
1

Here is an outline of what I will speak about today. Starting out I will share the current
status of our workflow and discuss some of the elements of it. This will include a brief
discussion of the various elements of the workflow. Then I will discuss differences
between projects and the inherent difficulty that brings with it. From there I will move
to the most common errors that we see, first discussing the most common computer
script errors and then the most common manuscript errors. After that, I will discuss
good practices to avoid some of these common errors and solutions to them and finally
I will discuss our future plans for the workflow.

2

v This is our current workflow and I will quickly walk you through it. First we receive
the submission and check it for completeness. Then we run it and begin to version
the code and submission. Once we manage to get it to run all the way through we
compare the results with the manuscript. If we find any inconsistencies or
differences, we will discuss with the client and make the necessary corrections.
During this process we will also look at the code and suggest improvements for
either curation or for future usability such as better commenting. Finally we
assemble the final package and check that against the manuscript once again to
ensure that any changes were made didn’t affect the results. As you can see from
the diagram, we make multiple checks if our clients want us to, either at Revise and
Resubmit, after they have a Proof, and then even post publication to ensure
everything lines up.

3

First we check the files submitted, with regards to the code:
To do this we create a project folder with the naming convention of “R2-Year-Lastname-
Number”
1. We check presence of a readme that would provide instructions on the

requirements to reproduce the results. Often there is no readme file. This is most
important once the project is finished or in final stages but getting one started early
isn’t bad.

2. We check the program file names that they indicate the order of execution and/or
what it does, so we can easily identify which code to run first or its function.

3. We check for the presence of master program file that executes all the program files
in sequence – to simplify the experience of reproducing results

4. We identify the software used by the researchers – once identified we use a freshly
installed version of the software, just the base, so we can detect all the
packages/modules/libraries/ados that installed by the researchers that were not
part of the base package. The code will break and produce an error if the command
or library being called by the code is not part of the base.

4

To do any further checks (or even to check the code itself) we require something to
check it against which is where the article comes in. We ask the researcher to highlight
the sections of their article that contain data to be checked, to insure we don’t miss any
in line numbers. To that end, we also ask that they print out an output file and highlight
where the numbers came from. This serves as a sort of check in itself and helps to
clarify which numbers we should be looking at, though authors are not great about
doing this for us.

5

When we check the data itself to ensure that it is free of errors and inconsistencies if
possible and that variable values are well labeled and named.

6

7

When we check the code we make sure that it is prefixed with a number to en

8

9

Lack of a seed is a serious problem in reproduction, and is a tricky thing to handle.
Findings should, in theory, be robust enough to be able to withstand using a random
seed and get the same results, without the specific seed it is impossible to reproduce
the exact findings. The example shown displays how findings can change between two
seeds even though there were thousands of generated numbers and the findings were
robust.

10

Usually there is no header in the code.
We put a header.

It contains:
1. Software and version used
2. Command to save the output file. Reusers can compare this output file to the one

we include in the package so they know they’v executed the code correctly.
3. The title of the study
4. The DOI which we mint
5. Authors, their contact info, and ORCID number so the authors can be contacted

should re-users have questions.

The path is anchored on the location of the code, i.e. we make the location of the code
as the active working directory, so that reproduction materials package is portable and
installable in any folder location without having to recreate or mimic the directory path
of the authors.

The code should save the output file as these results are the once the researchers will

11

compare to the manuscript.

ORCID is important so that in case the author moves to a different institution,
researchers will still be able to get in touch with them, assuming they update their
ORCID profile.

11

We use a modified version of the TIER protocol to organize our materials, but really any
sort of organization is acceptable, as long as there is a structure and it is organized.

12

Multiple checks are better, as we are all only human and make mistakes. Multiple
checks by multiple people are better still!

13

Now onto the difficulties associated with projects. First are the differences between
projects which include the level of work that needs to be done, level of complexity, the
timeline requirements, the skill and experience of the client as well as their level of
comfort with reproduction tools.

14

15

16

17

18

19

For the next two sections, I will talk about the most common types of errors we see,
and how often I’ve seen them in the past 10 papers that I have reviewed to give an idea
of how common they are.

20

5 of last 10 had this problem

21

3 of last 10

22

2 of last 10

23

3 of last 10, but much more common than that

24

7 of last 10 missing Master File, but not always uncertain order (some of those no
order)

25

Hard to say, as code and manuscript evolve over time.

26

3 of last 10 were missing a prerequisite library when it was needed/suggestable

27

Similar to following the order of the manuscript, as calculations enter or leave the final
manuscript, code will become unnecessary or new code needed.

28

29

This is present in virtually all manuscripts, 9 of last 10 had an issue where rounding was
most likely to blame.

30

Can be hard differentiating this from rounding errors or the other type. It was certainly
present in at least 2 of last 10.

31

This wasn’t present in any of the last 10, however we have had issues with this in the
past, and it can be hard differentiating rounding/typos from this as well.

32

4 of the last 10 had issues that appear be related to out of date tables

33

3/10 of last 10. This occurs to differing degrees in many papers. Often this is done in
excel or just by hand/hand calculator.

34

This happens fairly often when output management systems aren’t used which we will
talk about in the next section.

35

36

37

38

39

40

41

42

43

44

45

46

47

