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Fig. 1: Pictorial representation of the data flow across the GarNet and the GravNet layers. (a) The input features
FIN of each vi 2 V are processed by a dense neural network with two output arrays: a set of learned features FLR and
spatial information S in some learned representation space. (b) In the case of the GravNet layer, the S quantities
are interpreted as the coordinates of the vertices in some abstract space. The graph is built in this space, connecting
each vi to its N closest neighbors (N=4 in the figure), using the euclidean distance dij between the vertices to rank
the neighbors. (c) In the case of the GarNet layer, the S quantities are interpreted as the distances between the
vertices and a set of S aggregators in some abstract space. The graph is then built connecting each vi vertex to each
aj aggregator, and the S quantities are the dij euclidean distances. (d) Once the graph structure is established, the f i

j

features of the vj vertices connected to a given vertex or aggregator vk are converted into the f̃ i
jk quantities, through

a potential (function of djk). The corresponding information is then gathered across the graph and turned into a new
feature f̃ i

k of vk (e.g. summing over the edges, or taking the maximum). (e) For each choice of gathering function, a new
set of features f̃ i

k 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector. The resulting feature
vector is given as input to a dense neural network with tanh activation, which returns the output representation FOUT.

Fig. 2: Calorimeter geometry. The markers indicate the
centre of the sensors, their size the sensor size. Layers are
colour-coded for better visualisation.

The calorimeter is made entirely of Tungsten, with a width
of 30 cm ⇥ 30 cm in the x and y directions and a length
of 2m in the longitudinal direction (z), which corresponds
to 20 nuclear interaction lengths. The longitudinal dimen-
sion is further split into 20 layers of equal thickness. Each
layer contains square sensor cells, with a fine segmenta-
tion in the quadrant with x > 0 and y > 0 and a lower
granularity elsewhere. The total number of cells and their
individual sizes vary by layer, replicating the basic fea-
tures of a slightly irregular calorimeter. For more details,
see Fig. 2 and Table 1.

Charged pions are generated at z = �2m; the x and y
coordinates of the generation vertex are randomly sampled
within |x| < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z compo-
nent is sampled uniformly between 10 and 100GeV. The
particles therefore impinge the calorimeter front face per-
pendicularly and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded
for each event. These quantities correspond to the FIN fea-

GravNet for accuracy-critical tasks, GarNet for latency- and resource-critical tasks.

Distance-weighted graph-based neural networks take point-wise structured input (vertices) and translate the semantic 
affinity between the vertices into geometric proximity in high-dimensional latent spaces. Two distance-weighted graph 
network architectures, GravNet and GarNet, are applied to the simulated detector readout of the future endcap 
calorimeter of the CMS experiment.
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Displays of 3 example events. Points 
represent the HGCAL hits, with size of 
the points proportional to the recorded 
energy at the sensor. Colors correspond 
to the source particle. The left plot of 
each row represents the ground truth, 
and the right plot shows the model 
prediction where hits are colored by the 
highest-probability cluster. The network 
architecture is based on GravNet, with 
some modifications with respect to the 
original implementation.

ROC curves for the e/γ versus hadron classification of 
HGCAL L1T clusters. Constituent trigger cells of the 
clusters in single-photon and single-pion events with 
0 pileup are used as inputs to the model. Fake rate is 
higher in the HLS implementation due to the lower 
numerical precision used in the calculation to keep 
the FPGA resource usage to a manageable level.
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Fig. 5: Comparison of inference time for the network ar-
chitectures described in the text, evaluated on CPUs and
GPUs with di↵erent choices of batch size. The shaded area
represents the +1� statistical uncertainty band.

Note added

After the completion of this work, Ref. [28] appeared, dis-
cussing the application of a similar approach to the prob-
lem of jet tagging.
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10.2. Beam tests 273

Figure 10.14: CE-E (left), CE-H (centre) and AHCAL (right) on the scissor table in the H2 beam
line at CERN.

(top) and a 17-layer test at CERN in 2017 (bottom). The colour scale represents the signal size
in each hexagonal cell.

Figure 10.15: Top: Event display showing the shower development in the 16-layer test at
FNAL in 2016 due to an incident 32 GeV electron; Bottom: Event display showing the shower
development of a 300 GeV hadron in the 17-layer test at CERN in 2017.

As an example of hadron shower development in the CERN tests, Fig. 10.16 shows the hit

1 Introduction

The high luminosity phase of the LHC (HL-LHC), expected to start its operation in about ten years,

will integrate 10 times more luminosity than the LHC, with the aim of pushing forward the demanding

physics program of Phase II [1]. The high radiation and high pileup expected are major challenges for the

current detectors, which will be upgraded to maintain excellent performance even in the harsh HL-LHC

environment. As part of the HL-LHC upgrade program, the CMS collaboration will replace the existing

forward calorimeters with a High Granularity Calorimeter [2], providing a unique fine grain in view of a

multi-dimensional shower reconstruction. This is a fundamental upgrade for the whole detector given the

important role of the forward calorimeter for physics in Phase II, it will also be crucial to complement the

tracker upgrade with extended coverage in the forward region and a reduced material budget.

2 The High Granularity Calorimeter

In the mechanical design the HGCAL consists of a sampling calorimeter with silicon and scintillators as active

material, including both the electromagnetic (EE) and the hadronic (FH+BH) sections
⇤
. A schematic view

is given in Figure 1. Silicon is the main active material, it is used in the electromagnetic and innermost

regions of the hadronic section, where the radiation is expected to be higher (up to 10
16

n/cm
2
). It is

transversely segmented into hexagon cells of about 1 cm
2
surface, for a total of over 6 million channels.

Plastic scintillator tiles are used in the outermost regions of FH and BH.

In the electromagnetic part, to accommodate 28 sampling layers in about 30 cm, silicon sensors are mounted

on either side of a copper plate, based on the stack illustrated in Figure 2, for a total of 14 copper support

plates inter-spaced by lead absorbers. The thickness of the EE part amounts to about 25X0 and about 1�.
The hadronic part extends for about 1.5 m in depth and comprises 12 sampling layers in each of the FH and

BH sections with stainless steel as absorber. The thickness of the hadronic part corresponds to about 3.5�
and 5.7� for the FH and BH respectively, for a total of about 9� for the 24 layers.

Figure 1: Schematic view of the High Granularity Calorimeter design.

⇤
To reflect the design decision and the integration in the CMS detector nomenclature, the HGCAL is most recently referred

to as CE, the electromagnetic section (EE) is designated CE-E, and the hadronic section (FH and BH) is CE-H.
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• GravNet and GarNet: Distance-weighted graph 
neural network architectures introduced in Ref [1] 

• Self-contained and stackable in a larger network 
• Input B × V × Fin → output B × V × Fout  

B = batch size, V = (maximum) number of vertices,  
Fin, Fout = number of input and output vertex features 

• GravNet involves a V × V adjacency matrix  
→ Memory-intensive, but provides higher accuracy 

• GarNet is light on compute resource and fast

(a) Fin features are converted into S "spatial" and FLR "intrinsic" attributes of the 
vertices via dense layers. 

(b) GravNet: S features are interpreted as Cartesian coordinates in an S-
dimensional latent space. Each vertex forms an edge with N nearest 
neighbor vertices by the Euclidean distance to form a graph. 

(c) GarNet: S features are interpreted as one-dimensional distance to abstract 
"aggregator" nodes. All vertices are connected to all aggregators. 

(d) Each vertex (GravNet) or aggregator (GarNet) collects the max and mean 
of the features of the connected vertices. Features are transformed by a 
common dense layer, weighted by a decreasing function of the distance.  
In GarNet, aggregators return the collected features back to the vertices 
with the same weight function. Collected features are appended to the 
intrinsic features of the vertices. 

(e) Concatenation of the input and internal intrinsic features are passed 
through a dense layer to produce the Fout output features for each vertex.
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Fig. 1: Pictorial representation of the data flow across the GarNet and the GravNet layers. (a) The input features
FIN of each vi 2 V are processed by a dense neural network with two output arrays: a set of learned features FLR and
spatial information S in some learned representation space. (b) In the case of the GravNet layer, the S quantities
are interpreted as the coordinates of the vertices in some abstract space. The graph is built in this space, connecting
each vi to its N closest neighbors (N=4 in the figure), using the euclidean distance dij between the vertices to rank
the neighbors. (c) In the case of the GarNet layer, the S quantities are interpreted as the distances between the
vertices and a set of S aggregators in some abstract space. The graph is then built connecting each vi vertex to each
aj aggregator, and the S quantities are the dij euclidean distances. (d) Once the graph structure is established, the f i

j

features of the vj vertices connected to a given vertex or aggregator vk are converted into the f̃ i
jk quantities, through

a potential (function of djk). The corresponding information is then gathered across the graph and turned into a new
feature f̃ i

k of vk (e.g. summing over the edges, or taking the maximum). (e) For each choice of gathering function, a new
set of features f̃ i

k 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector. The resulting feature
vector is given as input to a dense neural network with tanh activation, which returns the output representation FOUT.

Fig. 2: Calorimeter geometry. The markers indicate the
centre of the sensors, their size the sensor size. Layers are
colour-coded for better visualisation.

The calorimeter is made entirely of Tungsten, with a width
of 30 cm ⇥ 30 cm in the x and y directions and a length
of 2m in the longitudinal direction (z), which corresponds
to 20 nuclear interaction lengths. The longitudinal dimen-
sion is further split into 20 layers of equal thickness. Each
layer contains square sensor cells, with a fine segmenta-
tion in the quadrant with x > 0 and y > 0 and a lower
granularity elsewhere. The total number of cells and their
individual sizes vary by layer, replicating the basic fea-
tures of a slightly irregular calorimeter. For more details,
see Fig. 2 and Table 1.

Charged pions are generated at z = �2m; the x and y
coordinates of the generation vertex are randomly sampled
within |x| < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z compo-
nent is sampled uniformly between 10 and 100GeV. The
particles therefore impinge the calorimeter front face per-
pendicularly and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded
for each event. These quantities correspond to the FIN fea-
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FIN of each vi 2 V are processed by a dense neural network with two output arrays: a set of learned features FLR and
spatial information S in some learned representation space. (b) In the case of the GravNet layer, the S quantities
are interpreted as the coordinates of the vertices in some abstract space. The graph is built in this space, connecting
each vi to its N closest neighbors (N=4 in the figure), using the euclidean distance dij between the vertices to rank
the neighbors. (c) In the case of the GarNet layer, the S quantities are interpreted as the distances between the
vertices and a set of S aggregators in some abstract space. The graph is then built connecting each vi vertex to each
aj aggregator, and the S quantities are the dij euclidean distances. (d) Once the graph structure is established, the f i

j
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a potential (function of djk). The corresponding information is then gathered across the graph and turned into a new
feature f̃ i

k of vk (e.g. summing over the edges, or taking the maximum). (e) For each choice of gathering function, a new
set of features f̃ i

k 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector. The resulting feature
vector is given as input to a dense neural network with tanh activation, which returns the output representation FOUT.

Fig. 2: Calorimeter geometry. The markers indicate the
centre of the sensors, their size the sensor size. Layers are
colour-coded for better visualisation.

The calorimeter is made entirely of Tungsten, with a width
of 30 cm ⇥ 30 cm in the x and y directions and a length
of 2m in the longitudinal direction (z), which corresponds
to 20 nuclear interaction lengths. The longitudinal dimen-
sion is further split into 20 layers of equal thickness. Each
layer contains square sensor cells, with a fine segmenta-
tion in the quadrant with x > 0 and y > 0 and a lower
granularity elsewhere. The total number of cells and their
individual sizes vary by layer, replicating the basic fea-
tures of a slightly irregular calorimeter. For more details,
see Fig. 2 and Table 1.

Charged pions are generated at z = �2m; the x and y
coordinates of the generation vertex are randomly sampled
within |x| < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z compo-
nent is sampled uniformly between 10 and 100GeV. The
particles therefore impinge the calorimeter front face per-
pendicularly and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded
for each event. These quantities correspond to the FIN fea-

Layers step-by-step

• CMS experiment plans to install a novel silicon + scintillator-
based endcap calorimeter (HGCAL) [2] for HL-LHC (2026-) 

• Pseudorapidity coverage 1.5 < |η| < 3.0 
• 52 layers corresponding to max. ~10 interaction lengths  

CE-E thickness ~25 radiation lengths 
• 6 million hexagonal Si sensors 

600 m2 total sensor area, 0.5-1 cm2 per sensor 
• Occupancy maximum ~60% at 200 pileup 
• Hexagonal (irregular) arrangement of sensors and  

hit sparseness motivate graph neural network approach  
for data processing 

• Reconstruction goals 
• Form clusters of energy depositions from individual  

particles (O(100) per endcap @ PU200) 
• Accurate energy assignment to clusters 
• Particle identification 

• HGCAL participates in level-1 trigger (L1T) 
• Need to perform rough clustering, energy 

estimate, and particle ID within 5 μs 
• 4 or 9 silicon pads are grouped into one trigger cell

24 Chapter 2. Active elements

and/or 3 ⇥ 3 neighbouring cells to form trigger primitives, shown as differing colour group-
ings in the figure, and the subdivision of the module into symmetric domains for the readout
chips, simplifying the layout of the module readout printed circuit board (PCB). Silicon wafer
layouts using the three-fold diamond configuration are shown in Fig. 2.4.

Figure 2.3: Schematic illustration of the three-fold diamond configuration of sensor cells on
hexagonal 8” silicon wafers, showing the groupings of sensor cells that get summed to form
trigger cells, for the large, 1.18 cm2, sensor cells (left), and for the small, 0.52 cm2, cells (right).

Figure 2.4: Drawing of hexagonal 8” silicon wafers, with layout of large, 1.18 cm2, sensor cells
(left), and small, 0.52 cm2, cells (right).

The cell size is driven both by physics performance considerations, such as the lateral spread
of electromagnetic showers, and by constraints imposed by the need to keep the cell capaci-
tance within a manageable range. In practice, this results in cell sizes of ⇡1 cm2 for the 300 and
200 µm active thickness sensors and ⇡0.5 cm2 for the 120 µm active thickness sensors, corre-
sponding to a maximum cell capacitance of 65 pF. Each sensor has either 192 or 432 individual
diodes, which act as sensor cells. The HV bias is applied to the sensor back-plane, whereas the
ground return from each individual cell is provided through the DC connection to the corre-
sponding front-end amplifier. Two cells per readout chip are segmented to include calibration
pads with smaller size and correspondingly lower capacitance and noise.

An irradiation campaign is underway, which will include noise measurements, with a partic-

2017 JINST 12 C01042

Figure 3. Summary of silicon thickness as a function of sensor position in the detector.

Figure 4. Left: cassette layout. Right: schematic view of the two di�erent regimes of charge readout.

The front-end electronics have stringent requirements. The dynamic range should cover the 0.4
fC to 10 pC range (15 bits) in order to measure at the same time minimum ionising particles (MIP)
and very energetic photon/electron or quark shower cores. A two-way charge readout system is
proposed (figure 4 right), where the low charges (below 100 fC) are readout by 10-bit ADC, whilst the
high charges are readout by Time-Over-Threshold (TOT) with 12-bit TDC. The noise must be kept at
a level < 2000 e� (0.32 fC) to keep the MIP visibility for thinner sensors after 3000 fb�1 of integrated
luminosity. It should have high radiation resistance (150 MRad, 1016 n/cm2), and leakage current
compensation. The wafer process chosen is the 130nm TSMC technology [5]. The power budget
is constrained to < 10 mW per channel. For the physics reach, it would be an asset to have timing
information with 50 ps accuracy. The system should be on chip (digitization, processing), with high
speed readout (>Gb/s), and large bu�ers to accommodate the 12.5 µs latency of the Level 1 trigger.

A strategy has been devised in order to obtain the final requirements in a timely manner.
Starting from the CALICE “SKIROC2" chip [6], used in this year’s beam tests, a “SKIROC2-cms"
chip has been designed in 0.35µm AMS technology [7] (non rad-hard) but modified to CMS needs:
adding variable gain preamps, 25ns shapers, 40 MHz analogue memory, timing capabilities: ToA,
ToT with < 50 ps resolution, low/high gain and large dynamic range. The first version was received
from the manufacturer in the summer 2016 and is being tested. In parallel 130 nm test vehicles are
being prepared, with a first version received mid-september 2016, a second version (8 channels) to

– 3 –

Longitudinal cross section

Single CE-E layer

Silicon wafer

Event displays from 16- and 17-layer beam tests

Clustering with GravNet

GarNet on FPGA for Triggering
• GarNet is implemented as FPGA firmware 

(Verilog / VHDL) using the HLS4ML 
framework [3] (Xilinx Vivado backend) 

• Proof-of-concept: simple architecture 
applied on a simple problem (e/γ vs hadron 
classification of pre-made L1T clusters) 

• Sub-μs latency per layer achieved with 
more room for optimization 

• Classification performance comparable to 
Keras implementation run on GPU

Network

• Input: For each 3D cluster  
Number of TCs, TC energy, TC z, TC θ&φ relative to cluster 

• Output: Probability that the cluster is e/γ/π0

6

Input 
(one entry  

per 3D cluster)

GarNet 
108 parameters

Fully-connected 
layer 

4 parameters P(e/γ/π0)
[Ncell][4] [4]
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a potential (function of djk). The corresponding information is then gathered across the graph and turned into a new
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k of vk (e.g. summing over the edges, or taking the maximum). (e) For each choice of gathering function, a new
set of features f̃ i

k 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector. The resulting feature
vector is given as input to a dense neural network with tanh activation, which returns the output representation FOUT.

Fig. 2: Calorimeter geometry. The markers indicate the
centre of the sensors, their size the sensor size. Layers are
colour-coded for better visualisation.

The calorimeter is made entirely of Tungsten, with a width
of 30 cm ⇥ 30 cm in the x and y directions and a length
of 2m in the longitudinal direction (z), which corresponds
to 20 nuclear interaction lengths. The longitudinal dimen-
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Charged pions are generated at z = �2m; the x and y
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of the particle momentum are set to 0, while the z compo-
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The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded
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layer contains square sensor cells, with a fine segmenta-
tion in the quadrant with x > 0 and y > 0 and a lower
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individual sizes vary by layer, replicating the basic fea-
tures of a slightly irregular calorimeter. For more details,
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Charged pions are generated at z = �2m; the x and y
coordinates of the generation vertex are randomly sampled
within |x| < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z compo-
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The resulting total energy deposit in each cell, as well
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for each event. These quantities correspond to the FIN fea-

Classification model used for the test

Synthesis report
On Xilinx Kintex UltraScale XCKU115
Clock frequency 200 MHz 

Latency 55-100 clocks
Interval: 30-93 clocks
DSP 2.4k / 5.5k (44%)
LUT 87.5k / 663k (13%)
Block RAM 2.3MB / 75.9MB (3%)

• Using a model with 3 GravNet layers interleaved with additional message-passing 
layers and fully-connected layers (166k parameters) 

• Input data: simulation of 5 particles shot within a narrow (ΔR < 0.5) cone 
• Particle species: randomly chosen from μ±, γ, e, and π± 

• Particle energies: randomly chosen from 10-100 GeV 
• Hits are pre-clustered within each HGCAL layer before fed into the network 

• Output: per hit, probability of the hit belonging to a cluster due to each particle

• High accuracy achieved 
even for highly nontrivial 
cluster shapes 

• Algorithm for predicting 
arbitrary number of clusters 
currently under development 

• Clustering under non-zero 
pileup & over full HGCAL 
also under development
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