

D3.4 Code and Data Repositories

Deliverable No. D3.4

Workpackage No. 3 Workpackage Title Data Collection and Analysis

Lead beneficiary DTU

Dissemination level Public

Type ORDP: Open Research Data Pilot

Due Date M23 (30 November 2019)

Version No. 0.3

Submission Date 29 November 2019

File Name D3.4 Code and Data Repositories

Project Duration 36 Months

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 770420.

Ref. Ares(2019)7362869 - 29/11/2019

D3.4 Code and Data Repositories Page 2 of 64

Version Control

Version Date Author Notes

0.1 2 April 2018 Nesta Template Creation

0.2
26 November
2019

DTU First draft

0.3
28 November
2019

DTU
Second draft - Incorporated
comments from Nesta,
Fraunhofer and COTEC

0.4

Reviewers List

Version Date Reviewers Notes

0.2.1
28
November
2019

COTEC

0.2.2

Disclaimer

This document has been produced with the assistance of the European Union. The contents
of this publication are the sole responsibility of the author and can in no way be taken to reflect
the views of the European Union.

D3.4 Code and Data Repositories Page 3 of 64

Executive Summary

The present report overviews code and documentation that was produced during WP3. The
purpose of this document is to ensure transparency and reproducibility of the achieved results.
First, the overall data infrastructure of EURITO is presented. Second, the explanation of
connections between data infrastructure and developed R&I is given. Finally, code and
documentation for the EURITO project are included.

D3.4 Code and Data Repositories Page 4 of 64

Table of Contents

Executive Summary 3

Introduction 6

Data Collection and Preprocessing codebase 7

2.1 Data Collection and Preprocessing setup 7

2.2 Datasets 7

Indicator generation (notebooks) 8

3.1 Theme 1 “Emerging Technology and Mapping” Indicators. 8

Level of technological activity (LTA). 8

Average activity by country (AA) 11

Trajectory of technological activity (TTA) 11

Concentration of technological activity (CTA) 11

3.2 Theme 2 “New Research Funding Analytics” Indicators. 11

Project centrality (PC). 12

Organisation centrality (OC) 13

3.3 Theme 3 “Inclusive and Mission-Oriented R&I” Indicators. 14

Levels of mission activity (LMA) 14

Appendix A - Jupyter Notebooks for indicator generation 17

Appendix B - Data collection and processing code documentation 46

D3.4 Code and Data Repositories Page 5 of 64

List of Figures

Figure 1. EURITO infrastructure overview

List of Tables

Table 1. Levels of technological activity for technology query “AI-Optimized Hardware”
Table 2. Top 15 nodes according to project centrality
Table 3. Top 15 nodes according to organisation centrality
Table 4. Levels of mission activity for mission “Adaptation to climate change, including
societal transformation”

D3.4 Code and Data Repositories Page 6 of 64

1. Introduction

As the current report concludes Work Package 3 “Data Collection and Analysis”, a
quick overview of the previous deliverables in the work package is necessary.

In D3.1 “Design of Data Collection Phase”, requirements for the future EURITO
infrastructure for each phase of the data collection were defined: data extraction, ingestion
and enrichment.

D3.2 “Quantitative Methods” discusses employed data analysis methods and their
relation to scaling up activities of pilots that were generated during WP2.

D3.3 “R&I Performance Indicators” describes derived R&I indicators with respect to
datasets and quantitative methods.

Thus, the main purpose of this document is to enable transparency and explaining
the process of generating innovation indicators to ensure future reuse of the achieved
results. First, the overall development infrastructure of the EURITO project is explained.
Second, the linkage between the defined indicators and generated outputs is provided to
assist the further validation and refinement of indicators. Finally, supporting technical
documentation is provided for the purposes of further reproducibility.

The overall infrastructure of the EURITO project has been organised in the three
main modules (Figure 1):

1. Github code repository. This repository contains the main codebase for
data collection, preprocessing and indicator generation functions, as well as
project documentation. This codebase is open source and available for
everyone to clone and use further.

2. Amazon Web Services (AWS) EC2 servers. The main role of these servers
is to run the code from Github code repositories and return data and
indicators.

3. AWS S3 repository. This repository acts as a storage of generated
indicators, database backups and configuration files.

Figure 1. EURITO infrastructure overview

We note that several indicators were redefined due to robustness and infrastructure

considerations compared to D3.3. Structural Change indicator due to having a finite number
of technological queries. Gender Diversity indicator due to using arXiv and PATSTAT
datasets, which do not contain gender information. Theme 4 “Predictive Analytics” will be
covered in WP4, as it builds on the results of the current report.

D3.4 Code and Data Repositories Page 7 of 64

2. Data Collection and Preprocessing codebase

 2.1 Data Collection and Preprocessing setup
Data collection and preprocessing functionality are enabled via a series of Python scripts
that can be accessed through the EURITO Github repository at the following link:
https://github.com/EURITO/eurito_daps. Execution of the developed Python scripts is
managed through Luigi pipelines (https://github.com/spotify/luigi), which allow users to avoid
rerunning of time-consuming data collection tasks, when, for instance, only later steps of
data preprocessing is needed.

Taking as an example from running a task for collecting and processing OpenAIRE
data, the command for collecting software records from the OpenAIRE API looks as follows
in a command line:

luigi --module openaire_to_neo4j_search RootTask --date 2018-04-29 --output-type

'software'

where openaire_to_neo4j_search - name of the Python script
RootTask - name of the main function in the script
date - date used to label the outputs in the logging database
output_type: type of record to be extracted from OpenAIRE API. Accepts "software",

"datasets", "publications", "ECProjects"

2.2 Datasets

In EURITO we predominantly use the following data sources:

- EU-funded research from CORDIS enriched with OpenAIRE data
- EU-funded research on arXiv
- EU Patents from PATSTAT

CORDIS and OpenAIRE
Data from the CORDIS’s H2020 API and FP7 API funded projects is extracted using

code found in this repository.
In total, 51,250 organisations and 50,640 projects were extracted from the API. There

are 1,102 proposal calls, 245,465 publications and 34,507 reports. In total 6,545 are
associated with the projects.

Software and dataset outputs are associated with the projects using EC project
acronyms, using OpenAIRE API.

All of these entities are then linked together and stored using a neo4j graph
database. The code for automatically piping the data in neo4j is provided here.

arXiv
All articles from arXiv, which is the world’s premier repository of pre-prints of articles

in the physical, quantitative and computational sciences, are already automatically collected,
geocoded (using GRID) and enriched with topics (using MAG). Articles are assigned to EU
NUTS regions (at all levels) using NESTA’s nuts-finder python package.
Data is transferred to EURITO’s elasticsearch server via NESTA’s es2es package. The
lolvelty algorithm is then applied to the data in order to generate a novelty metric for each
article. This procedure is better described in this blog (see “Defining novelty”).
The indicators using this data source are presented in this other EURITO repository.
In total, 1,598,033 articles have been processed, of which 459,371 have authors based in
EU nations.

PATSTAT

https://github.com/EURITO/eurito_daps
https://github.com/spotify/luigi
http://cordis.europa.eu/data/cordis-h2020projects.csv
http://cordis.europa.eu/data/cordis-fp7projects.csv
https://nesta.readthedocs.io/en/dev/nesta.core.routines.cordis.html
http://api.openaire.eu/oai_pmh
https://neo4j.com/
https://eurito.readthedocs.io/en/dev/_modules/packages/utils/cordis_neo4j.py
https://arxiv.org/
https://www.grid.ac/
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
https://pypi.org/project/nuts-finder/
https://www.elastic.co/guide/index.html
https://pypi.org/project/es2es/
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://github.com/EURITO/query_indicators

D3.4 Code and Data Repositories Page 8 of 64

All patents from the PATSTAT service have been collected in NESTA’s own
database using NESTA’s pypatstat library. Since this database is very large, we have
selected patents which belong to a patent family with a granted patent first published after
the year 2000, with at least one person or organisation (inventor or applicant) based in an
EU member state. This leads to 1,552,303 patents in the database.

Data is transferred to EURITO’s elasticsearch server via nesta’s es2es package. The
indicators using this data source are presented in this other EURITO repository.

Full documentation for data collection and preprocessing code is provided in
Appendix B and the following link: https://eurito.readthedocs.io/.

3. Indicator generation (notebooks)

 Once data for indicators is collected and preprocessed, we can generate indicators
themselves. The main codebase for indicator generation is provided in the form of
reproducible Jupyter Notebooks for each theme (i.e. scale-up) as shown in Appendix A and
the following link: https://github.com/EURITO/query_indicators. The generated tables (CSV
files) and figures that describe indicators are stored in AWS S3 bucket named “eurito-
indicators” and can be accessed using AWS credentials.

 Below we explain the indicator generation process for each of the Indicators.

3.1 Theme 1 “Emerging Technology and Mapping” Indicators.

 This scale-up combines Pilot 1: Emerging Technology Ecosystems (Artificial
Intelligence) and Pilot 3: Technological Change Indicators to generate indicators about
emerging technology Research and Development (R&D) and its technological innovation
system. To achieve this, the level of technological activity is measured by quantifying the
relevance of documents in the provided datasets according to a technology query.

1. Level of technological activity (LTA).

Definition. Level of technological activity (LTA) is a sum of relevance scores for a set
of returned documents for a given technology, where technology is specified as a search
query (e.g. “deep learning platforms”).

 Dataset used: arXiv (PATSTAT may be used as well, which is done by changing the
INDEX parameter in the Jupyter Notebook).

The relevance scores are calculated as follows:

Step 1. Feed the technology query Q to ElasticSearch engine, obtain N of seed documents
as a result.
Step 2. From the X number of seed documents extract top K keywords
Step 3. Remove seed documents that do not contain these top K keywords
Step 4. For the remaining seed documents, calculate term frequency-inverse document
frequency (TF-IDF) centroid.
Step 5. The relevance score of a document is then a TF-IDF similarity from that document to
the TF-IDF centroid. This means that being closer to the centroid signifies a higher similarity
of that document to the “average” of most relevant documents.

TF-IDF centroid and similarity distance from centroid is calculated as described here.

Parameters Q, N, X and K are specified by the user and explained in the guide to the

relevance scoring algorithm of Clio, a search engine that retrieves these relevant

https://github.com/nestauk/pypatstat
https://www.elastic.co/guide/index.html
https://pypi.org/project/es2es/
https://github.com/EURITO/query_indicators
https://eurito.readthedocs.io/
https://eurito.readthedocs.io/
https://eurito.readthedocs.io/
https://github.com/EURITO/query_indicators
https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

D3.4 Code and Data Repositories Page 9 of 64

documents: https://github.com/nestauk/clio-lite/blob/master/README.md#a-note-on-
relevance-scoring

Due to the exploratory nature of the EURITO project, we decided to have a finite set
of technology queries as opposed to a search engine-like functionality. Therefore, in the
AWS S3 repository, under the eurito-indicators/tables/theme_1/ai_activity folder we
generated a set of files with indicator values for predefined technology queries in AI in the
respective folders as follows:

“Natural Language Generation",
"Speech recognition",
"Virtual Agents",
"Machine Learning Platforms",
"AI-Optimized Hardware",
"Decision Management AI",
"Deep Learning Platforms",
"Biometrics AI",
"Robotic Processes Automation AI",
"Natural Language Processing",
"Digital Twin AI",
"Cyber Defense AI",
"Compliance AI",
"Knowledge Worker Aid AI",
"Content Creation AI",
"Peer to Peer Networks AI",
"Emotion Recognition AI",
"Image Recognition AI",
"Marketing Automation AI".

For each specified technology query, a CSV file with indicator values is generated.
An example of such a file containing the total relevance score for the technology query “AI-
Optimized Hardware” is presented in Table 1:

Table 1. Levels of technological activity for technology query “AI-Optimized Hardware”

 2014 2015 2016 2017 2018 2019

Austria 0.066 0.053 0.062 0.083 0.107 0.063

Belgium 0.068 0.104 0.163 0.188 0.244 0.145

Bulgaria 0.000 0.001 0.000 0.006 0.000 0.000

Croatia 0.013 0.014 0.003 0.013 0.008 0.005

Cyprus 0.005 0.001 0.003 0.001 0.008 0.007

https://github.com/nestauk/clio-lite/blob/master/README.md#a-note-on-relevance-scoring
https://github.com/nestauk/clio-lite/blob/master/README.md#a-note-on-relevance-scoring

D3.4 Code and Data Repositories Page 10 of 64

Czech Republic 0.028 0.057 0.082 0.122 0.164 0.085

Denmark 0.060 0.114 0.168 0.186 0.258 0.127

Estonia 0.001 0.003 0.003 0.002 0.000 0.004

Finland 0.048 0.068 0.105 0.112 0.130 0.063

France 0.105 0.170 0.292 0.292 0.348 0.226

Germany 0.217 0.274 0.307 0.563 0.583 0.394

Gibraltar 0.000 0.000 0.000 0.000 0.000 0.000

Greece 0.021 0.038 0.027 0.025 0.033 0.037

Hungary 0.016 0.030 0.007 0.020 0.014 0.003

Ireland 0.079 0.114 0.228 0.313 0.446 0.264

Italy 0.083 0.134 0.177 0.305 0.352 0.177

Latvia 0.000 0.004 0.002 0.000 0.000 0.001

Lithuania 0.003 0.000 0.000 0.000 0.000 0.003

Luxembourg 0.007 0.004 0.001 0.007 0.005 0.010

Malta 0.003 0.000 0.000 0.001 0.008 0.001

Netherlands 0.089 0.139 0.218 0.236 0.285 0.197

Poland 0.020 0.044 0.081 0.101 0.104 0.064

Portugal 0.043 0.087 0.146 0.163 0.206 0.129

Romania 0.003 0.005 0.006 0.012 0.027 0.012

D3.4 Code and Data Repositories Page 11 of 64

Slovakia 0.002 0.003 0.004 0.003 0.004 0.000

Slovenia 0.003 0.000 0.011 0.003 0.010 0.002

Spain 0.065 0.067 0.084 0.110 0.169 0.071

Sweden 0.058 0.090 0.057 0.097 0.133 0.065

Great Britain 0.230 0.405 0.569 0.710 1.000 0.559

As seen from the table, UK has the maximum number of highly relevant documents

in AI-Optimized Hardware compared to the rest of EU countries in the years 2017-2019. In
other words, the indicator takes into account not only the sheer number of documents, but
also their relevancy to the search query.

Similar files are generated on regional levels, where region names are provided
according to NUTS classification available here: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:02003R1059-20180118&from=EN

Similarly to the LTA indicator, files with values for indicators 2-4 for each
technological query are located at eurito-indicators/tables/theme_1/ai_activity
/”technological_query_name”/ folder.

2. Average activity by country (AA)
Definition: Average activity by country is a mean relevance score for each country,

which is calculated by dividing the total relevance score by the total number of relevant
documents. A corrected version of this indicator subtracts a Poisson error from the mean
value.æ

3. Trajectory of technological activity (TTA)
Definition: Trajectory of technological activity is defined as a linear coefficient of total

relevance score for a specified technological query with respect to previous time periods. A
corrected version of this indicator subtracts upper and lower Poisson errors from the linear
coefficient values.

4. Concentration of technological activity (CTA)
Definition: Concentration of technological activity (CTA) is a share of total relevance

score of a specified country within a sum of total relevance scores for all countries for a
given technological query for a given time period.

CTA = LTA(country) / sum of LTAs(all countries)

3.2 Theme 2 “New Research Funding Analytics” Indicators.

Datasets: CORDIS, OpenAIRE

First, we have loaded CORDIS dataset into Neo4j graph database. In the graph,

objects are stored as a network of nodes and relationships between them. For instance, in

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02003R1059-20180118&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02003R1059-20180118&from=EN

D3.4 Code and Data Repositories Page 12 of 64

the CORDIS Neo4j database, projects funded by the European Commission are stored as
nodes of type “Project” with various meta-attributes (e.g. project acronym, description,
funding amount, etc.) and relationships to other nodes (e.g. a project might have a
relationship of type “HAS_SOFTWARE” with a node of type “Software”).

Nodes of type "Project" have the following meta-attributes:

acronym - project acronym
betw - project centrality
ec_contribution - funding by EC, mio EUR
start_date_code, end_date_code - project start and end date
framework, funded_under, funding_scheme - funding framework and program
grant_num - 6 digit grant number
objective - project objective
project_description - project description
rcn - project identificator
status - project status (e.g. closed, ongoing)
total_cost - total budget, mio EUR
website - project website

 Nodes of type "Organisation" have the following meta-attributes:
name - organisation name
betw - organisation centrality
country_code - 2-letter country code
country_name - country name

Second, based on the constructed network, for each node, we have calculated the

indicators of project and organisation centrality. Finally, these values were written as a meta-
attributes to the respective nodes in the Neo4j database.

Both indicators are based on betweenness centrality, which measures a number of
times when the shortest paths between all the nodes in the network pass through a
particular node. In essence, betweenness centrality estimates the node’s ability to serve as a
“bridge” that connects different network parts. Higher betweenness centrality aims to signify
“important” projects and organisations in the R&I ecosystem.

5. Project centrality (PC).

Definition: Project centrality is the betweenness centrality of a node in the R&I

network that represents a research project, where R&I network refers to a network of
research projects, organisations and research outputs linked together.

Table 2 presents a list of top 15 nodes according to project centrality:

Table 2. Top 15 nodes according to project centrality

Acronym Project

Centrality

EC contribution Framework Program

GrapheneCore1 3074818 EUR 89,000,000 H2020

GRAPHENE 2729211 EUR 54,000,000 FP7

EGI-InSPIRE 2452014 EUR 25,000,000 FP7

GrapheneCore2 2069696 EUR 88,000,000 H2020

D3.4 Code and Data Repositories Page 13 of 64

HBP 1782999 EUR 54,000,000 FP7

HBP SGA1 1755587 EUR 89,000,000 H2020

EGEE-III 1695839 EUR 32,000,000 FP7

HBP SGA2 1581863 EUR 88,000,000 H2020

ELIXIR-

EXCELERATE

1228839 EUR 19,051,482 H2020

ECHORD 1174091 EUR 18,969,760 FP7

PAST4FUTURE 1079601 EUR 6,647,909 FP7

AIDA-2020 1039285 EUR 10,000,000 H2020

EVIMALAR 1024754 EUR 12,000,000 FP7

NANOSIL 1014953 EUR 4,300,000 FP7

PRACE-2IP 974906.7 EUR 18,000,000 FP7

As seen from the Table 2, two of the largest research projects in the European

Commission, Graphene projects when cover over 150 organisations and 23 countries. In
another example, the Human Brain Project (acronym “HBP”) is a ten-year project that started
in 2013 and spans more than 100 research organisations
(https://www.humanbrainproject.eu/en/about/overview/).

6. Organisation centrality (OC)

Definition: Organisation centrality is the betweenness centrality of a node in the R&I
network that represents a research organisation, where R&I network refers to a network of
research projects, organisations and research outputs linked together.

Table 3 presents a list of top 15 nodes according to organisation centrality:

Table 3. Top 15 nodes according to organisation centrality

Organisation

centrality

Country

name

Organisation name

114674344.9 France CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

CNRS

48472324.52 Germany FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V.

27941037.55 Spain AGENCIA ESTATAL CONSEJO SUPERIOR

DEINVESTIGACIONES CIENTIFICAS

25759598.73 Italy CONSIGLIO NAZIONALE DELLE RICERCHE

25258853.9 France COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX

https://www.humanbrainproject.eu/en/about/overview/

D3.4 Code and Data Repositories Page 14 of 64

ENERGIES ALTERNATIVES

23797375.5 United

Kingdom

THE CHANCELLOR MASTERS AND SCHOLARS OF THE

UNIVERSITY OF CAMBRIDGE

23357051.39 United

Kingdom

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE

UNIVERSITY OF OXFORD

16548974.34 United

Kingdom

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND

MEDICINE

15721581.55 Switzerland EIDGENOESSISCHE TECHNISCHE HOCHSCHULE

ZUERICH

15070285.17 Belgium KATHOLIEKE UNIVERSITEIT LEUVEN

13805642.88 Germany MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER

WISSENSCHAFTEN EV

10625659.35 Denmark KOBENHAVNS UNIVERSITET

10435979.53 Switzerland ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

9158880.711 United

Kingdom

THE UNIVERSITY OF EDINBURGH

8711778.707 Denmark DANMARKS TEKNISKE UNIVERSITET

 As seen from the Table 3, organisations with the largest centrality correspond to the
top research organisations in Europe. For instance, CNRS (France) is the largest
fundamental research agency in Europe, while Fraunhofer (Germany) is the largest applied
research agency.

3.3 Theme 3 “Inclusive and Mission-Oriented R&I” Indicators.

7. Levels of mission activity (LMA)

Definition: Level of activity of a mission is defined as a number of term occurrences in
the dataset. Mission terms are extracted from a search query specified by the user.

 Granularity: per specified mission, per data source, per country or region (e.g.
Europe, Asia).

 Calculation of mission activity levels is based on the same mechanisms as in Theme
1 indicators. For the purposes of the scale-up the following mission statements were used as
an input mission query:
“Adaptation to climate change, including societal transformation”
“Cancer”
“Climate-neutral and smart cities”
“Soil health and food”

As an example, generated levels of mission activity for mission “Adaptation to climate
change, including societal transformation” are presented in Table 4:

D3.4 Code and Data Repositories Page 15 of 64

Table 4. Levels of mission activity for mission “Adaptation to climate change, including
societal transformation”

 2014 2015 2016 2017 2018 2019

Austria 0.158 0.188 0.175 0.154 0.095 0.056

Belgium 0.137 0.187 0.192 0.227 0.158 0.123

Bulgaria 0.011 0.012 0.014 0.023 0.013 0.005

Croatia 0.033 0.024 0.009 0.009 0.014 0.004

Cyprus 0.007 0.010 0.004 0.002 0.010 0.000

Czech

Republic

0.067 0.105 0.089 0.143 0.092 0.072

Denmark 0.176 0.206 0.207 0.270 0.149 0.111

Estonia 0.010 0.014 0.010 0.009 0.012 0.006

Faroe Islands 0.000 0.000 0.000 0.000 0.000 0.000

Finland 0.117 0.162 0.153 0.132 0.093 0.067

France 0.586 0.561 0.569 0.516 0.341 0.195

Germany 0.937 0.951 0.901 0.860 0.607 0.347

Gibraltar 0.000 0.000 0.000 0.000 0.000 0.000

Greece 0.061 0.051 0.049 0.074 0.032 0.039

Hungary 0.082 0.044 0.063 0.049 0.025 0.017

Ireland 0.132 0.175 0.196 0.239 0.175 0.162

D3.4 Code and Data Repositories Page 16 of 64

Italy 0.409 0.386 0.415 0.427 0.461 0.229

Latvia 0.001 0.000 0.000 0.006 0.002 0.000

Lithuania 0.002 0.003 0.002 0.009 0.003 0.000

Luxembourg 0.008 0.008 0.015 0.009 0.010 0.008

Malta 0.002 0.000 0.000 0.011 0.004 0.000

Netherlands 0.301 0.363 0.352 0.378 0.279 0.161

Poland 0.111 0.123 0.128 0.089 0.102 0.037

Portugal 0.115 0.135 0.167 0.190 0.118 0.099

Romania 0.014 0.014 0.016 0.016 0.016 0.009

Slovakia 0.032 0.030 0.024 0.012 0.021 0.005

Slovenia 0.031 0.017 0.024 0.027 0.024 0.006

Spain 0.349 0.305 0.331 0.286 0.254 0.079

Sweden 0.149 0.154 0.168 0.136 0.125 0.059

Great Britain 0.907 1.000 0.952 0.951 0.776 0.463

As seen from Table 4, Great Britain and Germany are countries with the highest mission
activity levels with Spain, Netherlands, France, Italy and Denmark after them.

D3.4 Code and Data Repositories Page 17 of 64

Appendix A - Jupyter Notebooks for indicator generation

Theme 1 Jupyter Notebook

https://github.com/EURITO/query_indicators/blob/master/theme_1/ai_activity/national
_ai_activity.ipynb

In [1]:

%matplotlib inline

In [2]:

import os
import sys
sys.path.append(os.path.abspath('../../'))
from query_indicators import generate_save_path
from query_indicators import get_eu_countries

In [3]:

import boto3
from collections import defaultdict
from clio_lite import clio_search, clio_search_iter
import io
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import numpy as np
import pandas as pd

In [4]:

Env variables
mpl.rcParams['hatch.linewidth'] = 0.2
mpl.rcParams['font.size'] = 18
mpl.rcParams['image.cmap'] = 'Pastel1'
os.environ['AWS_SHARED_CREDENTIALS_FILE'] = '/Users/jklinger/EURITO-
AWS/.aws/credentials' # <--- Note: NOT nesta's AWS credentials

In [5]:

Some globals
URL = "https://search-eurito-prod-bbyn72q2rhx4ifj6h5dom43uhy.eu-west-1.es.amazonaws.com/"
INDEX = "arxiv_v0"
FIELDS = ['terms_tokens_entity', 'textBody_abstract_article']
EU_COUNTRIES = get_eu_countries()
COLORS = plt.get_cmap('Set2').colors
COLOR_MAP = 'Pastel1'
S3 = boto3.resource('s3')
SAVE_PATH = generate_save_path() # EURITO collaborators: this is generated assuming you
have stuck to the convention 'theme_x/something/something_else.ipynb'
BUCKET = 'eurito-indicators' # EURITO collaborators: please don't change this
SAVE_RESULTS = True # Set this to "False" when you want to view figures inline. When
"True", results will be saved to S3.

https://github.com/EURITO/query_indicators/blob/master/theme_1/ai_activity/national_ai_activity.ipynb
https://github.com/EURITO/query_indicators/blob/master/theme_1/ai_activity/national_ai_activity.ipynb

D3.4 Code and Data Repositories Page 18 of 64

if SAVE_RESULTS:
 plt.ioff() # <--- for turning off visible figs
else:
 plt.ion()

In [6]:

def make_search(query, max_query_terms, yr0=2014, yr1=2019, countries=EU_COUNTRIES,
window=1):
 """
 Retrieve count and score data for a given basic clio search.

 Args:
 query (str): Seed query for clio.
 max_query_terms (list): Triple of max_query_terms (low, middle, high) to use from the initial
query.
 yr0 (int): Start year in range to use in filter.
 yr1 (int): Final year in range to use in filter.
 countries (list): A list of countries to filter (default to all EU).
 window (int): The number of years to consider in between time windows. Note that changing
this will lead to double-counting.
 Returns:
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 """
 top_doc = None
 _data = defaultdict(lambda: defaultdict(dict)) # {max_query_terms --> {year --> {country -->
score} } }
 all_scores = defaultdict(lambda: defaultdict(list)) # {max_query_terms --> {country --> [score
for doc in docs] } }
 for n in max_query_terms:
 # Set the order of the countries
 for ctry in EU_COUNTRIES:
 _data[n][ctry]
 all_scores[n][ctry]
 # Iterate over years
 for yr in range(yr0, yr1+1):
 # Set default values for countries
 for ctry in EU_COUNTRIES:
 _data[n][ctry][yr] = 0
 # Iterate over docs
 filters = [{"range":{"year_of_article":{"gte":yr, "lt":yr+window}}}]
 for doc in clio_search_iter(url=URL, index=INDEX, query=query, fields=FIELDS,
 max_query_terms=n, post_filters=filters, chunksize=5000):
 if '_score' not in doc or doc['terms_countries_article'] is None:
 continue
 score = doc['_score']
 for ctry in filter(lambda x: x in countries, doc['terms_countries_article']):
 if top_doc is None:
 top_doc = doc
 all_scores[n][ctry].append(score)
 _data[n][ctry][yr] += score
 # Reformat data as {max_query_terms --> [{year --> score} for each country in order]}
 data = {}
 for n, ctry_data in _data.items():
 data[n] = []
 for ctry, yr_data in ctry_data.items():

D3.4 Code and Data Repositories Page 19 of 64

 data[n].append(yr_data)
 return top_doc, data, all_scores

Indicator calculations

Each of these functions is assumed to take the form
def _an_indicator_calulation(data, year=None, _max=1):
 """
 A function calculating an indicator.

 Args:
 data (list): Rows of data
 year (int): A year to consider, if applicable.
 _max (int): Divide by this to normalise your results. This is automatically applied in
:obj:`make_activity_plot`
 Returns:
 result (list) A list of indicators to plot. The length of the list is assumed to be equal to the
number of countries.
 """
 # Calculate something

In [7]:

def _total_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Sum of relevance scores, by year (if specified) or in total.
 """
 if year is None:
 scores = [sum(row.values())/_max for row in data]
 else:
 scores = [row[year]/_max for row in data]
 return scores

def _average_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Mean relevance score. This function is basically a lambda, since it assumes the
average has already been calculated.
 """
 return [row/_max for row in data]

def _corrected_average_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Mean relevance score minus it's (very) approximate Poisson error.
 """
 return [(row - np.sqrt(row))/_max for row in data]

def _linear_coeffs(years, scores, _max):
 """Calculates linear coefficients for scores wrt years"""
 return [np.polyfit(_scores, _years, 1)[0]/_max
 if all(v > 0 for v in _scores) else 0
 for _years, _scores in zip(years, scores)]

D3.4 Code and Data Repositories Page 20 of 64

def _trajectory(data, year=None, _max=1):
 """
 Indicator: Linear coefficient of total relevance score wrt year
 """
 years = [list(row.keys()) for row in data]
 scores = [list(row.values()) for row in data]
 return _linear_coeffs(years, scores, _max)

def _corrected_trajectory(data, year=None, _max=1):
 """
 Indicator: Linear coefficient of upper and lower limits of relevance score wrt year
 """
 # Reformulate the data in terms of upper and lower bounds
 years, scores = [], []
 for row in data:
 _years, _scores = [], []
 for k, v in row.items():
 _years += [k,k]
 _scores += [v - np.sqrt(v), v + np.sqrt(v)] # Estimate upper and lower limits with very
approximate Poisson errors
 years.append(_years)
 scores.append(_scores)
 return _linear_coeffs(years, scores, _max)

Plotting functionality
In [8]:

class _Sorter:
 def __init__(self, values, topn=None):
 if topn is None:
 topn = len(values)
 self.indices = list(np.argsort(values))[-topn:] # Argsort is ascending, so -ve indexing to pick
up topn
 def sort(self, x):
 """Sort list x by indices"""
 return [x[i] for i in self.indices]

def _s3_savefig(query, fig_name, extension='png'):
 """Save the figure to s3. The figure is grabbed from the global scope."""
 if not SAVE_RESULTS:
 return
 outname = (f'figures/{SAVE_PATH}/'
 f'{query.replace(" ","_").lower()}'
 f'/{fig_name.replace(" ","_").lower()}'
 f'.{extension}')
 with io.BytesIO() as f:
 plt.savefig(f, bbox_inches='tight', format=extension, pad_inches=0)
 obj = S3.Object(BUCKET, outname)
 f.seek(0)
 obj.put(Body=f)

D3.4 Code and Data Repositories Page 21 of 64

def _s3_savetable(data, key, index, object_path, transformer=lambda x: x):
 """Upload the table to s3"""
 if not SAVE_RESULTS:
 return
 df = pd.DataFrame(transformer(data[key]), index=index)
 if len(df.columns) == 1:
 df.columns = ['value']
 df = df / df.max().max()
 table_data = df.to_csv().encode()
 obj = S3.Object(BUCKET, os.path.join(f'tables/{SAVE_PATH}', object_path))
 obj.put(Body=table_data)

def make_activity_plot(f, data, countries, max_query_terms, query,
 year=None, label=None, x_padding=0.5, y_padding=0.05, xlabel_fontsize=14):
 """
 Make a query and generate indicators by country, saving the plots to S3 and saving the rawest
data
 to tables on S3.

 Args:
 f: An indicator function, as described in the 'Indicator calculations' section.
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 countries (list): A list of EU ISO-2 codes
 max_query_terms (list): Triple of max_query_terms for clio, corresponding to low, middle
and high values of
 max_query_terms to test robustness of the query.
 query (str): query used to generate this data.
 year (int): Year to generate the indicator for (if applicable).
 label (str): label for annotating the plot.
 {x,y}_padding (float): Aesthetic padding around the extreme limits of the {x,y} axis.
 xlabel_fontsize (int): Fontsize of the x labels (country ISO-2 codes).
 """
 # Calculate the indicator for each value of n, then recalculate the normalised indicator
 _, middle, _ = (f(data[n], year=year) for n in max_query_terms)
 low, middle, high = (f(data[n], year=year, _max=max(middle)) for n in max_query_terms)
 indicator = [np.median([a, b, c]) for a, b, c in zip(low, middle, high)]

 # Sort all data by indicator value
 s = _Sorter(indicator)
 countries = s.sort(countries)
 low = s.sort(low)
 middle = s.sort(middle)
 high = s.sort(high)
 indicator = s.sort(indicator)

 # Make the scatter plot
 fig, ax = plt.subplots(figsize=(15, 6))
 make_error_boxes(ax, low, middle, high) # Draw the bounding box
 ax.scatter(countries, indicator, s=0, marker='o', color='black') # Draw the centre mark
 ax.set_title(f'{label}\nQuery: "{query}"')
 ax.set_ylabel(label)

 # Set limits and formulate
 y0 = min(low+middle+high)
 y1 = max(low+middle+high)

D3.4 Code and Data Repositories Page 22 of 64

 if -y1*y_padding < y0:
 y0 = -y1*y_padding
 else: # In case of negative values
 y0 = y0 - np.abs(y0*y_padding)
 ax.set_ylim(y0, y1*(1+y_padding))
 ax.set_xlim(-x_padding, len(countries)-x_padding)
 for tick in ax.xaxis.get_major_ticks():
 tick.label.set_fontsize(xlabel_fontsize)

 # Save to s3 & return
 _s3_savefig(query, label)
 return ax

def make_error_boxes(ax, low, middle, high, facecolor='r',
 edgecolor='None', alpha=0.5):
 """
 Generate outer rectangles based on three values, and draw a horizontal line through the
middle of the rectangle.
 No assumption is made on the order of values, so don't worry if they're not properly ordered.

 Args:
 ax (matplotlib.axis): An axis to add patches to.
 {low, middle, high} (list): Three concurrent lists of values from which to calculate the
rectangle limits.
 {facecolor, edgecolor} (str): The {face,edge} colour of the rectangles.
 alpha (float): The alpha of the rectangles.
 """
 # Generate the rectangle
 errorboxes = []
 middlelines = []
 for x, ys in enumerate(zip(low, middle, high)):
 rect = Rectangle((x - 0.45, min(ys)), 0.9, max(ys) - min(ys))
 line = Rectangle((x - 0.45, np.median(ys)), 0.9, 0)
 errorboxes.append(rect)
 middlelines.append(line)

 # Create patch collection with specified colour/alpha
 pc = PatchCollection(errorboxes, facecolor=facecolor, alpha=alpha, edgecolor=edgecolor,
hatch='/')
 lc = PatchCollection(middlelines, facecolor='black', alpha=0.9, edgecolor='black')

 # Add collection to axes
 ax.add_collection(pc)
 ax.add_collection(lc)

def stacked_scores(all_scores, query, topn=8,
 low_bins=[10**i for i in np.arange(0, 1.1, 0.025)],
 high_bins=[10**i for i in np.arange(1.1, 2.5, 0.05)],
 x_scale='log', label='Relevance score breakdown',
 xlabel='Relevance score', ylabel='Number of relevant documents',
 legend_fontsize='small', legend_cols=2):
 """
 Create stacked histogram of document scores by country. Two sets of bins are used,
 in order to have a more legible binning scale.

D3.4 Code and Data Repositories Page 23 of 64

 Args:
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 query (str): query used to generate this data.
 low_bins (list): List of initial bin edges.
 high_bins (list): List of supplementary bin edges. These could have a different spacing
scheme to the lower bin edges.
 x_scale (str): Argument for `ax.set_xscale`.
 label (str): label for annotating the plot.
 {x,y}_label (str): Argument for `ax.set_{x,y}label`.
 legend_fontsize (str): Argument for legend fontsize.
 legend_cols (str): Argument for legend ncol.
 """

 # Sort countries and scores by the sum of scores by country
 countries = list(all_scores.keys())
 scores = list(all_scores.values())
 s = _Sorter([sum(v) for v in scores], topn=topn)
 scores = s.sort(scores)
 countries = s.sort(countries)

 # Plot the stacked scores
 fig, ax = plt.subplots(figsize=(10, 6))
 plt.set_cmap(COLOR_MAP)
 ax.hist(scores, bins=low_bins+high_bins, stacked=True,
 label=countries, color=COLORS[:len(scores)])

 # Prettify the plot
 ax.set_xlabel(xlabel)
 ax.set_ylabel(ylabel)
 ax.legend(fontsize=legend_fontsize, ncol=legend_cols)
 ax.set_xlim(low_bins[0], None)
 ax.set_xscale(x_scale)
 ax.set_title(f'{label}\nQuery: "{query}"')

 # Save to s3
 _s3_savefig(query, label)
 return ax

Bringing it all together
In [9]:

def generate_indicator(q, max_query_terms=[7, 10, 13], countries=EU_COUNTRIES, *args,
**kwargs):
 """
 Make a query and generate indicators by country, saving the plots to S3 and saving the rawest
data
 to tables on S3.

 Args:
 q (str): The query to Elasticsearch
 max_query_terms (list): Triple of max_query_terms for clio, corresponding to low, middle
and high values of
 max_query_terms to test robustness of the query.
 countries (list): A list of EU ISO-2 codes
 Returns:

D3.4 Code and Data Repositories Page 24 of 64

 top_doc (dict): The highest ranking document from the search.
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 """

 # Make the search and retrieve scores by country, and the highest ranking doc
 example_doc, data, all_scores = make_search(q, max_query_terms=max_query_terms,
countries=countries, *args, **kwargs)

 # Reformat the scores to calculate the average
 avg_scores = defaultdict(list)
 for ctry in countries:
 for n, _scores in all_scores.items():
 mean = np.mean(_scores[ctry]) if len(_scores[ctry]) > 0 else 0
 avg_scores[n].append(mean)

 plot_kwargs = dict(countries=countries, max_query_terms=max_query_terms, query=q)
 # Calculate loads of indicators and save the plots
 _ = make_activity_plot(_total_activity_by_country, data, label='Total relevance score',
**plot_kwargs)
 _ = make_activity_plot(_average_activity_by_country, avg_scores, label='Average relevance',
**plot_kwargs)
 _ = make_activity_plot(_corrected_average_activity_by_country, avg_scores, label='Corrected
average relevance', **plot_kwargs)
 _ = make_activity_plot(_trajectory, data, label='Trajectory', **plot_kwargs)
 _ = make_activity_plot(_corrected_trajectory, data, label='Corrected trajectory', **plot_kwargs)
 _ = stacked_scores(all_scores[max_query_terms[1]], query=q)

 # Save the basic raw data as tables. Note: not as rich as the plotted data.
 q = q.replace(" ","").lower()
 _s3_savetable(data, max_query_terms[1], index=countries,
object_path=f'{_q}/total_relevance.csv')
 _s3_savetable(avg_scores, max_query_terms[1], index=countries,
object_path=f'{_q}/avg_relevance.csv')
 _s3_savetable(data, max_query_terms[1], transformer=_trajectory, index=countries,
object_path=f'{_q}/trajectory.csv')

 plt.close('all') # Clean up the memory cache (unbelievable that matplotlib doesn't do this)
 return example_doc, data, all_scores

Iterate over queries
In [10]:

for term in ["Natural Language Generation",
 "Speech recognition",
 "Virtual Agents",
 "Machine Learning Platforms",
 "AI-Optimized Hardware",
 "Decision Management AI",
 "Deep Learning Platforms",
 "Biometrics AI",
 "Robotic Processes Automation AI",
 "Natural Language Processing",
 "Digital Twin AI",
 "Cyber Defense AI",
 "Compliance AI",

D3.4 Code and Data Repositories Page 25 of 64

 "Knowledge Worker Aid AI",
 "Content Creation AI",
 "Peer to Peer Networks AI",
 "Emotion Recognition AI",
 "Image Recognition AI",
 "Marketing Automation AI"]:
 print(term)
 print("-"*len(term))
 top_doc, data, all_scores = generate_indicator(term)
 print(top_doc['title_of_article'], ",", top_doc['year_of_article'])
 print(top_doc['terms_countries_article'])
 print(top_doc['textBody_abstract_article'])
 print("\n==============================\n")

Natural Language Generation

A Deep Architecture for Semantic Parsing , 2014
['CA', 'GB']
Many successful approaches to semantic parsing build on top of the syntactic
analysis of text, and make use of distributional representations or statistical
models to match parses to ontology-specific queries. This paper presents a
novel deep learning architecture which provides a semantic parsing system
through the union of two neural models of language semantics. It allows for the
generation of ontology-specific queries from natural language statements and
questions without the need for parsing, which makes it especially suitable to
grammatically malformed or syntactically atypical text, such as tweets, as well
as permitting the development of semantic parsers for resource-poor languages.

==============================

Speech recognition

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy
 and Reverberant Environments , 2014
['DE']
We propose a spatial diffuseness feature for deep neural network (DNN)-based
automatic speech recognition to improve recognition accuracy in reverberant and
noisy environments. The feature is computed in real-time from multiple
microphone signals without requiring knowledge or estimation of the direction
of arrival, and represents the relative amount of diffuse noise in each time
and frequency bin. It is shown that using the diffuseness feature as an
additional input to a DNN-based acoustic model leads to a reduced word error
rate for the REVERB challenge corpus, both compared to logmelspec features
extracted from noisy signals, and features enhanced by spectral subtraction.

==============================

Virtual Agents

Expressing social attitudes in virtual agents for social training games , 2014
['FR']
The use of virtual agents in social coaching has increased rapidly in the
last decade. In order to train the user in different situations than can occur
in real life, the virtual agent should be able to express different social
attitudes. In this paper, we propose a model of social attitudes that enables a
virtual agent to reason on the appropriate social attitude to express during

D3.4 Code and Data Repositories Page 26 of 64

the interaction with a user given the course of the interaction, but also the
emotions, mood and personality of the agent. Moreover, the model enables the
virtual agent to display its social attitude through its non-verbal behaviour.
The proposed model has been developed in the context of job interview
simulation. The methodology used to develop such a model combined a theoretical
and an empirical approach. Indeed, the model is based both on the literature in
Human and Social Sciences on social attitudes but also on the analysis of an
audiovisual corpus of job interviews and on post-hoc interviews with the
recruiters on their expressed attitudes during the job interview.

==============================

Machine Learning Platforms

Open science in machine learning , 2014
['NL', 'DE', 'AU']
We present OpenML and mldata, open science platforms that provides easy
access to machine learning data, software and results to encourage further
study and application. They go beyond the more traditional repositories for
data sets and software packages in that they allow researchers to also easily
share the results they obtained in experiments and to compare their solutions
with those of others.

==============================

AI-Optimized Hardware

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Decision Management AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful

D3.4 Code and Data Repositories Page 27 of 64

tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Deep Learning Platforms

Caffe: Convolutional Architecture for Fast Feature Embedding , 2014
['US', 'CH', 'CA', 'IE', 'GB']
Caffe provides multimedia scientists and practitioners with a clean and
modifiable framework for state-of-the-art deep learning algorithms and a
collection of reference models. The framework is a BSD-licensed C++ library
with Python and MATLAB bindings for training and deploying general-purpose
convolutional neural networks and other deep models efficiently on commodity
architectures. Caffe fits industry and internet-scale media needs by CUDA GPU
computation, processing over 40 million images a day on a single K40 or Titan
GPU (\approx 2.5 ms per image). By separating model representation from
actual implementation, Caffe allows experimentation and seamless switching
among platforms for ease of development and deployment from prototyping
machines to cloud environments. Caffe is maintained and developed by the
Berkeley Vision and Learning Center (BVLC) with the help of an active community
of contributors on GitHub. It powers ongoing research projects, large-scale
industrial applications, and startup prototypes in vision, speech, and
multimedia.

==============================

Biometrics AI

An Analysis of Random Projections in Cancelable Biometrics , 2014
['PL', 'IL', 'JP', 'KR', 'GB', 'CH', 'CN', 'BR', 'DE', 'IN', 'US']
With increasing concerns about security, the need for highly secure physical
biometrics-based authentication systems utilizing \emph{cancelable biometric}
technologies is on the rise. Because the problem of cancelable template
generation deals with the trade-off between template security and matching
performance, many state-of-the-art algorithms successful in generating high
quality cancelable biometrics all have random projection as one of their early
processing steps. This paper therefore presents a formal analysis of why random
projections is an essential step in cancelable biometrics. By formally defining
the notion of an \textit{Independent Subspace Structure} for datasets, it can

D3.4 Code and Data Repositories Page 28 of 64

be shown that random projection preserves the subspace structure of data
vectors generated from a union of independent linear subspaces. The bound on
the minimum number of random vectors required for this to hold is also derived
and is shown to depend logarithmically on the number of data samples, not only
in independent subspaces but in disjoint subspace settings as well. The
theoretical analysis presented is supported in detail with empirical results on
real-world face recognition datasets.

==============================

Robotic Processes Automation AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Natural Language Processing

Linguistic Analysis of Requirements of a Space Project and their
 Conformity with the Recommendations Proposed by a Controlled Natural Language , 2014
['FR']
The long term aim of the project carried out by the French National Space
Agency (CNES) is to design a writing guide based on the real and regular
writing of requirements. As a first step in the project, this paper proposes a
lin-guistic analysis of requirements written in French by CNES engineers. The
aim is to determine to what extent they conform to two rules laid down in
INCOSE, a recent guide for writing requirements. Although CNES engineers are
not obliged to follow any Controlled Natural Language in their writing of
requirements, we believe that language regularities are likely to emerge from
this task, mainly due to the writers' experience. The issue is approached using
natural language processing tools to identify sentences that do not comply with
INCOSE rules. We further review these sentences to understand why the
recommendations cannot (or should not) always be applied when specifying
large-scale projects.

==============================

D3.4 Code and Data Repositories Page 29 of 64

Digital Twin AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Cyber Defense AI

Characterizing the Power of Moving Target Defense via Cyber Epidemic
 Dynamics , 2014
['US', 'GB']
Moving Target Defense (MTD) can enhance the resilience of cyber systems
against attacks. Although there have been many MTD techniques, there is no
systematic understanding and {\em quantitative} characterization of the power
of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to
characterize the power of MTD. We define and investigate two complementary
measures that are applicable when the defender aims to deploy MTD to achieve a
certain security goal. One measure emphasizes the maximum portion of time
during which the system can afford to stay in an undesired configuration (or
posture), without considering the cost of deploying MTD. The other measure
emphasizes the minimum cost of deploying MTD, while accommodating that the
system has to stay in an undesired configuration (or posture) for a given
portion of time. Our analytic studies lead to algorithms for optimally
deploying MTD.

==============================

Compliance AI

Compliance for reversible client/server interactions , 2014
['IT']
In the setting of session behaviours, we study an extension of the concept of
compliance when a disciplined form of backtracking is present. After adding
checkpoints to the syntax of session behaviours, we formalise the operational
semantics via a LTS, and define a natural notion of checkpoint compliance. We

D3.4 Code and Data Repositories Page 30 of 64

then obtain a co-inductive characterisation of such compliance relation, and an
axiomatic presentation that is proved to be sound and complete. As a byproduct
we get a decision procedure for the new compliance, being the axiomatic system
algorithmic.

==============================

Knowledge Worker Aid AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Content Creation AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention

D3.4 Code and Data Repositories Page 31 of 64

while educating better computer engineers.

==============================

Peer to Peer Networks AI

Efficient Cooperative Anycasting for AMI Mesh Networks , 2014
['DE', 'FR', 'KR', 'AT', 'JP', 'GB', 'CH', 'US']
We have, in recent years, witnessed an increased interest towards enabling a
Smart Grid which will be a corner stone to build sustainable energy efficient
communities. An integral part of the future Smart Grid will be the
communications infrastructure which will make real time control of the grid
components possible. Automated Metering Infrastructure (AMI) is thought to be a
key enabler for monitoring and controlling the customer loads. %RPL is a
connectivity enabling mechanism for low power and lossy networks currently
being standardized by the IETF ROLL working group. RPL is deemed to be a
suitable candidate for AMI networks where the meters are connected to a
concentrator over multi hop low power and lossy links. This paper proposes an
efficient cooperative anycasting approach for wireless mesh networks with the
aim of achieving reduced traffic and increased utilisation of the network
resources. The proposed cooperative anycasting has been realised as an
enhancement on top of the Routing Protocol for Low Power and Lossy Networks
(RPL), a connectivity enabling mechanism in wireless AMI mesh networks. In this
protocol, smart meter nodes utilise an anycasting approach to facilitate
efficient transport of metering data to the concentrator node. Moreover, it
takes advantage of a distributed approach ensuring scalability.

==============================

Emotion Recognition AI

STIMONT: A core ontology for multimedia stimuli description , 2014
['HR']
Affective multimedia documents such as images, sounds or videos elicit
emotional responses in exposed human subjects. These stimuli are stored in
affective multimedia databases and successfully used for a wide variety of
research in psychology and neuroscience in areas related to attention and
emotion processing. Although important all affective multimedia databases have
numerous deficiencies which impair their applicability. These problems, which
are brought forward in the paper, result in low recall and precision of
multimedia stimuli retrieval which makes creating emotion elicitation
procedures difficult and labor-intensive. To address these issues a new core
ontology STIMONT is introduced. The STIMONT is written in OWL-DL formalism and
extends W3C EmotionML format with an expressive and formal representation of
affective concepts, high-level semantics, stimuli document metadata and the
elicited physiology. The advantages of ontology in description of affective
multimedia stimuli are demonstrated in a document retrieval experiment and
compared against contemporary keyword-based querying methods. Also, a software
tool Intelligent Stimulus Generator for retrieval of affective multimedia and
construction of stimuli sequences is presented.

==============================

Image Recognition AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']

D3.4 Code and Data Repositories Page 32 of 64

In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

Marketing Automation AI

Hands-on experiments on intelligent behavior for mobile robots , 2014
['DE', 'MX']
In recent years, Artificial Intelligence techniques have emerged as useful
tools for solving various engineering problems that were not possible or
convenient to handle by traditional methods. AI has directly influenced many
areas of computer science and becomes an important part of the engineering
curriculum. However, determining the important topics for a single semester AI
course is a nontrivial task, given the lack of a general methodology. AI
concepts commonly overlap with many other disciplines involving a wide range of
subjects, including applied approaches to more formal mathematical issues. This
paper presents the use of a simple robotic platform to assist the learning of
basic AI concepts. The study is guided through some simple experiments using
autonomous mobile robots. The central algorithm is the Learning Automata. Using
LA, each robot action is applied to an environment to be evaluated by means of
a fitness value. The response of the environment is used by the automata to
select its next action. This procedure holds until the goal task is reached.
The proposal addresses the AI study by offering in LA a unifying context to
draw together several of the topics of AI and motivating the students to learn
by building some hands on laboratory exercises. The presented material has been
successfully tested as AI teaching aide in the University of Guadalajara
robotics group as it motivates students and increases enrolment and retention
while educating better computer engineers.

==============================

D3.4 Code and Data Repositories Page 33 of 64

Theme 2 Jupyter Notebook

Setting up database connection
Importing required python libraries

In [1]:

import os
import sys
sys.path.append(os.path.abspath('../../'))
from query_indicators import generate_save_path

import py2neo
from nesta.core.luigihacks.misctools import get_config
from nesta.core.orms.orm_utils import graph_session
import igraph as ig
import pandas as pd
import boto3

In [2]:

S3 = boto3.resource('s3')
SAVE_PATH = generate_save_path() # EURITO collaborators: this is generated assuming you
have stuck to the convention 'theme_x/something/something_else.ipynb'
BUCKET = 'eurito-indicators' # EURITO collaborators: please don't change this
SAVE_RESULTS = True # Set this to "False" when you want to view figures inline. When
"True", results will be saved to S3.

Establish connection to the Neo4j database
In [3]:

conf = get_config('neo4j.config', 'neo4j')
gkwargs = dict(host=conf['host'], secure=True,
 auth=(conf['user'], conf['password']))

In [29]:

def _s3_savetable(df, object_path):
 """Upload the table to s3"""
 if not SAVE_RESULTS:
 return
 if len(df.columns) == 1:
 df.columns = ['value']
 #df = df / df.max().max()
 table_data = df.to_csv(sep='|').encode()
 obj = S3.Object(BUCKET, os.path.join(f'tables/{SAVE_PATH}', object_path))
 obj.put(Body=table_data)

Retrieving nodes from Neo4j
Create a graph object which will be used for our queries

In [5]:

with graph_session(**gkwargs) as tx:
 graph = tx.graph

D3.4 Code and Data Repositories Page 34 of 64

Set the type of the node that should be retrieved. Available types are: "Project", "Organisation",
"Publication", "Topic", "Report", "Datasets", "Software", "Proposal_Call". Simply change the word
"Organisation" below to the required node type and re-run the cell.
Nodes of type "Organisation" have the following fields:
name - organisation name
betw - organisation centrality
country_code - 2 letter country code
country_name - country name

In [9]:

node_type = "Organisation"

Create a list from the graph nodes.
In []:

node_list = list(graph.nodes.match(node_type))

Convert to dataframe, sort the table according to centrality column and print the top 15
In [14]:

node_table = pd.DataFrame(node_list)
node_table = node_table.drop("centrality", axis=1)
top_betw = node_table.sort_values(by=['betw'], ascending=False)
top_nodes = top_betw.head(15)
top_nodes

Out[14]:

Save the generated table into S3 bucket
In [15]:

_s3_savetable(top_nodes, object_path=f'{node_type}/organisation_centrality_top15.csv')

Nodes of type "Project" have the following fields:
acronym - project acronym
betw - project centrality
ec_contribution - funding by EC, mio EUR
start_date_code, end_date_code - project start and end date
framework, funded_under, funding_scheme - funding framework and program
grant_num - 6 digit grant number
objective - project objective
project_description - project description
rcn - project identificator
status - project status (e.g. closed, ongoing)
total_cost - total budget, mio EUR
website - project website

In [22]:

node_type = "Project"

In [23]:

node_list = list(graph.nodes.match(node_type))
node_table = pd.DataFrame(node_list)
top_betw = node_table.sort_values(by=['betw'], ascending=False)
#Get first 15 nodes of the specified type
top_nodes = top_betw.head(15)
top_nodes

D3.4 Code and Data Repositories Page 35 of 64

Out[23]:

In [30]:

_s3_savetable(top_nodes, object_path=f'{node_type}/project_centrality_top15.csv')

D3.4 Code and Data Repositories Page 36 of 64

Theme 3 Jupyter Notebook
In [1]:

%matplotlib inline

In [2]:

import os
import sys
sys.path.append(os.path.abspath('../../'))
from query_indicators import generate_save_path
from query_indicators import get_eu_countries

In [3]:

import boto3
from collections import defaultdict
from clio_lite import clio_search, clio_search_iter
import io
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import numpy as np
import pandas as pd

In [4]:

Env variables
mpl.rcParams['hatch.linewidth'] = 0.2
mpl.rcParams['font.size'] = 18
mpl.rcParams['image.cmap'] = 'Pastel1'
#os.environ['AWS_SHARED_CREDENTIALS_FILE'] = '/home/aidrissov/.aws/credentials' # <---
Note: NOT nesta's AWS credentials
#from os import path
#print ("File exists:" + str(path.exists('/home/aidrissov/.aws/credentials')))
#print ("directory exists:" + str(path.exists('/home/aidrissov/.aws/')))
#TRY MANUAL CREDENTIALS

In [5]:

Some globals
URL = "https://search-eurito-prod-bbyn72q2rhx4ifj6h5dom43uhy.eu-west-1.es.amazonaws.com/"
INDEX = "arxiv_v0"
FIELDS = ['terms_tokens_entity', 'textBody_abstract_article']
EU_COUNTRIES = get_eu_countries()
COLORS = plt.get_cmap('Set2').colors
COLOR_MAP = 'Pastel1'
S3 = boto3.resource('s3')
SAVE_PATH = generate_save_path() # EURITO collaborators: this is generated assuming you
have stuck to the convention 'theme_x/something/something_else.ipynb'
BUCKET = 'eurito-indicators' # EURITO collaborators: please don't change this
SAVE_RESULTS = True # Set this to "False" when you want to view figures inline. When
"True", results will be saved to S3.

if SAVE_RESULTS:
 plt.ioff() # <--- for turning off visible figs
else:

D3.4 Code and Data Repositories Page 37 of 64

 plt.ion()

In [6]:

def make_search(query, max_query_terms, yr0=2014, yr1=2019, countries=EU_COUNTRIES,
window=1):
 """
 Retrieve count and score data for a given basic clio search.

 Args:
 query (str): Seed query for clio.
 max_query_terms (list): Triple of max_query_terms (low, middle, high) to use from the initial
query.
 yr0 (int): Start year in range to use in filter.
 yr1 (int): Final year in range to use in filter.
 countries (list): A list of countries to filter (default to all EU).
 window (int): The number of years to consider in between time windows. Note that changing
this will lead to double-counting.
 Returns:
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 """
 top_doc = None
 _data = defaultdict(lambda: defaultdict(dict)) # {max_query_terms --> {year --> {country -->
score} } }
 all_scores = defaultdict(lambda: defaultdict(list)) # {max_query_terms --> {country --> [score
for doc in docs] } }
 for n in max_query_terms:
 # Set the order of the countries
 for ctry in EU_COUNTRIES:
 _data[n][ctry]
 all_scores[n][ctry]
 # Iterate over years
 for yr in range(yr0, yr1+1):
 # Set default values for countries
 for ctry in EU_COUNTRIES:
 _data[n][ctry][yr] = 0
 # Iterate over docs
 filters = [{"range":{"year_of_article":{"gte":yr, "lt":yr+window}}}]
 for doc in clio_search_iter(url=URL, index=INDEX, query=query, fields=FIELDS,
 max_query_terms=n, post_filters=filters, chunksize=5000):
 if '_score' not in doc or doc['terms_countries_article'] is None:
 continue
 score = doc['_score']
 for ctry in filter(lambda x: x in countries, doc['terms_countries_article']):
 if top_doc is None:
 top_doc = doc
 all_scores[n][ctry].append(score)
 _data[n][ctry][yr] += score
 # Reformat data as {max_query_terms --> [{year --> score} for each country in order]}
 data = {}
 for n, ctry_data in _data.items():
 data[n] = []
 for ctry, yr_data in ctry_data.items():
 data[n].append(yr_data)
 return top_doc, data, all_scores

D3.4 Code and Data Repositories Page 38 of 64

Indicator calculations

Each of these functions is assumed to take the form
def _an_indicator_calulation(data, year=None, _max=1):
 """
 A function calculating an indicator.

 Args:
 data (list): Rows of data
 year (int): A year to consider, if applicable.
 _max (int): Divide by this to normalise your results. This is automatically applied in
:obj:`make_activity_plot`
 Returns:
 result (list) A list of indicators to plot. The length of the list is assumed to be equal to the
number of countries.
 """
 # Calculate something

In [7]:

def _total_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Sum of relevance scores, by year (if specified) or in total.
 """
 if year is None:
 scores = [sum(row.values())/_max for row in data]
 else:
 scores = [row[year]/_max for row in data]
 return scores

def _average_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Mean relevance score. This function is basically a lambda, since it assumes the
average has already been calculated.
 """
 return [row/_max for row in data]

def _corrected_average_activity_by_country(data, year=None, _max=1):
 """
 Indicator: Mean relevance score minus it's (very) approximate Poisson error.
 """
 return [(row - np.sqrt(row))/_max for row in data]

def _linear_coeffs(years, scores, _max):
 """Calculates linear coefficients for scores wrt years"""
 return [np.polyfit(_scores, _years, 1)[0]/_max
 if all(v > 0 for v in _scores) else 0
 for _years, _scores in zip(years, scores)]

def _trajectory(data, year=None, _max=1):
 """
 Indicator: Linear coefficient of total relevance score wrt year

D3.4 Code and Data Repositories Page 39 of 64

 """
 years = [list(row.keys()) for row in data]
 scores = [list(row.values()) for row in data]
 return _linear_coeffs(years, scores, _max)

def _corrected_trajectory(data, year=None, _max=1):
 """
 Indicator: Linear coefficient of upper and lower limits of relevance score wrt year
 """
 # Reformulate the data in terms of upper and lower bounds
 years, scores = [], []
 for row in data:
 _years, _scores = [], []
 for k, v in row.items():
 _years += [k,k]
 _scores += [v - np.sqrt(v), v + np.sqrt(v)] # Estimate upper and lower limits with very
approximate Poisson errors
 years.append(_years)
 scores.append(_scores)
 return _linear_coeffs(years, scores, _max)

Plotting functionality
In [8]:

class _Sorter:
 def __init__(self, values, topn=None):
 if topn is None:
 topn = len(values)
 self.indices = list(np.argsort(values))[-topn:] # Argsort is ascending, so -ve indexing to pick
up topn
 def sort(self, x):
 """Sort list x by indices"""
 return [x[i] for i in self.indices]

def _s3_savefig(query, fig_name, extension='png'):
 """Save the figure to s3. The figure is grabbed from the global scope."""
 if not SAVE_RESULTS:
 return
 outname = (f'figures/{SAVE_PATH}/'
 f'{query.replace(" ","_").lower()}'
 f'/{fig_name.replace(" ","_").lower()}'
 f'.{extension}')
 with io.BytesIO() as f:
 plt.savefig(f, bbox_inches='tight', format=extension, pad_inches=0)
 obj = S3.Object(BUCKET, outname)
 f.seek(0)
 obj.put(Body=f)

def _s3_savetable(data, key, index, object_path, transformer=lambda x: x):
 """Upload the table to s3"""
 if not SAVE_RESULTS:
 return
 df = pd.DataFrame(transformer(data[key]), index=index)

D3.4 Code and Data Repositories Page 40 of 64

 if len(df.columns) == 1:
 df.columns = ['value']
 df = df / df.max().max()
 table_data = df.to_csv().encode()
 obj = S3.Object(BUCKET, os.path.join(f'tables/{SAVE_PATH}', object_path))
 obj.put(Body=table_data)

def make_activity_plot(f, data, countries, max_query_terms, query,
 year=None, label=None, x_padding=0.5, y_padding=0.05, xlabel_fontsize=14):
 """
 Make a query and generate indicators by country, saving the plots to S3 and saving the rawest
data
 to tables on S3.

 Args:
 f: An indicator function, as described in the 'Indicator calculations' section.
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 countries (list): A list of EU ISO-2 codes
 max_query_terms (list): Triple of max_query_terms for clio, corresponding to low, middle
and high values of
 max_query_terms to test robustness of the query.
 query (str): query used to generate this data.
 year (int): Year to generate the indicator for (if applicable).
 label (str): label for annotating the plot.
 {x,y}_padding (float): Aesthetic padding around the extreme limits of the {x,y} axis.
 xlabel_fontsize (int): Fontsize of the x labels (country ISO-2 codes).
 """
 # Calculate the indicator for each value of n, then recalculate the normalised indicator
 _, middle, _ = (f(data[n], year=year) for n in max_query_terms)
 low, middle, high = (f(data[n], year=year, _max=max(middle)) for n in max_query_terms)
 indicator = [np.median([a, b, c]) for a, b, c in zip(low, middle, high)]

 # Sort all data by indicator value
 s = _Sorter(indicator)
 countries = s.sort(countries)
 low = s.sort(low)
 middle = s.sort(middle)
 high = s.sort(high)
 indicator = s.sort(indicator)

 # Make the scatter plot
 fig, ax = plt.subplots(figsize=(15, 6))
 make_error_boxes(ax, low, middle, high) # Draw the bounding box
 ax.scatter(countries, indicator, s=0, marker='o', color='black') # Draw the centre mark
 ax.set_title(f'{label}\nQuery: "{query}"')
 ax.set_ylabel(label)

 # Set limits and formulate
 y0 = min(low+middle+high)
 y1 = max(low+middle+high)
 if -y1*y_padding < y0:
 y0 = -y1*y_padding
 else: # In case of negative values
 y0 = y0 - np.abs(y0*y_padding)
 ax.set_ylim(y0, y1*(1+y_padding))

D3.4 Code and Data Repositories Page 41 of 64

 ax.set_xlim(-x_padding, len(countries)-x_padding)
 for tick in ax.xaxis.get_major_ticks():
 tick.label.set_fontsize(xlabel_fontsize)

 # Save to s3 & return
 _s3_savefig(query, label)
 return ax

def make_error_boxes(ax, low, middle, high, facecolor='r',
 edgecolor='None', alpha=0.5):
 """
 Generate outer rectangles based on three values, and draw a horizontal line through the
middle of the rectangle.
 No assumption is made on the order of values, so don't worry if they're not properly ordered.

 Args:
 ax (matplotlib.axis): An axis to add patches to.
 {low, middle, high} (list): Three concurrent lists of values from which to calculate the
rectangle limits.
 {facecolor, edgecolor} (str): The {face,edge} colour of the rectangles.
 alpha (float): The alpha of the rectangles.
 """
 # Generate the rectangle
 errorboxes = []
 middlelines = []
 for x, ys in enumerate(zip(low, middle, high)):
 rect = Rectangle((x - 0.45, min(ys)), 0.9, max(ys) - min(ys))
 line = Rectangle((x - 0.45, np.median(ys)), 0.9, 0)
 errorboxes.append(rect)
 middlelines.append(line)

 # Create patch collection with specified colour/alpha
 pc = PatchCollection(errorboxes, facecolor=facecolor, alpha=alpha, edgecolor=edgecolor,
hatch='/')
 lc = PatchCollection(middlelines, facecolor='black', alpha=0.9, edgecolor='black')

 # Add collection to axes
 ax.add_collection(pc)
 ax.add_collection(lc)

def stacked_scores(all_scores, query, topn=8,
 low_bins=[10**i for i in np.arange(0, 1.1, 0.025)],
 high_bins=[10**i for i in np.arange(1.1, 2.5, 0.05)],
 x_scale='log', label='Relevance score breakdown',
 xlabel='Relevance score', ylabel='Number of relevant documents',
 legend_fontsize='small', legend_cols=2):
 """
 Create stacked histogram of document scores by country. Two sets of bins are used,
 in order to have a more legible binning scale.

 Args:
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 query (str): query used to generate this data.
 low_bins (list): List of initial bin edges.

D3.4 Code and Data Repositories Page 42 of 64

 high_bins (list): List of supplementary bin edges. These could have a different spacing
scheme to the lower bin edges.
 x_scale (str): Argument for `ax.set_xscale`.
 label (str): label for annotating the plot.
 {x,y}_label (str): Argument for `ax.set_{x,y}label`.
 legend_fontsize (str): Argument for legend fontsize.
 legend_cols (str): Argument for legend ncol.
 """

 # Sort countries and scores by the sum of scores by country
 countries = list(all_scores.keys())
 scores = list(all_scores.values())
 s = _Sorter([sum(v) for v in scores], topn=topn)
 scores = s.sort(scores)
 countries = s.sort(countries)

 # Plot the stacked scores
 fig, ax = plt.subplots(figsize=(10, 6))
 plt.set_cmap(COLOR_MAP)
 ax.hist(scores, bins=low_bins+high_bins, stacked=True,
 label=countries, color=COLORS[:len(scores)])

 # Prettify the plot
 ax.set_xlabel(xlabel)
 ax.set_ylabel(ylabel)
 ax.legend(fontsize=legend_fontsize, ncol=legend_cols)
 ax.set_xlim(low_bins[0], None)
 ax.set_xscale(x_scale)
 ax.set_title(f'{label}\nQuery: "{query}"')

 # Save to s3
 _s3_savefig(query, label)
 return ax

Bringing it all together
In [9]:

def generate_indicator(q, max_query_terms=[7, 10, 13], countries=EU_COUNTRIES, *args,
**kwargs):
 """
 Make a query and generate indicators by country, saving the plots to S3 and saving the rawest
data
 to tables on S3.

 Args:
 q (str): The query to Elasticsearch
 max_query_terms (list): Triple of max_query_terms for clio, corresponding to low, middle
and high values of
 max_query_terms to test robustness of the query.
 countries (list): A list of EU ISO-2 codes
 Returns:
 top_doc (dict): The highest ranking document from the search.
 data (dict): {max_query_terms --> [{year --> sum_score} for each country]}
 all_scores (dict): {max_query_terms --> {country --> [score for doc in docs] } }
 """

D3.4 Code and Data Repositories Page 43 of 64

 # Make the search and retrieve scores by country, and the highest ranking doc
 example_doc, data, all_scores = make_search(q, max_query_terms=max_query_terms,
countries=countries, *args, **kwargs)

 # Reformat the scores to calculate the average
 avg_scores = defaultdict(list)
 for ctry in countries:
 for n, _scores in all_scores.items():
 mean = np.mean(_scores[ctry]) if len(_scores[ctry]) > 0 else 0
 avg_scores[n].append(mean)

 plot_kwargs = dict(countries=countries, max_query_terms=max_query_terms, query=q)
 # Calculate loads of indicators and save the plots
 _ = make_activity_plot(_total_activity_by_country, data, label='Total relevance score',
**plot_kwargs)
 _ = make_activity_plot(_average_activity_by_country, avg_scores, label='Average relevance',
**plot_kwargs)
 _ = make_activity_plot(_corrected_average_activity_by_country, avg_scores, label='Corrected
average relevance', **plot_kwargs)
 _ = make_activity_plot(_trajectory, data, label='Trajectory', **plot_kwargs)
 _ = make_activity_plot(_corrected_trajectory, data, label='Corrected trajectory', **plot_kwargs)
 _ = stacked_scores(all_scores[max_query_terms[1]], query=q)

 # Save the basic raw data as tables. Note: not as rich as the plotted data.
 q = q.replace(" ","").lower()
 _s3_savetable(data, max_query_terms[1], index=countries, object_path=f'{_q}/LMA.csv')
 _s3_savetable(avg_scores, max_query_terms[1], index=countries,
object_path=f'{_q}/avg_LMA.csv')

 plt.close('all') # Clean up the memory cache (unbelievable that matplotlib doesn't do this)
 return example_doc, data, all_scores

Iterate over queries
In [12]:

for term in ["Adaptation to climate change, including societal transformation",
 "Cancer",
 "Climate-neutral and smart cities",
 "Soil health and food"]:
 print(term)
 print("-"*len(term))
 top_doc, data, all_scores = generate_indicator(term)
 print(top_doc['title_of_article'], ",", top_doc['year_of_article'])
 print(top_doc['terms_countries_article'])
 print(top_doc['textBody_abstract_article'])
 print("\n==============================\n")

Adaptation to climate change, including societal transformation

Validity of altmetrics data for measuring societal impact: A study using
 data from Altmetric and F1000Prime , 2014
['DE']
Can altmetric data be validly used for the measurement of societal impact?
The current study seeks to answer this question with a comprehensive dataset

D3.4 Code and Data Repositories Page 44 of 64

(about 100,000 records) from very disparate sources (F1000, Altmetric, and an
in-house database based on Web of Science). In the F1000 peer review system,
experts attach particular tags to scientific papers which indicate whether a
paper could be of interest for science or rather for other segments of society.
The results show that papers with the tag "good for teaching" do achieve higher
altmetric counts than papers without this tag - if the quality of the papers is
controlled. At the same time, a higher citation count is shown especially by
papers with a tag that is specifically scientifically oriented ("new finding").
The findings indicate that papers tailored for a readership outside the area of
research should lead to societal impact. If altmetric data is to be used for
the measurement of societal impact, the question arises of its normalization.
In bibliometrics, citations are normalized for the papers' subject area and
publication year. This study has taken a second analytic step involving a
possible normalization of altmetric data. As the results show there are
particular scientific topics which are of especial interest for a wide
audience. Since these more or less interesting topics are not completely
reflected in Thomson Reuters' journal sets, a normalization of altmetric data
should not be based on the level of subject categories, but on the level of
topics.

==============================

Cancer

A Statistical Approach to Identifying Significant Transgenerational
 Methylation Changes , 2014
['GB', 'US', 'CH', 'CA', 'IE']
Epigenetic aberrations have profound effects on phenotypic output. Genome
wide methylation alterations are inheritable to pass down the aberrations
through multiple generations. We developed a statistical method, Genome-wide
Identification of Significant Methylation Alteration, GISAIM, to study the
significant transgenerational methylation changes. GISAIM finds the significant
methylation aberrations that are inherited through multiple generations. In a
concrete biological study, we investigated whether exposing pregnant rats (F0)
to a high fat (HF) diet throughout pregnancy or ethinyl estradiol
(EE2)-supplemented diet during gestation days 14 20 affects carcinogen-induced
mammary cancer risk in daughters (F1), granddaughters (F2) and
great-granddaughters (F3). Mammary tumorigenesis was higher in daughters and
granddaughters of HF rat dams, and in daughters, granddaughters and
great-granddaughters of EE2 rat dams. Outcross experiments showed that
increased mammary cancer risk was transmitted to HF granddaughters equally
through the female or male germlines, but is only transmitted to EE2
granddaughters through the female germline. Transgenerational effect on mammary
cancer risk was associated with increased expression of DNA methyltransferases,
and across all three EE2 generations hypo or hyper methylation of the same 375
gene promoter regions in their mammary glands. Our study shows that maternal
dietary estrogenic exposures during pregnancy can increase breast cancer risk
in multiple generations of offspring, and the increase in risk may be inherited
through non-genetic means, possibly involving DNA methylation.

==============================

Climate-neutral and smart cities

Software-Defined and Virtualized Future Mobile and Wireless Networks: A
 Survey , 2014
['CN', 'CH', 'GR']

D3.4 Code and Data Repositories Page 45 of 64

With the proliferation of mobile demands and increasingly multifarious
services and applications, mobile Internet has been an irreversible trend.
Unfortunately, the current mobile and wireless network (MWN) faces a series of
pressing challenges caused by the inherent design. In this paper, we extend two
latest and promising innovations of Internet, software-defined networking and
network virtualization, to mobile and wireless scenarios. We first describe the
challenges and expectations of MWN, and analyze the opportunities provided by
the software-defined wireless network (SDWN) and wireless network
virtualization (WNV). Then, this paper focuses on SDWN and WNV by presenting
the main ideas, advantages, ongoing researches and key technologies, and open
issues respectively. Moreover, we interpret that these two technologies highly
complement each other, and further investigate efficient joint design between
them. This paper confirms that SDWN and WNV may efficiently address the crucial
challenges of MWN and significantly benefit the future mobile and wireless
network.

==============================

Soil health and food

GREEND: An Energy Consumption Dataset of Households in Italy and Austria , 2014
['AT']
Home energy management systems can be used to monitor and optimize
consumption and local production from renewable energy. To assess solutions
before their deployment, researchers and designers of those systems demand for
energy consumption datasets. In this paper, we present the GREEND dataset,
containing detailed power usage information obtained through a measurement
campaign in households in Austria and Italy. We provide a description of
consumption scenarios and discuss design choices for the sensing
infrastructure. Finally, we benchmark the dataset with state-of-the-art
techniques in load disaggregation, occupancy detection and appliance usage
mining.

==============================

D3.4 Code and Data Repositories Page 46 of 64

Appendix B - Data collection and processing code documentation

Data sources and core processing¶

In EURITO we predominantly use four data sources:

● EU-funded research from CORDIS

● Technical EU research on arXiv

● EU Patents from PATSTAT

● EU Companies [under license, we can’t specify the source publicly. Contact us for

more details!]

CORDIS¶

Data from the CORDIS’s H2020 API and FP7 API funded projects is extracted using code

found in this repository.

In total, 51250 organisations and 50640 projects were extracted from the API. There are

1102 proposal calls, 245465 publications and 34507 reports. In total 6545 are associated

with the projects.

Software outputs are associated with the projects, using OpenAIRE API.

All of these entities are then linked together, and stored using a neo4j graph database. The

code for automatically piping the data in neo4j is provided here.

Cordis to Neo4j¶

Tools for piping data from a SqlAlchemy ORM to Neo4j, to be used in the Luigi pipeline.

orm_to_neo4j(session, transaction, orm_instance, parent_orm=None,

rel_name=None)[source]¶

Pipe a SqlAlchemy ORM instance (a ‘row’ of data) to neo4j, inserting it as a node or

relationship, as appropriate.

https://eurito.readthedocs.io/eurito_daps.packages.html#data-sources-and-core-processing
https://eurito.readthedocs.io/eurito_daps.packages.html#cordis
http://cordis.europa.eu/data/cordis-h2020projects.csv
http://cordis.europa.eu/data/cordis-h2020projects.csv
http://cordis.europa.eu/data/cordis-fp7projects.csv
http://cordis.europa.eu/data/cordis-fp7projects.csv
https://nesta.readthedocs.io/en/dev/nesta.core.routines.cordis.html
https://nesta.readthedocs.io/en/dev/nesta.core.routines.cordis.html
http://api.openaire.eu/oai_pmh
http://api.openaire.eu/oai_pmh
https://neo4j.com/
https://neo4j.com/
https://eurito.readthedocs.io/en/dev/_modules/packages/utils/cordis_neo4j.py
https://eurito.readthedocs.io/en/dev/_modules/packages/utils/cordis_neo4j.py
https://eurito.readthedocs.io/eurito_daps.packages.html#cordis-to-neo4j
https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#orm_to_neo4j
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.orm_to_neo4j

D3.4 Code and Data Repositories Page 47 of 64

Para
meter

s:

● session (sqlalchemy.Session) – SQL DB session.

● transaction (py2neo.Transaction) – Neo4j

transaction

● orm_instance (sqlalchemy.Base) – Instance of a

SqlAlchemy ORM, i.e. a ‘row’ of data.

● parent_orm (sqlalchemy.Base) – Parent ORM to

build relationship to

● rel_name (str) – Name of the relationship to be

added to Neo4j

build_relationships(session, graph, orm, data_row, rel_name,

parent_orm=None)[source]¶

Build a py2neo.Relationship object from SqlAlchemy objects.x

Para
meter

s:

● session (sqlalchemy.Session) – SQL DB session.

● transaction (py2neo.Transaction) – Neo4j

transaction

● orm (sqlalchemy.Base) – A SqlAlchemy ORM

● rel_name (str) – Name of the relationship to be

added to Neo4j

● parent_orm (sqlalchemy.Base) – Another ORM to

build relationship to. If this is not specified, it implies

that orm is node, rather than a relationship.

Retur
ns:

Relationships pointing to the node (inferred from ORM), and

one pointing back to it’s associated project.

Retur
n

type:

{relationship, back_relationship}

set_constraints(orm, graph_schema)[source]¶

Set constraints in the neo4j graph schema.

https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#build_relationships
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.build_relationships
https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#set_constraints
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.set_constraints

D3.4 Code and Data Repositories Page 48 of 64

Para
meter

s:

● orm (sqlalchemy.Base) – A SqlAlchemy ORM

● graph_schema (py2neo.Graph.Schema) – Neo4j

graph schema.

prepare_base_entities(table)[source]¶

Returns the objects required to generate a graph representation of the ORM.

Para
meter

s:

table (sqlalchemy.sql.Table) – SQL alchemy table object
from which to extract an graph representation.

Retur
ns:

Two ORMs and a string describing

their relationship

Retur
n

type:

{orm, parent_orm, rel_name}

flatten(orm_instance)[source]¶

Convert a SqlAlchemy ORM (i.e. a ‘row’ of data) to flat JSON.

Para
meter

s:

orm_instance (sqlalchemy.Base) – Instance of a
SqlAlchemy ORM, i.e. a ‘row’ of data.

Retur
ns:

A flat row of data, inferred from orm_instance

Retur
n

type:

row (dict)

flatten_dict(row, keys=[('title',), ('street', 'city', 'postalCode')])[source]¶

Flatten a dict by concatenating string values of matching keys.

https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#prepare_base_entities
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.prepare_base_entities
https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#flatten
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.flatten
https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#flatten_dict
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.flatten_dict

D3.4 Code and Data Repositories Page 49 of 64

Param
eters:

row (dict) – Data to be
flattened

Retur
ns:

Concatenated data.

Retur
n

type:

flat (str)

retrieve_node(session, graph, orm, parent_orm, data_row)[source]¶

Retrieve an existing node from neo4j, by first retrieving it’s id (field name AND value)

via SqlAlchemy.

Para
meter

s:

● session (sqlalchemy.Session) – SQL DB session.

● transaction (py2neo.Transaction) – Neo4j

transaction

● orm (sqlalchemy.Base) – SqlAlchemy ORM

describing data_row

● parent_orm (sqlalchemy.Base) – Parent ORM to

build relationship to

● data_row (dict) – Flat row of data retrieved from orm

Retur
ns:

Node of data corresponding to data_row

Retur
n

type:

node (py2neo.Node)

table_from_fk(fks)[source]¶

Get the table name of the fk constraint, ignoring the cordis_projects table

https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#retrieve_node
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.retrieve_node
https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#table_from_fk
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.table_from_fk

D3.4 Code and Data Repositories Page 50 of 64

Para
meter

s:

fks (list of SqlAlchemy.ForeignKey) – All foreign keys for

a given table.

Retur
ns:

The table name corresponding to the non-Project foreign
key.

Retur
n

type:

tablename (str)

get_row(session, parent_orm, orm, data_row)[source]¶

Retrieve a flat row of data corresponding to the parent relation, inferred via foreign

keys.

Para
meter

s:

● session (sqlalchemy.Session) – SQL DB session.

● parent_orm (sqlalchemy.Base) – Parent ORM to

build relationship to

● orm (sqlalchemy.Base) – SqlAlchemy ORM

describing data_row

● data_row (dict) – Flat row of data retrieved from orm

Retur
ns:

Flat row of data retrieved from parent_orm

Retur
n

type:

_row (dict)

Enrich Cordis with OpenAIRE¶

Tools for collecting OpenAIRE data (by Cordis project), and piping to Neo4j.

write_record_to_neo(record, output_type, graph)[source]¶

A utility function, which takes record and writes it to neo4j graph

https://eurito.readthedocs.io/_modules/eurito_daps/packages/cordis/cordis_neo4j.html#get_row
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.cordis.cordis_neo4j.get_row
https://eurito.readthedocs.io/eurito_daps.packages.html#enrich-cordis-with-openaire
https://eurito.readthedocs.io/_modules/eurito_daps/packages/utils/openaire_utils.html#write_record_to_neo
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.utils.openaire_utils.write_record_to_neo

D3.4 Code and Data Repositories Page 51 of 64

Para
meter

s:

● record (dict) – a dictionary that contains metadata

about a record

● output_type (str) – type of record to be extracted

from OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

● graph (graph_session) – connection to neo4j

database

get_project_soups(currentUrl, reqsession, output_type, projectID)[source]¶

Gets a beautiful soup according to output type and projectID

Para
meter

s:

● currentUrl (str) – URL to OpenAIRE API

● reqsession (instance of Requests session) –

currently open HTTP request

● output_type (str) – type of record to be extracted

from OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

● projectID (str) – EC project identifier

Retur
ns:

a list of BeautifulSoup objects that contain the results from

API call

Retur
n

type:

souplist(list)

get_results_from_soups(souplist)[source]¶

Extracts string from all BeautifulSoup objects and merges them into one list

Para
meter

s:

souplist (list) – a list of BeautifulSoup objects that contain
the results from API call

https://eurito.readthedocs.io/_modules/eurito_daps/packages/utils/openaire_utils.html#get_project_soups
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.utils.openaire_utils.get_project_soups
https://eurito.readthedocs.io/_modules/eurito_daps/packages/utils/openaire_utils.html#get_results_from_soups
https://eurito.readthedocs.io/eurito_daps.packages.html#eurito_daps.packages.utils.openaire_utils.get_results_from_soups

D3.4 Code and Data Repositories Page 52 of 64

Retur
ns:

a list of strings with results metadata

Retur
n

type:

resultlist(list)

arXiv¶

All articles from arXiv, which is the world’s premier repository of pre-prints of articles in the

physical, quantitative and computational sciences, are already automatically collected,

geocoded (using GRID) and enriched with topics (using MAG). Articles are assigned to EU

NUTS regions (at all levels) using nesta’s nuts-finder python package.

Data is transferred to EURITO’s elasticsearch server via nesta’s es2es package. The lolvelty

algorithm is then applied to the data in order to generate a novelty metric for each article.

This procedure is bettter described in this blog (see “Defining novelty”).

The indicators using this data source are presented in this other EURITO repository.

In total, 1598033 articles have been processed, of which 459371 have authors based in EU

nations.

PATSTAT¶

All patents from the PATSTAT service have been collected in nesta’s own database using

nesta’s pypatstat library. Since this database is very large, we have selected patents which

belong to a patent family with a granted patent first published after the year 2000, with at

least one person or organisation (inventor or applicant) based in an EU member state. This

leads to 1552303 patents in the database.

Data is transferred to EURITO’s elasticsearch server via nesta’s es2es package. The lolvelty

algorithm is then applied to the data in order to generate a novelty metric for each article.

This procedure is better described in this blog (see “Defining novelty”).

The indicators using this data source are presented in this other EURITO repository.

https://eurito.readthedocs.io/eurito_daps.packages.html#arxiv
https://arxiv.org/
https://arxiv.org/
https://www.grid.ac/
https://www.grid.ac/
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
https://pypi.org/project/nuts-finder/
https://pypi.org/project/nuts-finder/
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://pypi.org/project/es2es/
https://pypi.org/project/es2es/
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://github.com/EURITO/query_indicators
https://github.com/EURITO/query_indicators
https://eurito.readthedocs.io/eurito_daps.packages.html#patstat
https://github.com/nestauk/pypatstat
https://github.com/nestauk/pypatstat
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://pypi.org/project/es2es/
https://pypi.org/project/es2es/
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://github.com/EURITO/query_indicators
https://github.com/EURITO/query_indicators

D3.4 Code and Data Repositories Page 53 of 64

Companies¶

We have acquired private-sector company data under license. The dataset contains 550,540

companies, of which 133,641 are based in the EU.

Data is transferred to EURITO’s elasticsearch server via nesta’s es2es package. The lolvelty

algorithm is then applied to the data in order to generate a novelty metric for each article.

This procedure is better described in this blog (see “Defining novelty”).

The indicators using this data source are presented in this other EURITO repository

Batchables

run.py (lolvelty)

Calculates the “lolvelty” novelty score to documents in Elasticsearch, on a document-by-

document basis. Note that this is a slow procedure, and the bounds of document “lolvelty”

can’t be known a priori.

run()[source]

Production pipelines

We use luigi routines to orchestrate our pipelines. The batching procedure relies on

batchables as described in batchables. Other than luigihacks.autobatch, which is

respectively documented in Nesta’s codebase, the routine procedure follows the Luigi

documentation well.

Transfer of Elasticsearch data

This pipeline is responsible for the transfer of Elasticsearch data from a remote origin (in our

case, Nesta’s Elasticsearch endpoint) to EURITO’s endpoint.

class Es2EsTask(*args, **kwargs)[source]

Bases: luigi.task.Task

https://eurito.readthedocs.io/eurito_daps.packages.html#companies
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://pypi.org/project/es2es/
https://pypi.org/project/es2es/
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://github.com/nestauk/nesta/blob/dev/nesta/packages/novelty/lolvelty.py
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e
https://github.com/EURITO/query_indicators
https://github.com/EURITO/query_indicators
https://eurito.readthedocs.io/_modules/eurito_daps/batchables/novelty/lolvelty/run.html#run
https://nesta.readthedocs.io/en/latest/nesta.core.luigihacks.html
https://luigi.readthedocs.io/en/stable/
https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#Es2EsTask

D3.4 Code and Data Repositories Page 54 of 64

date = <luigi.parameter.DateParameter object>

origin_endpoint = <luigi.parameter.Parameter object>

origin_index = <luigi.parameter.Parameter object>

dest_endpoint = <luigi.parameter.Parameter object>

dest_index = <luigi.parameter.Parameter object>

test = <luigi.parameter.BoolParameter object>

chunksize = <luigi.parameter.IntParameter object>

do_transfer_index = <luigi.parameter.BoolParameter object>

db_config_path = <luigi.parameter.Parameter object>

output()[source]

Points to the output database engine

run()[source]

The task run method, to be overridden in a subclass.

https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#Es2EsTask.output
https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#Es2EsTask.run

D3.4 Code and Data Repositories Page 55 of 64

See Task.run

class EsLolveltyTask(*args, **kwargs)[source]

Bases: nesta.core.luigihacks.estask.LazyElasticsearchTask

date = <luigi.parameter.DateParameter object>

origin_endpoint = <luigi.parameter.Parameter object>

origin_index = <luigi.parameter.Parameter object>

test = <luigi.parameter.BoolParameter object>

process_batch_size = <luigi.parameter.IntParameter object>

do_transfer_index = <luigi.parameter.BoolParameter object>

requires()[source]

The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed. If your Task

does not require any other Tasks, then you don’t need to override this method.

Otherwise, a subclass can override this method to return a single Task, a list of

Task instances, or a dict whose values are Task instances.

https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#EsLolveltyTask
https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#EsLolveltyTask.requires

D3.4 Code and Data Repositories Page 56 of 64

See Task.requires

class RootTask(*args, **kwargs)[source]

Bases: luigi.task.WrapperTask

production = <luigi.parameter.BoolParameter object>

date = <luigi.parameter.DateParameter object>

requires()[source]

The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed. If your Task

does not require any other Tasks, then you don’t need to override this method.

Otherwise, a subclass can override this method to return a single Task, a list of

Task instances, or a dict whose values are Task instances.

See Task.requires

Centrality Pipeline

Takes network from Neo4j database, calculates network centrality measures and updates

each node in the database with new centrality attributes

class RootTask(*args, **kwargs)[source]

Bases: luigi.task.WrapperTask

https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#RootTask
https://eurito.readthedocs.io/_modules/eurito_daps/routines/es_data/es_data.html#RootTask.requires
https://eurito.readthedocs.io/_modules/eurito_daps/routines/centrality/centrality.html#RootTask

D3.4 Code and Data Repositories Page 57 of 64

The root task, which collects the supplied parameters and calls the main task.

Paramet
ers:

● date (datetime) – Date used to label the outputs

● output_type (str) – type of record to be extracted from

OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

● production (bool) – test mode or production mode

date = <luigi.parameter.DateParameter object>

output_type = <luigi.parameter.Parameter object>

production = <luigi.parameter.BoolParameter object>

requires()[source]

Call the task to run before this in the pipeline.

class CalcCentralityTask(*args, **kwargs)[source]

Bases: luigi.task.Task

Takes network from Neo4j database, calculates network centrality measures and

updates each node in the database with new centrality attributes

Paramet
ers:

● date (datetime) – Date used to label the outputs

● output_type (str) – type of record to be extracted from

OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

https://eurito.readthedocs.io/_modules/eurito_daps/routines/centrality/centrality.html#RootTask.requires
https://eurito.readthedocs.io/_modules/eurito_daps/routines/centrality/centrality.html#CalcCentralityTask

D3.4 Code and Data Repositories Page 58 of 64

● test (bool) – run a shorter version of the task if in test

mode

date = <luigi.parameter.DateParameter object>

output_type = <luigi.parameter.Parameter object>

test = <luigi.parameter.BoolParameter object>

output()[source]

Points to the output database engine where the task is marked as done. The

luigi_table_updates table exists in test and production databases.

run()[source]

The task run method, to be overridden in a subclass.

See Task.run

Cordis to Neo4j

Task for piping Cordis data from SQL to Neo4j.

class CordisNeo4jTask(*args, **kwargs)[source]

Bases: luigi.task.Task

https://eurito.readthedocs.io/_modules/eurito_daps/routines/centrality/centrality.html#CalcCentralityTask.output
https://eurito.readthedocs.io/_modules/eurito_daps/routines/centrality/centrality.html#CalcCentralityTask.run
https://eurito.readthedocs.io/_modules/eurito_daps/routines/cordis/cordis_neo4j_task.html#CordisNeo4jTask

D3.4 Code and Data Repositories Page 59 of 64

Task for piping Cordis data to neo4j

test = <luigi.parameter.BoolParameter object>

date = <luigi.parameter.DateParameter object>

output()[source]

Points to the output database engine where the task is marked as done. The

luigi_table_updates table exists in test and production databases.

run()[source]

The task run method, to be overridden in a subclass.

See Task.run

class RootTask(*args, **kwargs)[source]

Bases: luigi.task.WrapperTask

production = <luigi.parameter.BoolParameter object>

requires()[source]

The Tasks that this Task depends on.

https://eurito.readthedocs.io/_modules/eurito_daps/routines/cordis/cordis_neo4j_task.html#CordisNeo4jTask.output
https://eurito.readthedocs.io/_modules/eurito_daps/routines/cordis/cordis_neo4j_task.html#CordisNeo4jTask.run
https://eurito.readthedocs.io/_modules/eurito_daps/routines/cordis/cordis_neo4j_task.html#RootTask
https://eurito.readthedocs.io/_modules/eurito_daps/routines/cordis/cordis_neo4j_task.html#RootTask.requires

D3.4 Code and Data Repositories Page 60 of 64

A Task will only run if all of the Tasks that it requires are completed. If your Task

does not require any other Tasks, then you don’t need to override this method.

Otherwise, a subclass can override this method to return a single Task, a list of

Task instances, or a dict whose values are Task instances.

See Task.requires

OpenAIRE to Neo4j

Pipe data directly from the OpenAIRE API to Neo4j by matching to Cordis projects already in

Neo4j.

class RootTask(*args, **kwargs)[source]

Bases: luigi.task.WrapperTask

The root task, which collects the supplied parameters and calls the SimpleTask.

Paramet
ers:

● date (datetime) – Date used to label the outputs

● output_type (str) – type of record to be extracted from

OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

● production (bool) – test mode or production mode

date = <luigi.parameter.DateParameter object>

output_type = <luigi.parameter.Parameter object>

production = <luigi.parameter.BoolParameter object>

https://eurito.readthedocs.io/_modules/eurito_daps/routines/openaire/openaire_to_neo4j_search.html#RootTask

D3.4 Code and Data Repositories Page 61 of 64

requires()[source]

Call the task to run before this in the pipeline.

class OpenAireToNeo4jTask(*args, **kwargs)[source]

Bases: luigi.task.Task

Takes OpenAIRE entities from MySQL database and writes them into Neo4j database

Paramet
ers:

● date (datetime) – Date used to label the outputs

● output_type (str) – type of record to be extracted from

OpenAIRE API. Accepts “software”, “datasets”,

“publications”, “ECProjects”

● test (bool) – run a shorter version of the task if in test

mode

date = <luigi.parameter.DateParameter object>

output_type = <luigi.parameter.Parameter object>

test = <luigi.parameter.BoolParameter object>

output()[source]

Points to the output database engine where the task is marked as done. The

luigi_table_updates table exists in test and production databases.

https://eurito.readthedocs.io/_modules/eurito_daps/routines/openaire/openaire_to_neo4j_search.html#RootTask.requires
https://eurito.readthedocs.io/_modules/eurito_daps/routines/openaire/openaire_to_neo4j_search.html#OpenAireToNeo4jTask
https://eurito.readthedocs.io/_modules/eurito_daps/routines/openaire/openaire_to_neo4j_search.html#OpenAireToNeo4jTask.output

D3.4 Code and Data Repositories Page 62 of 64

run()[source]

The task run method, to be overridden in a subclass.

See Task.run

Ontologies and schemas

Tier 0

Raw data collections (“tier 0”) in the production system do not adhere to a fixed schema or

ontology, but instead have a schema which is very close to the raw data. Modifications to

field names tend to be quite basic, such as lowercase and removal of whitespace in favour

of a single underscore.

Tier 1

Processed data (“tier 1”) is intended for public consumption, using a common ontology. The

convention we use is as follows:

● Field names are composed of up to three terms: a firstName, middleName and

lastName

● Each term (e.g. firstName) is written in lowerCamelCase.

● firstName terms correspond to a restricted set of basic quantities.

● middleName terms correspond to a restricted set of modifiers (e.g. adjectives) which

add nuance to the firstName term. Note, the special middleName term of is

reserved as the default value in case no middleName is specified.

● lastName terms correspond to a restricted set of entity types.

Valid examples are date_start_project and title_of_project.

https://eurito.readthedocs.io/_modules/eurito_daps/routines/openaire/openaire_to_neo4j_search.html#OpenAireToNeo4jTask.run

D3.4 Code and Data Repositories Page 63 of 64

Tier 0 fields are implictly excluded from tier 1 if they are missing from the

schema_transformation file. Tier 1 schema field names are applied via

nesta.packages.decorator.schema_transform

Scripts

A set of helper scripts for the batching system.

Note that this directory is required to sit in $PATH. By convention, all executables in this

directory start with nesta_ so that our developers know where to find them.

nesta_prepare_batch

Collect a batchable run.py file, including dependencies and an automaticlly generated

requirements file; which is all zipped up and sent to AWS S3 for batching. This script is

executed automatically in luigihacks.autobatch.AutoBatchTask.run.

Parameters:

● BATCHABLE_DIRECTORY: The path to the directory containing the batchable

run.py file.

● ARGS: Space-separated-list of files or directories to include in the zip file, for

example imports.

nesta_docker_build

Build a docker environment and register it with the AWS ECS container repository.

Parameters:

● DOCKER_RECIPE: A docker recipe. See docker_recipes/ for a good idea of how to

build a new environment.

D3.4 Code and Data Repositories Page 64 of 64

