Comparison of EMG pattern separability in the affected and non-affected arm in individuals with amputation

Background

• (Myo-)Prostheses: Machine Learning Control

- Studies (E.g. user training, system performance): Often Able bodied
 - ➤ Conclusions about: Learning/Training/Performance
- Amputated limb:
 - -Anatomically/physiologically different

Background

- Amputated limb:
 - -Anatomically/physiologically different
 - Effect on EMG/Muscle Control?

mgmtrialservices.medicalillustration.com

As a first step...

- Compare separability of EMG patterns in sound and affected limbs of individuals with amputations

What does influence separability?

- Compare separability of EMG patterns in sound and affected limbs of individuals with amputations

What does influence separability?

14 Individuals with Amputation

- Unilateral, transradial amputation
- Age: 53 (+- 15)
- Time since limb loss: 25 years(+- 19)
- 2 Females
- 10 Myoelectric, 1 cosmetic, 3 no prosth.
- All daily users (10 hours/day (+- 2.7))

Protocol

- -Performing 7 bimanual movements in three arm orientations sound hand unrestricted/ restricted
- 8 EMG electrodes on each arm

Analysis:

- Separability: (Bunderson, 2012 | Roduit 2006)
- Sliding Time Windows (200ms), 4 Time-Domain Features (Hudgin's)
- Mahalanobis (nearest neighbor) Interclass-distance:
- $D_1 = \frac{1}{2}$ Mahalanobis Distance movement A -> movement B
- $D_2 = \frac{1}{2}$ Mahalanobis Distance movement B -> movement A
- Separability = $\frac{D_1 * D_2}{D_1 + D_2}$
- Statistical Analysis:
- GLM Repeated Measures, significance level: 0.05
- (Within subject factors: Sound hand restriction, Arm, Orientation)

Two main effects:

Sound Hand Restriction (p=0.015)

Two main effects:

Sound Hand Restriction (p=0.015)

Two main effects:

Sound Hand Restriction (p=0.015)

- Separability is negatively affected by limb absence...
 - How to interpret these numbers?
 - Is it a meaningful difference?

Two main effects:

Sound Hand Restriction (p=0.015)

Two main effects:

Sound Hand Restriction (p=0.015)

Discussion/Conclusion

- EMG pattern separability is negatively affected by limb absence
 - -> Amputated limb appears to be different
 - -> Might affect experiments with able bodied / sound limbs

Question for the future:
Does this finding have an effect on other parameters?

Discussion/Conclusion

Thank you for your attention!

Acknowledgements:

- Morten B. Kristoffersen
- Supervisors:
- Corry van der Sluis
- Alessio Murgia
- Raoul Bongers

