each realized H (x ; θ), we have
H (X ; θ) ∼ U [0, 1].

The joint CD for µ above, which has these unfortunate side effects when one attempts to
use it for inference for various focus parameters θ = g(µ), is also identical to the Bayesian
posterior distribution under the canonical non-informative prior. Thus Bayesians are in dire
straits here, for example, with a severe bias in the length problem. There are ways around
this, via particular prior constructions that somehow are allowed to let one’s prior views on
µ be influenced by what one wishes to focus on afterwards. This is conceptually troublesome
but leads after considerable efforts to posterior distributions that better match what here must
be seen as the frequentist’s golden standard; see for example, Berger & Bernardo (1992) for
general methodology concerning such focus-driven reference priors and Tibshirani (1989), Datta
& Ghosh (1995) for work directly connected to the length problem.

3 CDs Via Profiled Deviances

From these simple examples we learn that CDs are delicate objects. They cannot in general be
treated as ordinary probability distributions in the sense that distributions for derived parameters
obtained by ordinary probability calculus might not be CDs. Xie and Singh do not provide a
definition of CDs in dimensions larger than 1. From what was learned through the fiducial
debate, joint CDs should not be sought, we think, since they might easily lead the statistician
astray. We will suggest below that ambitions should be lowered to what Xie and Singh call
circular CDs.

In the examples, CDs for the one-dimensional derived parameters could be obtained by direct
reasoning. This was done by identifying pivots for the parameters in question. Often, pivots
are not available. There is thus a need for a generic method. We will argue below that the
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profile deviance function might often give rise to CDs (or approximate ones, which then may
be modified further).

In smooth models, the asymptotically normal CD based on the maximum likelihood estimator
and its Hessian-based standard error is approximated by the integral of the normed profile
likelihood (Example 2.4). For data sets where the sample size is moderate to large compared to
the parameter length, confidence regions are also routinely obtained from the profile deviance
function D(x, θ) = D(θ) = 2{*max − *(θ)} by the central χ2 distribution with df = dim(θ) = p.
With 1p being the cumulative χ2

p distribution function, the construction is to take the level set
1p(D(θ)) ≤ α as the confidence region of level α. If D(X , θ0) has cumulative distribution
Fθ0 , cc(θ) = Fθ (D(θ)) could be called the confidence curve for θ . Confidence curves in one
dimension are discussed in Section 7.2, and in higher dimensions they are equivalent to CDs
in the circular sense. Then by this definition, the confidence curve has its minimum at the
maximum likelihood estimate, cc(θ̂ ) = 0.

A CD for a one-dimensional focus parameter γ = g(θ) generates a family of equitailed
confidence intervals, viz. [H−1(ε), H−1(1 − ε)] for ε ∈ [0, 1

2 ], with the same probability of
missing the true value on either side. These endpoints are naturally captured by the confidence
curve cc(γ ) = |1 − 2H (γ )|, as solving cc(γ ) = α provides the level α equitailed confidence
interval. Often such confidence curves are reached directly, for example, via the deviance profile
recipes, after which we if required may translate to the CD scale, with H (γ ) equal to 1

2 {1 + cc(γ )}
for γ ≥ γ ∗ and 1

2 {1 − cc(γ )} for γ ≤ γ ∗, with γ ∗ = H−1( 1
2 ) the associated median confidence

estimator.
The maximum likelihood estimator is asymptotically unbiased (both in the mean and in

the median sense). For the present paragraph assume for simplicity of presentation that θ is
one-dimensional, though generalizations to the general case of focus parameters γ = g(θ) in
bigger models may be worked out. For small to moderate sample size, let b(θ) = med(θ̂) be
its median function. One may show that for D(b(θ0)) ∼ F(·; θ0) the bias corrected confidence
curve ccbc(θ) = F(D(b(θ)); θ) is approximating equitailedness at order n−3/2 in a large class of
one-parametric models.

Coming back to the general case of a one-dimensional focus γ as a function of a model
parameter vector θ , we suggest for reasons sketched above that a CD should be obtained from
the probability transformed profile deviance

D(γ ) = 2{*prof ,max − *prof (γ )},

where *prof (γ ) = max{*(θ) : g(θ) = γ } is the profiled log-likelihood function in question.
Intervals generated from D(γ ) ≤ 1−1

1 (α) are generally known to give more accurate results
than by using the symmetric first-order normal approximations for the maximum likelihood
estimator. The likelihood could also be reduced by conditioning, if possible, or by integration.
The median bias function for the maximum estimator γ̂ should be estimated along with the
distribution of D(b(γ )), usually by simulation. If this distribution depends markedly on the
nuisance parameters relative to γ , a good CD is not obtained. This work should be carried out
for each single parameter of interpretive importance.

Setting appropriate confidence intervals and hence a full CD is tricky when issues of model
selection are taken as part of the procedure. This remains true also when a clear limit distribution
can be described, as for intervals following the Akaike Information Criterion (AIC) or the
Focused Information Criterion (FIC) methods; this may involve non-linear mixtures of correlated
and non-central χ2

1 variables, see Claeskens & Hjort (2008). Procedures via bootstrapping and
acceleration and bias corrections may be suggested, as in Schweder & Hjort (2002), but further
exploration is required.
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4 Ratio of Normal Means

In Example 3.1, Xie and Singh give a bivariate normal distribution for two normal means
(µ1, µ2). This appears to be a bivariate CD carried by the CD-random vector (µ̃1, µ̃2) ∼
N2((x̄1, x̄2), S), but should perhaps be seen as a fiducial distribution. Here S is a known diagonal
covariance matrix. A distribution for δ = µ1/µ2 is by ordinary marginalization given by that
of δ̃ = µ̃1/µ̃2. The authors give Hr (δ) = %((δ − δ̂)/sr ) as an asymptotic CD, where sr is the
standard error of δ̂ = x̄1/x̄2 obtained by the delta method, disregarding the structure µ1 = δµ2.
They note that this distribution is not quite a CD, and the challenge is to find a clearer CD for
small to moderate sample sizes.

This is the so-called Fieller–Cressy problem, with an associated separate literature presenting
solutions from various perspectives; see, for example, Raftery & Schweder (1993). The CD
approach we propose above via profiled deviance leads to a clear solution. For simplicity of
presentation let us simply take X1 ∼ N(µ1, σ

2) and X2 ∼ N(µ2, σ
2) with known σ . The profile

log-likelihood (apart from constants) is

*prof (δ) = − 1
2 (1/σ 2) min

(µ1,µ2):µ1/µ2=δ
{(x1 − µ1)2 + (x2 − µ2)2}.

Some algebra, minimizing the quadratic under the constraint µ1 = δµ2, leads to the deviance
statistic

D(δ) = 1
σ 2

(x1 − δx2)2

1 + δ2
.

Under the true δ0, this D(δ0) has the exact χ2
1 distribution. The consequent exactly correct

confidence regions take the form

{δ : D(δ) ≤ 1−1
1 (α)} = {δ : 11(D(δ)) ≤ α}.

These are illustrated in Figure 1. They are finite intervals for small levels α; half-infinite intervals
for higher levels; unions of two half-infinite intervals for yet higher α; and finally equal to the
full real line for the highest levels where the data do not support any sharper conclusions. With
more data the σ becomes smaller and the solution produces genuine intervals for a higher range
of α.

The solution here, now arrived at via the general profile deviance recipe, is equivalent to the
Fieller–Cressy method; see Raftery & Schweder (1993). It can easily be generalized to the case
of unknown σ and be modified for other models where the focus is on a ratio of two parameters.
We also stress that the fact that the CD here is improper should not be seen as a drawback
and hence suggest extending the authors’ Definition 2.1 to such cases. When the amount of
information is weak about a parameter, as here when x2/σ is close to zero, it is appropriate to
lose some amount of confidence to infinity.

5 Performance and Optimality

The article touches on issues of performance in Section 5. In addition to the optimality
theorems of Schweder & Hjort (2002), briefly discussed there, one may also delve into
investigations related to reductions by invariance, by sufficiency (Rao–Blackwell results for
CDs), construction of nearly optimal CDs via approximations to exponential models, etc. Here
we shall merely make a few points; further theory and applications are in Schweder & Hjort
(2013).

International Statistical Review (2013), 81, 1, 56–68
C© 2013 The Author. International Statistical Review C© 2013 International Statistical Institute



62 T. SCHWEDER & N. L. HJORT

−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

delta=mu1/mu2

co
nf

id
en

ce
 le

ve
l

Figure 1. The probability transformed profile deviance curve 11(D(δ)) for the focus parameter δ = µ1/µ2, based on
X1 ∼ N(µ1, 1) and X2 ∼ N(µ2, 1) observed to be 1.333 and 0.333; the maximum likelihood estimate δ̂ = 4.003 is where the
curve hits zero. The horizontal lines indicate confidence regions (intervals or union of intervals) corresponding to vigintic
confidence levels from 0.05 to 0.80. The data do not give support to any regions smaller than the full real line when the levels
are higher than 83.1%.

First, it ought to be realized that the list of exponential models for which CDs with uniformly
best performance can be constructed is a large one, not merely comprising the traditional textbook
examples but extending to generalized linear models, Ising and Potts models for images, Strauss-
type models for point patterns, etc. This is of some importance in that inference for some of
these complex models is typically hard in the first place, and where the literature sometimes
advocates the use of, for example, asymptotic normality, perhaps even via mathematically
complicated theorems (with long proofs). Our point then is that inference can be carried out
via CDs in an optimal fashion and without necessarily caring about approximate normality
or indeed about approximation results at all. Such operations will typically involve certain
computational challenges, though, for example, for setting up required simulation schemes for
handling complex conditional distributions.

Secondly we wish to add a bit of further insight to the article’s brief mention of mean squared
error calculus for CDs (more general loss functions may also be worked with). The quadratic
loss function version, for a CD of type H (x ; γ ) for some focus parameter γ = g(θ), may then
be expressed as

∫
(γ − γ0)2 dH (x ; γ ) = Var γCD + (γ̄ − γ0)2,

computed under a reference parameter value θ0 with consequent γ0 = g(θ0). Here γCD is a
random variable drawn from the (random) CD and γ̄ = E γCD its (random) mean. The risk, that
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is, the expected loss under reference value θ0, is therefore

R(θ0, H ) = Eθ0 Var γCD + Eθ0 (γ̄ − γ0)2.

To check these formulae in an informative setting let us consider the case where the CD exactly
or approximately takes the familiar form H (x ; γ ) = %(

√
n(γ − γ̂ )/̂κ), perhaps from first-order

large-sample approximations, and typically involving an estimator γ̂ with estimated standard
deviation κ̂/

√
n. This CD over γ values has mean γ̂ and variance κ̂2/n. Hence the confidence

loss is κ̂2/n + (γ̂ − γ0)2 and the confidence risk becomes

R(θ0, C) = Eθ0 κ̂
2/n + Eθ0 (γ̂ − γ0)2.

This quantity again is for large samples close to 2 κ2/n, where κ = κ(θ0) is the standard deviation
parameter of the implied limit distribution of

√
n(γ̂ − γ0). Not surprisingly the CDs with best

performance are those with smallest limiting standard deviation, which we see enter the risk
equally in two places. That these two contributions to the risk are essentially equal, from the
dispersion of the CD and the variability of the estimator, is no coincident; the dispersion of the
CD is actually by construction reflecting this variability.

6 CD Meta-Analysis of Related Two-by-Two Tables

We agree with the importance the authors place on the role and potential further usefulness
of CD methodology for meta-analysis and other forms of combining information sources
(Section 6). Branches of modern statistics will need to finesse such tools further, both practically
and conceptually. How can data-hunting schemes be made more efficient and relevant? How
can one utilize “cheap but soft and flimsy” data from a Google crawling operation counting
occurrences of a few key words (perhaps from masses of Twitter and Facebook messages)
with “expensive but harder” types of data, to predict swings in an influenza epidemic, or the
start of a social revolt in a society, in real time? We suggest tools associated with CDs for focus
parameters and ways to combine pieces of information via estimated confidence likelihoods may
be important in such endeavours; for some illustrations and further discussion, see Schweder &
Hjort (1996, 2002, 2013).

We shall not pursue these grander aims here but wish to contribute to an ongoing debate
concerning an application Xie and Singh point to in their Section 6. It concerns attempted and
partly conflicting meta-analyses of 48 two-by-two tables. These relate to alleged increased health
risks for users of a certain antidiabetic drug used to treat type 2 diabetes mellitus (working as
an insulin sensitizer by making certain fat cells more responsive to insulin). The manufacturing
pharmaceutical company in question is over the course of 2012 alone the subject of more
than 13,000 lawsuits. For more on the background, in addition to other pointers by Xie and
Singh, see Nissen & Wolski (2007). Part of the statistical debate is how to handle the “null
tables”; 8 of the 48 tables are blessed with zero deaths and zero myocardial infarction (MI)
events.

Consider a collection of two-by-two tables in the form of paired binomial experiments,

Yi,0 ∼ Bin(mi,0, pi,0) and Yi,1 ∼ Bin(mi,1, pi,1),

in biostatistical applications typically parameterized via the logistic transformation

pi,0 = exp(θi )/{1 + exp(θi )} and pi,1 = exp(θi + ψi )/{1 + exp(θi + ψi )}.

In the application described above, Yi,1 is the number of deaths or MI events in the drug group
and Yi,0 the corresponding number of deaths or MI events in the control group. The typical
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Figure 2. Confidence distributions for each individual log-odds difference ψi , see Section 6. This is one way of representing
the relevant part of the statistical information in the relevant 40 tables. The fatter line is the optimal overall confidence
distribution computed via meta-analysis.

meta-model here is to take the log-odds difference ψ constant across groups. The natural CD-
driven meta-analysis approach is then (a) to compute, display, and compare the CD for ψ for
each of the two by two tables, followed by constructing an overall CD for the common ψ using
all the information.

The log-likelihood function is found to be

*n =
n∑

i=1

[
yi,1ψ + ziθi − mi,0 log{1 + exp(θi )} − mi,1 log{1 + exp(θi + ψ)}

]

over the n = 48 tables, where zi = yi,0 + yi,1. We may use the i-th component here to form the
optimal CD for ψ based on the i-th pair of tables, namely

H∗
i (ψ) = Pψ {Yi,1 > yi,1,obs | zi,obs} + 1

2 Pψ {Yi,1 = yi,1,obs | zi,obs},
employing the usual half-correction for discreteness and using “obs” to indicate observed value.
The conditional distribution in question is of the excentric hypergeometric type, depending as
per general exponential class theory only on ψ and not θi ; indeed f (yi,1 | zi ) is proportional to( mi,0

zi −yi,1

)(mi,1
yi,1

)
exp(ψ yi,1) for yi,1 = 0, . . . , zi . Secondly the optimality result of Schweder & Hjort

(2002) applies also to the grander task of constructing a CD for ψ using data from all tables
(in effect focussing on one parameter of the 49-parameter model and treating the other 48 as
nuisance parameters),

H∗(ψ) = Pψ {T > tobs | z1,obs, . . . , zn,obs} + 1
2 Pψ {T = tobs | z1,obs, . . . , zn,obs},
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Figure 3. Three confidence densities h∗(γ ) associated with the optimal confidence distributions H∗(γ ), for the risk
proportionality parameter of the Poisson models when used for meta-analysis of the data described in Section 6. These
are for MI only (full line, ML point estimate 1.421); for cardiovascular disease related death only (full line, ML point estimate
1.659); and for the combined group MI + Death (dotted line, ML estimate 1.482). It is apparent that the Roziglitazone drug
increases the risk for MI and cardiovascular disease related death with more than 40%.

where T =
∑n

i=1 Yi,1. The conditional distribution of T is complicated but may be evaluated
through simulation of each Yi,1 | zi,obs.

As mentioned earlier there is a still ongoing debate in the literature concerning the “null
tables” where both yi,0 and yi,1 are zero, with proposals ranging from leaving them out of
discussion and ad hoc modifications of large-sample approximations to empirical Bayesian
solutions. We suggest that the above provides a principled solution to the problem, without
ad hoc arguments: The optimal CD is that of H∗, and for the 8 out of 48 tables for which
zi,obs = 0, the Yi,1 is simply zero too; in other words, only the 40 tables where there is at
least one death really contribute to the conditional distribution of U . Figure 2 displays each
individual CD for ψ along with the optimal overall CD, clearly indicating that the drug increases
the log-odds risk (with point estimate 0.405, 95% interval [0.122, 0.680], and p-value 0.003 for
H0 : ψ ≤ 0, all read off from the CD). Only the 40 tables that matter are represented in the figure
however, as per the comment just made; also, such a null table carries no confidence information
about ψ .

Data such as these may also fruitfully be analysed using Poisson models, since luckily the
patients we are in the “high n, low p” domain of the binomial model. A natural model here
takes Yi,0 ∼ Pois(ei,0λi ) and Yi,1 ∼ Pois(ei,1λiγ ), where ei,0 and ei,1 are exposure factors (e.g.,
proportional to sample size, and possibly involving other covariates thought to influence any
differences between pairs of tables). The model has n + 1 = 49 parameters, with γ the crucial
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Figure 4. A scatter of simulated θ̂1 by θ1, with binned medians as black squares nearly following the diagonal; and a qq plot
of D(θ0) against the χ2

1 distribution.

focus parameter reporting on the extent to which the drug in question increases the risk of death
or an MI event. Figure 3 displays three confidence densities, say h∗(γ ) (derivatives of CDs
H∗(γ )), again optimally constructed via the appropriate conditional distribution, corresponding
to death, to MI, and to the combined event death or MI. These carry the same flavour as a
Bayesian’s posteriors, but are crucially different in construction and interpretation in that no
Bayesian prior camels are swallowed. They report in an optimally informative fashion on what
we are interested in, using the data and nothing but the data.

7 A CD-Driven Re-Analysis of Sims’s Bayesian Story

Together with Thomas Sargent, Chistopher A. Sims was awarded the Sveriges Riksbank Prize
in Economic Sciences in Memory of Alfred Nobel (alias the Nobel Prize in Economics) for
2011. He used the occasion of his Nobel lecture to promote Bayesian methods in econometrics
(Sims, 2012). To show that CD methods also work in more complex models, we re-analyse the
data Sims used and shall compare his Bayesian result for a key parameter with the CD obtained
from the profile likelihood.

Sims considered the following macro-economic data. For year t let Ct be consumption,
It investment, Yt total income, and Gt Government spending. The following model was
estimated using annual, chain-indexed, real GDP component data for the United States,
t = 1929, . . . , 1940:

Ct = β0 + β1Yt + σC Z1,t ,

It = θ0 + θ1(Ct − Ct−1) + σI Z2,t ,

Yt = Ct + It + Gt ,

Gt = γ0 + γ1Gt−1 + σG Z3,t .

Here the Zi,t are taken as i.i.d. and standard normal. The multiplier θ1 is of special interest. It
cannot be negative according to Sims. He therefore assumes a flat prior on the six regression
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Figure 5. The cumulative confidence distribution for θ1(with point mass at zero) together with an approximation to the
cumulative posterior distribution obtained by Sims (2012).

coefficients of the model but restricted to the positive halfline for θ1, along with a prior that is
flat in 1/σ 2 for the three variance terms. From this he obtains a posterior distribution for the
interest parameter that is nearly triangular on [0, 0.17] with mode at θ1 = 0.

The left plot of Figure 4 indicates that the unrestricted maximum likelihood estimator θ̂1 is
free of any bias in the median. The qq plot to the right in the figure is similar to the other qq
plots we looked at for various values of the parameters, and indicates that the profile deviance
evaluated at the assumed value θ0

1 , D(θ0
1 ), is nearly χ2

1 distributed. Assuming this distribution,
the unrestricted confidence curve cc(θ1) = 11(D(θ1)) is obtained (not shown here). This is then
converted to a CD, following our general recipe mentioned above. Setting C(θ1) = 0 for θ1 ≤ 0,
corresponding to Sims’s prior constraint, we reach our CD; see Figure 5 for Sims’s cumulative
credibility and our cumulative confidence. We should be 90.03% confident that θ1 = 0, that is,
investment was insensitive to changes in consumption in the pre-war period!
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Min-ge Xie
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E-mail: mxie@stat.rutgers.edu

1 Introduction

Sincere thanks to Professors David R. Cox, Brad Efron, Donald A.S. Fraser, Nils L. Hjort,
Emanuel Parzen, Christian P. Robert, and Tore Schweder for their discussions. I am grateful for
their insightful and scholarly contributions, which will no doubt clarify many important issues
pertaining to the topic of confidence distributions and general statistical inference as a whole.
While we were waiting and looking forward to receiving the discussions, Professor Kesar Singh,
my co-author of the article and a personal friend, sadly had a massive heart attack and passed
away much too young and too sudden. I have been left alone to carry out this rejoinder and our
research. Professor Singh was a great thinker and a dear colleague. He will be deeply missed in
the statistics community and also in my personal life.

In this rejoinder, I will begin by answering a few common questions from the discussants.
In particular, I will provide in Section 2 a pragmatic view of statistical inference shared by
Professor Singh and myself. We have subscribed to this pragmatic view in our approach to
confidence distributions. And it is our hope that this view could provide a potential conciliation
point for the Bayesian-fiducial-frequentist controversies of the past. In Section 3, I will respond
to a question raised by Professors Fraser, Schweder, and Hjort on whether it is helpful to distance
confidence distributions so sharply from fiducial distributions. In Section 4, I will discuss a
subtle difference in perception between a confidence interval and a confidence distribution,
drawing from a discussion by Professor Cox. Finally, in Section 5, I will offer our response to
each discussant.

2 A Pragmatic View of Statistical Inference and a Frequentist Measure

Statistical approaches have evolved in many forms to tackle more and more complicated data
problems in every corner of our life. Although there are many different statistical data-analysis
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approaches of varying depth and complexity, they can be loosely described in two grossly
oversimplified steps: A probability structure (model) is assumed to describe the uncertainty
of the variables in the sample data; then, data analysis is performed to learn more about the
assumed model and to make inference and statistical conclusions. In a frequentist approach, the
data analysis is performed conditional solely on the assumed model structure. In the frequentist
approach, the parameters in the model are unknown fixed quantities. In a Bayesian approach,
in addition to the assumed probability model on the data, a prior probability structure for the
model parameters is also assumed, and both the model and prior assumptions are utilized in
data analysis. In the Bayesian approach, the parameters in the model are unknown random
quantities. The frequentist and Bayesian approaches represent two major groups of research
and paradigms. They have co-existed for a long time but with protracted battles, vociferously
fought, from both camps. An interesting tidbit is that R. A. Fisher “began life a Bayesian”
and Bayesian theory (then referred to as “the theory of inverse probability”) was “an integral
part of the subject” before Fisher’s introduction of fiducial inference (c.f., Zabell, 1992). Fisher
was among the first to question the “subjective and arbitrary” Bayesian approach because it
“depended upon an arbitrary assumption [referring to the prior].” He proposed an “objective
alternative,” known as fiducial inference, to “define a distribution for parameters of interest
that captures all of information that data contain about these parameters . . . without assuming a
prior distribution.” (Hannig, 2009). The now well-accepted concept of confidence interval by
Neyman (1937) came later after Fisher’s introduction of his fiducial inference. In fact, Neyman
described his development as “an alternative description and development of Fisher’s fiducial
probability” and Fisher referred to it as “a generalization of the fiducial argument” (Zabell,
1992). But the relationship between Fisher and Neyman became “completely broken down”
soon after. Based on what we have read, their feud appeared to have hampered, to a large degree,
any potential, mutually cordial and consistent development of fiducial and confidence theory.

The Bayesian-frequentist-fiducial debates reflect “different attitudes to the process of doing
science” (Efron, 2005). As an applied science providing analytic tools for other scientific
subjects, a key element of statistics (statistical science) seems to be that a statistical approach
should provide a sensible result to help advance scientific development. Perhaps, we should, as
advocated by Kass (2011) and many others, “move beyond the frequentist-Bayesian controversies
of the past” and abandon any attempt to take “as its goal exclusive ownership of inference” which
is “doomed to failure.” Instead of arguing which attitude or defining logic is superior, we from
a pragmatic viewpoint could perhaps judge each approach based on its end result and focus
more on whether or not the result from the approach is sensible. As pointed out by Professor
Cox (in a private communication), regardless of which method we use, Bayesian, frequentist or
fiducial, in the end the ultimate judgment is that “a statistical result should make sense.” If we
are conscientious about our effort to provide sensible results and conclusions, it is our opinion
that we provide a good service to society and make a contribution to a better understanding of
science.

Different statistical paradigms may apply different rules or criteria to judge whether or not
the end result is sensible. To many, the frequentist repetitive interpretation of the coverage rate
of a confidence interval is a good criterion that can be used to measure whether an inference
conclusion is a sensible one. It is simple, widely accepted and easy to explain in layman’s terms.
In the review article, we have subscribed to this frequentist principle and have concentrated on
whether or not an approach can provide intervals with sensible frequentist coverage. Throughout
the article, we have tried to articulate the theme that any approach, regardless of being frequentist,
fiducial or Bayesian, can potentially be unified under the concept of confidence distributions,
as long as it can be used to build confidence intervals of all levels, exactly or asymptotically.
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Under this development, a fiducial or a Bayesian approach can be viewed as just one of many
procedures that can potentially provide confidence distributions (“distribution estimators” with
proper frequentist coverage rates). The role that a fiducial or a Bayesian approach plays in the
distribution estimation to provide a confidence distribution is similar to the role that an MLE
procedure or a set of estimating equations plays in point estimation to provide a consistent
estimator for a parameter of interest. Of course, the consideration of the coverage rate is just
one criterion. The need to consider additional requirements, for instance, some optimality
criteria, may arise depending on the specific context of each application. Nevertheless, we
think measuring a performance by the frequentist coverage criterion, which underlines our
development of the confidence distribution concept, is at least a good starting point.

Many may prefer to use a Bayesian criterion to judge whether a result is sensible. If confidence
or fiducial distributions can be unified under a Bayesian framework, as long as the approaches
provide sensible solutions that meet the demands of science and applications, then we see no
flaws in such an approach.

3 Is It Helpful to Distance Confidence Distributions So Sharply from Fiducial
Distributions?

Professors Schweder and Hjort state that as mathematical objects, confidence distributions
and fiducial distributions are equivalent. This is especially true when we use the same pivot.
Professor Fraser also questions whether our treatment of confidence distributions draws a rather
difficult dividing line between confidence and fiducial. Some of the answers may possibly be
explained by our education and our journey towards doing research on the topic.

The first time that I learned about fiducial distributions was during a half-hour seminar by
Professor Xiru Chen when I was a senior undergraduate student in the University of Science
and Technology of China. At that time, it was very difficult for me to understand how a fixed
number (parameter) could have a distribution and we were warned that the fiducial idea was very
controversial. I had never seriously encountered fiducial inference again until I started to work
on confidence distributions. Professor Singh’s first encounter with the fiducial idea was the one-
page introduction in Rao (1973), which also suggested that the development is “controversial”
with “several objections.” He would probably have also avoided the fiducial concept completely,
if he had not started to do research on confidence distributions. Our experience is very typical
for many statisticians of our generation. We are either minimally or never exposed to the fiducial
concept. Even with a minimal exposure, we are immediately warned that it is controversial and
advised to stay away from the concept. This is just an unfortunate truth, since we agree with
Professor Fraser that the fiducial idea is one of Fisher’s major innovative contributions involving
deep insight and wisdom. We suspect that the widespread negative exposure of fiducial inference
is partly caused by the fact that a fiducial distribution has never been fully defined and “Fisher’s
own thoughts on fiducial inference underwent a substantial evolution over time” (Zabell, 1992).
Also, Fisher was very passionate about his fiducial inference idea and he attached, in our view,
requirements that are too constraining. Many of the so-called fiducial paradoxes are directly
related to the strong requirements imposed by Fisher. In addition, his disputes with Pearson,
Neyman, and others, and his furious rejection of Neyman’s interpretation of fiducial distributions
(i.e. confidence distributions), did not help the development either.

Our research on confidence distributions started with our effort to better understand bootstrap
distributions conceptually, and not merely treating them as computing objects. This lead to our
attempt to expand the estimation concept from a single point or an interval to a sample-dependent
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distribution function. The paper by Efron (1998) helped shape our development and choice of the
term confidence distribution. It was never our intention to re-open the long-lasting philosophical
debate in the history of statistics. To us, the frequentist interpretation of probability coverage
rate is simple, easy to explain and widely accepted by the majority statisticians and scientists
in other fields. Under this interpretation, we can clearly define a confidence distribution in
the framework of estimation. Professor Fraser asks whether we are making issues with the
over-enthusiasm in some of Fisher’s arguments. Compared with Fisher’s proposal of fiducial
distributions, it is true that the key difference of the confidence distributions studied in our
article is that they are freed from some of those restrictive constrains set forth by Fisher. We also
avoid Fisher’s interpretation that randomness can be transferred from sample data to parameters
(which works nicely in location and scale parameter models, but not necessarily all), by treating
a confidence distribution as a “distribution estimator” instead of an inherent distribution of the
target parameter. We choose to take this route, not because we are trying to make issues with
some of the fiducial arguments but to follow our objective (in Professor Cox’s statement) “to
provide simple and interpretable summaries of what can reasonably be learned from data (and
an assumed model).” Some examples of confidence distributions discussed in our review article
may not pass the test of being a bona fide fiducial distribution judged by Fisher’s original set of
rules. The frequentist development allows us to sidestep several controversies and contradictions
in the classical fiducial inference. Based on our experience to date, the method seems to provide
reasonable answers in many practical problems.

Although we think that a confidence distribution is a clean and coherent frequentist concept
(similar to a point estimator), we do not believe that it can be developed into a new fiducial
theory or a new philosophy (either frequentist or Bayesian) that can solve all statistical paradoxes.
Professor Cox points out that our goal to provide simple and interpretable summaries “is not
always achieved by unqualified specification of a distribution.” Indeed, a sensible confidence
distribution may not always exist. Sometime, even when we can find a confidence distribution, it
may not provide a sensible solution as judged by optimality or other criteria. From the viewpoint
of estimation, these issues are not different from those in point estimations, since we also
encounter situations and examples in which a sensible point estimator does not exist or is hard
to find. While we think that the confidence distribution is a useful tool for statistical inference,
we thank and concur with Professors Cox, Fraser, Schweder, and Hjort for highlighting the risks
of over extrapolation and interpretation of the concept.

4 Confidence Interval Versus Confidence Distribution

In his discussion, Professor Cox explains his suggestion of using the term confidence
distribution in his 1958 paper. The key, from our interpretation, seems to be that a confidence
distribution can have “more flexibility” for a summarization of evidence than a confidence
interval of a fixed significance coefficient (α level). As described by Professor Cox, one often
has a sense that “when 95% confidence limits of a normal mean are found then, even if the
parameter is outside the calculated range, it will not be too far outside.” This cannot be captured
based on the definition of a 95% confidence interval, but can be clearly displayed by a confidence
distribution. Cox (1958) highlighted the distinction between inference and decision. Professor
Cox has also discussed the role of significance coefficient. Although a confidence interval is an
inference procedure, the choice of significance coefficient involves an operational decision. A
confidence distribution does not involve any choice of a significant coefficient or any operational
decision. As an inference tool, it can provide a fuller picture to summarize all evidence for the
target parameters.
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We share the same view with Professor Fraser and several other discussants that we need
to raise the stature of confidence (intervals) to a distributional inference. We also agree with
Professors Schweder and Hjort that the usefulness of distributional inference under frequentist
paradigm is “too modestly explored,” a sentiment also shared by Professor Parzen in his
discussion.

5 Response to the Discussants

5.1 David R. Cox

Professor Cox’s discussion provides a precise and clear portrait of a confidence distribution, its
relationship with Fisher’s original fiducial idea, its connection to Neyman’s original introduction
of a confidence interval, and also an interesting distinction between Fisherian discussions and
those in the spirit of Neyman and Pearson. Professor Cox points out that the objective of a
confidence distribution is to “provide simple and interpretable summaries of what can reasonably
be learned from data (and an assumed model).” He also stresses that “some conditions are,
however, needed for the confidence distribution to be an appropriate summary.” We fully
embrace these messages and are very grateful for Professor Cox’s contribution, insight and
wisdom.

Professor Cox points out the interesting distinction that Fisher usually begins with a
sufficient statistic where available, whereas Neyman–Pearson theory starts with sample data
and sufficiency is the aftermath of an imposed optimality criterion. He asks whether there
would have been any general implications for our paper if greater weight had been placed
from the start on sufficiency, including asymptotic sufficiency. We have no definite answer
for this question. So far, our work on confidence distributions is in the spirit of Neyman and
Pearson and starts with sample data. Some recent fiducial developments under the framework of
generalized fiducial inference (see, e.g. Hannig, 2009) have also started with sample data. Since a
meaningful reduction by sufficiency is not always available, starting from sample data allows the
developments applicable to broader settings. But, as stated by Professor Cox, when applicable,
the sufficiency concept is more general than the optimality criteria of Neyman–Pearson theory.
Although we have not carefully investigated the issue, we speculate that in some (but not
all) situations when reduction by sufficiency is applicable, starting from sample data instead
of a sufficient statistic may cause us to pay some price in terms of optimality. It would be
certainly interesting to start our CD development with sufficiency (or asymptotic sufficiency)
and investigate optimality issues.

5.2 Bradley Efron

Professor Efron states that “an important, perhaps the most important, unresolved problem
in statistical inference is the use of Bayes theorem in the absence of prior information.” He
points out that the development of confidence distributions can potentially be a way to practice
“objective Bayes.” He also provides an additional bootstrap example leading to a higher order
(second order) confidence distribution. The points raised by Professor Efron are interesting
and worth further pursuing. We are very grateful to Professor Efron for his consistent support,
encouragement, and suggestions relating to our developments on this subject.

As mentioned previously, our research started with an investigation to understand a bootstrap
distribution as a “distribution estimator” of a parameter of interest. Viewing a bootstrap
distribution function as a frequentist distribution estimator for inference instead of merely a
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computation procedure has helped shape our view on confidence distributions. In our article,
we have also briefly mentioned the potential connection of confidence distributions to objective
Bayesian approaches. In addition, we have reviewed and briefly explored the connections of a
bootstrap distribution to a confidence distribution and a CD random variable. We think that the
connections can perhaps also be further extended to some computing methods developed under
a fiducial framework or based on fiducial ideas.

5.3 Donald A.S. Fraser

Professor Fraser’s discussion provides an overview of distributional inference along with
historical information and his own experiences. The scholarly discussion is very valuable and can
help us better understand the classical fiducial development and frequentist inference. We share
many common views with Professor Fraser regarding distributional inference. In particular, like
Professor Fraser, we also believe that Fisher’s innovative idea of fiducial inference should have
been better received by, and more broadly introduced to, the general statistical community. We
also embrace Professor Fraser’s strong warnings against overzealous statements on distributional
inference that overlook potential inherent risks. We have never believed or hinted that treating a
confidence distribution as a distribution estimator can solve all problems in statistical inference.
Instead, we discussed the limitation of the confidence distribution approach in our discussion
section. We view these difficulties as essentially similar to those problems encountered in point
estimations.

Professor Fraser appears to prefer keeping Fisher’s fiducial inference in its entirety, while we
are adopting a viewpoint more in the spirit of Neyman and Pearson. One key difference, which
we have stressed in our article, is that we do not view a confidence distribution as an inherent
distribution of a fixed target parameter. Rather, we treat the confidence distribution approach as a
sample-dependent function used to estimate the parameter of interest. Although Fisher proposed
an elegant interpretation of transferring randomness from data to parameter after observing
data in location/scale family problems, we still feel it is difficult to understand and explain
to the general public that a fixed number (parameter) has a distribution. On the contrary, our
experience tells us that the Neymanian interpretation is easier to explain and communicate. This
interpretation also frees us from some of the constraints Fisher over-enthusiastically imposed
(such as uniqueness, optimality and manipulation of distributions, etc.) and allows us to sidestep
many so-called fiducial “paradoxes.” We agree with Professor Parzen who states—“Today the
question should not be about credit for methods, but a framework for tools which are simple
and powerful for applications.” It is our hope that the fiducial idea and confidence distribution
developments will not just be a research topic for elite statisticians but also be an inference tool
that can be understood and used by general public and practitioners of statistics. We thank and
appreciate Professor Fraser for his engaging discussion and insightful comments.

5.4 Emanuel Parzen

Professor Parzen provides an interesting interpretation of confidence distributions using
confidence quantiles, with which we were not previously familiar (and guilty of negligence
of the related literature in our article). In his discussion, Professor Parzen introduces confidence
quantiles using estimating equations based on pivots. The definition (equation) is similar to
the classical fiducial equation and also so-called generalized fiducial inference (but where
estimating equations are introduced based on individual data; see, e.g. a review article by
Hannig, 2009). Professor Parzen’s discussion provides an interesting look and connection to the
CD random variable in our article. When the structure and solution exist, the approach provides
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a systematic and easy way to obtain confidence quantiles and also a confidence distribution.
One question that I have on Professor Parzen’s discussion is whether the h function (internal
representation) always exists or, if not, under which general conditions does it exist. I think it is
worthwhile to further explore the connections between the existing developments of confidence
quantiles and confidence distributions, in particular under the scope of distributional-inference-
based computing, including fiducial, CD-based and bootstrap computational methods. Finally,
we really appreciate and thank Professor Parzen for his constant support and for raising the
interesting connection.

5.5 Christian P. Robert

Professor Robert raises many objections to our article and non-Bayesian inferences. From
his discussion, it is not difficult to tell that Professor Robert is very passionate about Bayesian
inference. I appreciate the passion and conviction exhibited in Professor Robert’s discussion,
even though I am surprised by many of his comments. Professor Robert’s objections can
probably categorized into two groups: 1) the statements that are invalid in Professor Robert’s
view of Bayesian philosophy and principles and 2) the statements that are misinterpreted and
misunderstood by Professor Robert. Items in category 1 include those concerning the sacred
status of priors and the accusation of being “ad-hocquery” for allowing multiple estimators in
frequentist practices, among others. To avoid prolonging the existing patriotic debate between
different philosophical points of view, which our review article has set out to overcome to begin
with, I will not address category 1 and will simply let the reader be the judge. Among the
objections related to category 2, quite many of them seem to be simple misunderstandings and
misinterpretations of our wording. Some of the others, aside from our disagreements on some
philosophical issues, contains technical statements made by Professor Robert which are not quite
accurate. In particular, I would like to reply to Professor Robert’s discussion on the “discrepant
posterior phenomenon,” for which I believe has broad implications and practical value.

The discrepant posterior phenomenon was reported in Xie et al. (2012) as a cautionary tale
and also as a reflection as how we at times may overly emphasize a methodology to provide a
solution without paying enough attention to the undesirable consequences that could be brought
about by the methodology. Professor Robert uses two simulated numerical examples to show that
the discrepant posterior phenomenon does not exist in a regular Bayesian analysis. He further
suggests a copula procedure that can always produce a global prior from marginal priors, and
thus a Bayesian solution to the real data problem addressed in Xie et al. (2012). But, in fact,
this is exactly a blind spot in a regular practice that was highlighted in Xie et al. (2012)—we
are at times too easily satisfied to have a methodology to provide a solution without further
examining its validity in specific applications. Also, very often, we have been overly reliant on
simulation results under specific settings for proving a concept. Indeed, in Professor Robert’s
Figure 2, which is used to “prove” that the discrepant posterior phenomenon does not exist, we
can clearly see the undesirable discrepant posterior phenomenon. Although it is not an issue
with the marginal distributions of p1 − p0, the undesirable discrepant posterior phenomenon
exists on the marginal distributions of p1: there is a triangle formed by the centres of the three
(blue, light brown, and red) contours and the mode of the marginal posterior of p1 (around 0.4)
is bigger than both the mode of the marginal prior (1/3 ≈ 0.33) and the MLE (35/100 = 0.35)
directly obtained from the data. Although the phenomenon is relatively mild, it clearly presents
in Professor Robert’s Figure 2.

A much simpler example (see Figure 1 below) to demonstrate the discrepant posterior
phenomenon is perhaps to use bivariate normal data with an informative bivariate normal
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Figure 1. The setup for the figure is: a sample of n = 3 points with a sample mean (x̄1, x̄2) = (2, −2) is observed from a
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; for simplicity, the variance matrix is assumed to be known with (σ 2
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(0.64, 4, 0.5). The parameter of interest is θ = µ1 + µ2, which has a marginal prior π (θ ) ∼ N (0, 4.64). In additional,
we also know the marginal prior of π (µ1) ∼ N (0, 4). (a) Contour plots of the independent joint prior [in yellow] of
(µ1, µ2) = π (µ1)π (µ2) with π (µ1) ∼ N (0, 4) and π (µ2) ∼ N (0, 0.64), the likelihood function [in red] based on the observed
sample mean (x̄1, x̄2), and posterior [in blue]; (b) density plots of the marginal prior of µ1 [in yellow], the density function
of N (0, 2.08) [in red], and the marginal posterior of µ [in blue].

prior. (Professor David Draper first pointed out that the discrepant posterior phenomenon exists
even in bivariate normal examples in a follow-up discussion of my talk in his department at
University of California at Santa Cruz. In the bivariate normal example, Professor Draper and
his colleague worked out, mathematically, a set of explicit conditions (parameter settings) under
which a discrepant posterior phenomenon occurs.) The bivariate normal example is cleaner
mathematically than the beta-prior example introduced in Xie et al. (2012) and, unlike the
beta-prior example, it can also be examined under the context of the marginalization paradox
(Dawid et al., 1973). (Note that in the beta-prior example of Xie et al. (2012), it is not possible
to have the marginal model f (data|θ), and thus it is not covered by the regular narrative of
the marginalization paradox; see Section 5 of Xie et al. (2012) for more discussions.) The
marginalization paradox showed that Bayes formula can produce different (marginal) Bayesian
posteriors for the same parameter, depending on whether we use a full model with all parameters
or we use only its corresponding marginal models. The standard Bayesian inference sidesteps
this paradox by advocating the use of the full model. But there is a further message by the
discrepant posterior phenomenon: the full joint modelling approach advocated by the standard
Bayesian inference may not provide us desirable solutions in some situations. The question
raised in the real data example of Xie et al. (2012) is not whether we have a method to produce a
numerical result. Rather, we ask whether we have a sensible methodology to provide a coherent
solution when skewed distributions are involved in a multivariate setting.

This discrepant posterior phenomenon may have broad implications in the general practice
of Bayesian analysis. For instance, many researchers have routinely drawn conclusions solely
based on marginal posterior distributions without checking the validity of such conclusions.
The discrepant posterior phenomenon suggests that further care is needed. It also raises a
general question about using informative priors, regardless of whether or not we treat a
prior as a reference measure. In particular, we need to ask: should we still incorporate an
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informative prior distribution with the likelihood function even if they are clearly mismatch?
The general discussion of the discrepant posterior phenomenon is also of relevance to some
current research topics in Bayesian statistics, specifically in the attempts to quantify the impact
of prior distribution on posterior inference as well as the work on calibrating a prior distribution
using partial sample data; see, e.g. O’Hagan (1995) and Berger & Pericchi (2004).

5.6 Tore Schweder and Nils L. Hjort

Schweder & Hjort (2002) and other publications of confidence distributions by Professors
Schweder and Hjort have used the same interpretation of confidence distributions in the spirit
of Newman and Pearson as we do. We thank Professors Schweder and Hjort for their insightful
discussion, which touches a broad range of topics with depth and insight. Their discussion,
from the classical inference prospective, including their account of the intertangled relationship
between fiducial and confidence distributions and their examples of confidence distributions
in several non-trivial settings, provides a rich source of knowledge for understanding better
confidence distributions and statistical inference as a whole. The discussion reflects their
understanding and passion for the development of confidence distributions. We share their
sentiment that distributional inference, especially confidence distributions and confidence
likelihoods, has so far only been “too moderately explored” and that confidence distributions and
confidence likelihoods should be used more “as broadly applicable tools for modern statistics.”

We would like to elaborate the discussion of “ordinary probability calculation” and clarify our
position on this particular issue. In Section 2 of their discussion, Professors Schweder and Hjort
bring out a nice example in the classical literature on fiducial inference to show that distributions
derived from fiducial distributions (or confidence distributions) are not, in general, confidence
distributions. The same message was conveyed, though less directly, in the latter half of Section
3.1 in our review article. The key is that we view a confidence distribution as simply an object (a
function that meets the requirements of being a distribution function) to estimate the parameter
of interest, rather than as an inherent distribution of the parameter. There are three layers of
messages that we would like to elaborate. First, the requirements of being a distribution function
in the CD definition follow the ordinary definition of a cumulative distribution function (i.e. non-
decreasing, from 0 to 1, etc.). Thus, in its mathematical form and as a pure mathematical object,
a confidence distribution is an ordinary distribution function. This consideration is our statement
in Section 3.1 of our review article that “like a bootstrap distribution, a confidence distribution is
an ordinary probability distribution function for each given sample.” Second, unlike the classical
fiducial interpretation, the confidence distribution is not an inherent distribution of the parameter
of interest. Thus, as discussed by Professors Schweder and Hjort that distributions derived from
a manipulation of confidence distributions by ordinary probability calculation (treating them
as distributions of parameters) generally do not give us confidence distributions (because they
do not guaranteed a proper coverage rate of their corresponding intervals). We have the same
message in our Example 3.1. This being said for the general case, we have an additional (the third
layer of) message in Section 3.1 of our review article. That is, in some special situations such
as monotonic or smooth transformations, the manipulation of confidence distributions actually
does lead to either an exact or asymptotic confidence distribution for the transformed parameter.
Thus, a manipulation of confidence distributions using ordinary probability calculation may
sometime be used as a systematic procedure to obtain a confidence distribution. Since there
is no guarantee in general (in viewing of the message in layer 2), we agree with Professors
Schweder and Hjort that one must check each time that the sample-dependent function obtained
by a manipulation satisfies the requirements of being a confidence distribution or not.
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Finally, our review article has stated that a fiducial approach (and also, to some extent, a
Bayesian approach) provides a systematic way to obtain confidence distributions. This statement
is only in a general sense and it is in the same spirit as the statement that an MLE is often
consistent. Due to its delicate nature, as described by Professors Schweder and Hjort, one must
check any distribution obtained by a fiducial (or a Bayesian) argument before declaring it to
be a confidence distribution. Our article and Table 1 in Singh and Xie (2011) have used an
analogy of MLEs versus consistent estimators to compare the relationship between fiducial
and confidence distributions. The fiducial and Bayesian methods are like our “MLEs” which
provide concrete ways to obtain sample-dependent distribution functions for inference. Just as
an MLE does not automatically guarantee a consistent point estimator, a fiducial distribution or
a Bayesian posterior does not always have the frequentist coverage property and does not have
to be a confidence distribution. But, often a fiducial distribution and, to some extent, a Bayesian
posterior can be viewed as a confidence distribution, since under some regularity conditions,
the sample-dependent distribution function from a fiducial or Bayesian argument satisfies the
frequentist coverage requirement, exactly or asymptotically.
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