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ABSTRACT
EEG signals corresponding to different

psychophysiological conditions can be characterized
by their fractal dimension (D). The noises present on
the recording can affect the estimation of such a
dimension. In this work we analyse the behaviour of
two D estimators in case of different kinds (gaussian
and sinusoidal) and amplitudes of noise. The EEG
fractal dimension seems to be strongly compromised
by gaussian noise greater than about 3-4%, of the
EEG rms value, while a 50Hz noise of about 10% of
the EEG rms signal is necessary to produce estimation
errors greater than 10%. A dependence on the
sampling frequency of the D estimation is also
pointed out.

1 INTRODUCTION

Recent studies [1-3] have shown that the analysis
of the fractal dimension, D, of a biological signal (like
EEG, ECG or Speech) in the time domain can be
successfully applied to identify different situations
(i.e. voiced vs. unvoiced speech or epileptic seizures
vs. rest condition in EEG or different arrhythmia types
in ECG recordings) in a more immediate way with
respect to other traditional methods (as for example
those based on the power spectrum or the coherence
function).

The advantages of this methodology are due both
to the nonlinear origin of the analysed signals and to
the fact that the traditional spectral analyses frequently
do not consider the phase behaviour. Hence, they lose
some information contained in the signal that the
fractal analysis on the contrary utilizes [2]. Moreover,
to obtain a reliable estimation of the power spectrum,
the algorithms need a large number of points and
averaged values on some intervals [4]. Furthermore,
because of the utilized sampling frequencies, the

examined intervals result too large both to identify
transient events and to satisfy the stationarity
hypothesis of the signal.

 On the other hand, among the several methods [5-
8] used to estimate the fractal dimension, there are a
few that are able to obtain reliable values with a
limited number of points [7,8] thus allowing to
identify events of brief duration also. The fractal
dimension of a signal is a measure of fragmentation,
and its estimation is altered by the presence of noise.
Since biological signals are frequently affected by
noise introduced both by the measuring
instrumentation and by undesired biological events,
the D estimation can result incorrect.

In this work the influence of gaussian white noise
as well as of sinusoidal noise (line noise) on the
fractal dimension estimation has been examined so as
to evaluate the robustness and the reliability of the
different methods. To this aim first we added the
noises to synthetic fractal signals of fixed dimension
and successively to EEG recordings.

2 MATERIALS AND METHODS

To evaluate the fractal dimension we used the
morphological approach described by Maragos [7] and
the graph dimension estimation suggested by Higuchi
[8] by using a maximum interval time (kmax) equal
to 5. The synthetic signals were obtained from a
Fractional Brownian motion (FBm) generated by
means of the random midpoint displacement technique
and from the Weierstrass function [9]; D ranged
between 1.1 and 1.9.

 The algorithms were applied both to the synthetic
and to the EEG signals, the latter recorded from
distinct sites of the scalp in some normal and epileptic
subjects during different states (open and closed eyes,
epileptic seizure, etc.). We added to each signal either



a pure sinusoidal noise (at 50Hz) or a gaussian white
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noise. The noise rms amplitude was varied from 0 to
20% of the signal rms amplitude to take into account
the highest possible noises present in the EEG
recordings.

The estimated D was the mean value of the fractal
dimension obtained on 10 successive signal segments
of 512 points each (with a 12% overlapping),
equivalent to 1 sec. The EEG segments (sampled at
512Hz) were selected in such a way as to have very
low noise and to maintain the stationarity for the
whole duration of the analyzed tract.

3 RESULTS AND DISCUSSION

Fig.1 Fractal dimension (D) of a sinusoidal signal
vs. the ratio between the sinusoidal frequency (F)
and the sampling frequency (Fs), evaluated with
the two algorithms. The true value of D is 1.

The fractal dimension evaluated on the synthetic
signals, with the highest values of 50Hz noise added,
asymptotically tended to a value of about 1.24, when
Fs was 512Hz, whatever the selected D was (fig.2b).
Since a pure sinusoidal continuous signal has an
integer dimension equal to 1 and the process to
estimate D could be affected by the number of
samples present in each cycle, first we examined the
dependence on the sampling frequency of the D
evaluation with the two methods. In both cases (fig.1)
as the ratio between the sinusoidal frequency, F, and
the sampling frequency, Fs, increases, the D value
increases too with an estimation error lower than 10%

Fig.2a-b D values estimated from the three Weierstrass synthetic signals (with D set to 1.1, 1.2 and 1.3) vs. % of
the 50Hz sinusoidal noise added. The sampling frequency was fixed to 2560Hz (a) and to 512Hz (b) corresponding
to about 51 and 10 points per cycle respectively.

for F/Fs lower than 0.06. Then, to correctly estimate
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the fractal dimension of a sinusoidal wave, a sampling
frequency much larger than the Nyquist one is
necessary (or a number of points per cycle greater
than about 16). 

Fig.2a-b shows the influence on D of the 50Hz
sinusoidal noise added to the Weierstrass synthetic
function when the sampling frequency changes from
2560Hz to 512Hz. The results are similar to those
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obtained by using the FBm signal and indicate that
the more the noise increases and the less the Fs is, the
more the D estimation is affected by the noise.

Fig.4a-b D values of the Weierstrass synthetic signal (a) and of the EEG (b) vs. % of the gaussian white noise
added. The sampling frequency was fixed to 512Hz. The EEG derivations are the same as in fig.3.

1 

1.1 

1.2 

1.3 

1.4 

0 2 4 6 8 10 12 14 16 18 20 
50Hz noise%

Fp2a

O2a
Fp2b

D

Fig.3 D values of the EEG signal recorded from FP2
and O2 derivations vs. % of the 50Hz sinusoidal
noise added. The sampling frequency was fixed to
512Hz. Fp2a and O2a are derived from a normal
subject with open eyes; Fp2b from an epileptic
subject during a spike and wave epileptic seizure.
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In any case, the D value tends to the one that the
sinusoid alone should have at the corresponding
sampling frequency (i.e. D=1.02 at Fs=2560Hz;
D=1.24 at Fs=512Hz, see fig.1). So, a noise of 1%
produces at Fs=512Hz an estimation error greater than
10% with respect to a true D value of 1.1 (fig.2b);
this fact is still more relevant because the error is not
equal for all the possible D values, thus producing a
reduction of the possible differences present in the
signal.
 In particular, this fact is important in the EEG signal
analysis where just the differences among various
psychophysiological states have to be recognized. For
example in fig.3 the Fp2a signal, recorded in a normal
subject, must be separated from the Fp2b one,
recorded in an epileptic subject. The difference and
the consequent ability to distinguish between the two
conditions decrease as the noise increases; however
the EEG seems to be less sensitive (about 20 times)
to the 50Hz (line) noise than the synthetic signals.

It can be concluded that to obtain reliable
estimates of D, able to maintain a sufficient
dissimilarity among different situations, a high signal
to noise ratio as well as a high Fs (about 8 times the
Nyquist frequency) are requested.

The influence of the gaussian white noise on the
D estimation is similar to that of the sinusoidal noise
(fig4a-b). As the noise increases, the D value tends to
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2, which is the fractal dimension of white noise. Yet,



this tendency is more sudden than in the 50Hz noise
case, especially for the lowest true D values. This
error is larger for small true D values and it makes the
fractal dimension to be unsuitable for the
identification of different conditions when the rms of
the white noise is greater than 0.3% of the
corresponding signal.

This fact is evident also in the EEG case, even if
it happens at a higher noise amplitude (3-4%).
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