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Compact Muon Solenoid

Distance-weighted graph-based neural networks take point-wise structured input (vertices) and translate the semantic
affinity between the vertices into geometric proximity in high-dimensional latent spaces. Two distance-weighted graph
network architectures, GravNet and GarNet, are applied to the simulated detector readout of the future endcap
calorimeter of the CMS experiment.

GravNet and GarNet High-Granularity Calorimeter

* GravNet and GarNet: Distance-weighted graph 0] CMS experiment plans to install a novel silicon + scintillator-
neural network architectures introduced in Ref [1] N = Doown %0 based endcap calorimeter (HGCAL) [2] for HL-LHC (2026-)
+ Self-contained and stackable in a larger network £ | ¢ i s » Pseudorapidity coverage 1.5 < |n| < 3.0
* Input B x Vx Fin = output B x V x Fout g * 52 layers corresponding to max. ~10 interaction lengths T
B = batch size, V = (maximum) number of vertices, 221 = CE-E thickness ~25 radiation lengths
Fin, Four = number of input and output vertex features , - |
. GravNet invol Vs Vadi . 10} - [ « 6 million hexagonal Si sensors
FaVINSL INVOIVES a ¥ vadjacenty matfix 600 m=2 total sensor area, 0.5-1 cm2 per sensor
— Memory-intensive, but provides higher accuracy " & w0 @0 o mgeioo

. e Occupancy maximum ~60% at 200 pileu
* GarNet is light on compute resource and fast pancy PIEUR
e Hexagonal (irregular) arrangement of sensors and

GravNet for accuracy'critical taSkS, GarNet for Iatency' and resource-critical tasks. Nit sparseness motivate graph neural network apprOach
for data processing

* Reconstruction goals

(2) O
Layers step-by-step of « Form clusters of energy depositions from individual
O .
. . . _ Fux articles (O(100) per endcap @ PU200
(a) Finfeatures are converted into S "spatial" and Figr"intrinsic" attributes of the O P (O )P P )
vertices via dense layers. (b) * Accurate energy assignment to clusters o DRRRRRRRRRARRRRRA
(b) GravNet: S features are interpreted as Cartesian coordinates in an S- >o< L  Particle identification decuon ‘ “ ‘ .[
dimensional latent space. Each vertex forms an edge with N nearest ~/ « HGCAL participates in level-1 trigger (L1T) o R
neighbor vertices by the Euclidean distance to form a graph. . ‘ o
(c) GarNet: Sfeatures are interpreted as one-dimensional distance to abstract © \ / I;Isetiergat?e p:rr]fgr&rrt?glgqg I\t/JViSttﬁignSgp:nergy Cvent disolavs from 16- and 17-aver bearm tests.
I I : m\ A\ ; vent aisplays 1rom - dn -layer beam lesls
aggregator’ nodes. All vertices are connected to all aggregators. W/ Cdor ol ) i . ”
(d) Each vertex (GravNet) or aggregator (GarNet) collects the max and mean S\ or 9 sllicon pads dre grouped Into one trigger ce

of the features of the connected vertices. Features are transformed by a
common dense layer, weighted by a decreasing function of the distance.
In GarNet, aggregators return the collected features back to the vertices
with the same weight function. Collected features are appended to the
intrinsic features of the vertices.

Clustering with GravNet

(e) Concatenation of the input and internal intrinsic features are passed
through a dense layer to produce the Foutoutput features for each vertex.

* Using a model with 3 GravNet layers interleaved with additional message-passing
layers and fully-connected layers (166k parameters)

* Input data: simulation of 5 particles shot within a narrow (AR < 0.5) cone
e Particle species: randomly chosen from p=, y, e, and 1+

GarNet on FPGA for Triggering

e Particle energies: randomly chosen from 10-100 GeV

e Hits are pre-clustered within each HGCAL layer before fed into the network

« Qutput: per hit, probability of the hit belonging to a cluster due to each particle

 GarNet is implemented as FPGA firmware
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