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ABSTRACT

In this paper, firstly, the Schur-Cohn test known as an
algebraic stability test of discrete-time linear systems is
presented as a “lossless bounded realness test by lossless
bounded real lattice realization” of a given real rational
transfer function on the unit disk. Then, by charac-
terizing a discrete model of piecewise constant passive
transmission line in terms of a set of physical system
parmeters, it is extended to an algebraic algorithm for
“bounded realness test by bounded real realization” of
a certain class of rational transfer functions, which are
general enough to cover almost actual passive transmis-
sion lines.

1 Introduction

The Schur-Cohn (SC) test first appeared as an algebraic
criterion for location of zeros of polynomials in the unit
disk and has played an important role in testing stabil-
ity of discrete-time linear systems. On the other hand,
Levinson-Durbin algorithm, first worked out as a recur-
sive algorithm to solve efficiently the Wiener’s linear pre-
diction problem, has found wide application in seismic
and speech analyses and underlain a variety of problems
such as linear prediction, orhtogonal polynomial, inverse
scattering and spectral analysis.

In spite of their apparent similiarity in form, it was
not until the last seventies that they came to be recog-
nized as different views of the same structure of lossless
tramnsmission lines and 1t is still scarecely known that
the SC test could also be regarded not only as a loss-
less bounded realness criterion but as a lossless bounded
real (LBR) realization algorithm for real rational trans-
fer functions on the unit disk. These observations show
that lossless bounded realness test and LBR realization
go side by side and share a common algebraic algorithm,
so called SC test for their solution.

A number of works have appeared in this context,
some exclusively associated with algebraic criteria and
some with realization problems, and have not yet suc-
ceeded in bounded real (BR) extension of the SC test to
general passive transmission lines.

e Siljak was the first who presented complete alge-
braic criteria for positive realness of rational func-
tions both on the unit disk and on the half plane.
But he did not show its relation to realization prob-
lems [1].

e Vaidyanathan proposed a recursive method for BR,
design of digital filters with the aid of a digital two-
pair extraction method [2], [3]. However, strictly
speaking, it is not a finite algebraic algorithm but
an infinite analytic one in the sense one has to com-
pute zeros and/or maxima of polynomials at its re-
cursion steps.

e Bruckstein and Kailath considered realization prob-
lem 1n the context of inverse scattering problem and
showed close relationship between the inversion al-
gorithm and the Schur’s algorithm only for lossless
transmission lines[4].

e Nagamatsu et al. presented a discrete model for
lossy nonuniform acoustic tubes in terms of local
areas and loss factors and proposed a recursive
method for estimating these parameters based on
multivariate linear prediction [6]. But it lacked in
generality and completeness.

Main purpose of this work is to integrate these crite-
ria and algorithms into a single algebraic algorithm for
“bounded realness test by BR realization” of given real
rational functions on the unit disk. To attain that end,
the SC test 1s first presented as a “lossless bounded re-
alness test by LBR lattice realization” of a given real
rational transfer function on the unit disk. Then, by
characterizing a discrete model of piecewise constant
passive transmission line in terms of a set of physical
system parmeters, it is extended to an algebraic algo-
rithm for “bounded realness test by BR realization” of
a certain class of rational transfer functions, which are
general enough to cover those of almost actual transmis-
sion lines.

2 An Algebraic Lattice Extraction Mehtod

In this paper, We consider a linear system character-
ized by a transfer function of N-th order Hy(z) =



Bn(z)/An(z) for relatively prime real polynomials
An(z) and By(z) of the same degree N

An(2) = Ano+ Ani2z + .+ Ann Y
Bn(2) = Bno+ By1z + ... + Ban 2V

which can be regarded as the input and the output
of our system. In the sequel, for the sake of nota-
tional convenience, we will use “z” instead of “2~1” to
denote a unit-time delay. Then the transfer function
Hy (z) can be realized by an algebraic lattice extraction
method as indicated in Figure 1, successively extracting
an elementary lattice section from Hy(z) and ending up
with a constraining transfer function of (n-1)-th order
H,1(2) = Bn-1(2)/An-1(2) [2],[3]. The elementary

lattice section is described either by a scattering matrix

Po(2)

N ] el B
or equivalently by a transfer matrix Q,,(2)

el I i

where the elements of these system matrices are linked
through the following relations

(@Qn)11 = (Po)11— (Pa)12(Pn)21/(Pa)an
(@Qn)12 = (Pa)i2/(Pn)a2

(@Qn)n = —(Pn)21/(Pn)22

(Qn)ZZ = 1/(Pn)22

or its Inverse ones.

An(2) Ani(2)

Pﬂ(z) Hn—l(z)

B, (z) Bn_1(z)

Figure 1: A lattice extraction method

We will make extensive use of transfer matrices and

make special choice of their parameters as
1 Bnn _Ann
z) = — _ _
Qn( ) fn _gnBHOZ ! gnArLOZ !

so that the polynomials A, (z) and B, (z) are reduced in
degree by eliminating their first and last coefficients, as
1s the case with the SC test. Then the transfer functions
H,(2) and Hy_1(z) are linked through linear fractional
transformations of complex analysis

ZHn—l(Z) = gn[AHOHn(Z) - BHO]
/1= AnnHn(2) + Bun] (3)

/[AnnZHn—l(Z) + gnAHO]

For the sake of completeness, let us cite some defini-
tions concerning lossless bounded realness or bounded
realness of transfer functions and matrices as follows:

Definition 1: Let Q,(z) be a transfer matrix whose el-
ements are real rational functions of z with no poles
on the unit disk |z| < 1. Then Q,(z) is said to be
BR(LBR) if it satisfies @, (2)*JQn(2) < J(=J), |z| =1
for J=diag[1, -1].

Definition 2: Let H,(z) be a real rational transfer func-
tion of z with no poles on the unit disk |z| < 1. Then
H, (%) is said to be BR(LBR) if it satisfies |H,(z)| <

1(= 1) on the unit circle |z| = 1.

We are now in a position to describe BR(LBR) real-
ization of a rational transfer function on the unit disk.
Introducing common and rating factors fn, gn of Qn(2)
respectively and noting that the constraining transfer
function H,_1(z) is not affected by these factors upto
constant factor, we are led to an important concept of
BR(LBR) realizability of transfer matrices and func-
tions.

Definition 3: A transfer matrix @, (z) of an n-th elemen-
tary lattice is called BR(LBR) realizable, if there exists
some non-zero constants f,, and g, such that @, (z) can

be made BR(LBR).

With the aids of these definition, we are able to recur-
sively define BR(LBR) realizability of transfer functions,
which will play a crucial roll in this paper.

Definition 4: A transfer function Hy(z) in Figure 1 is
called BR(LBR) lattice realizable, if Q x () is BR(LBR)
realizable and Hy_1(z) is also BR(LBR) lattice realiz-
able.

Therefore, BR(LBR) realizability of H,(z) can be re-
duced to that of a elementary lattice @, (z) and a resid-
ual transfer function H,_1(z) only by using the first
and the last coefficients of A, (z) and B, (z). Therefore
once this BR(LBR) realizability condition is met for the
transfer function H,(z) of order n, we use the transfer
matrix @, (z) to extract the associated BR(LBR) lattice
from A,(z) and B,(z) and put ourselves in the same
position as before with a BR(LBR) transfer function
H,,_1(z) of order n— 1 given by a polynomial fraction of
Ap—1(2) and B,,_1(z) of degree n—1. We can continue in
this way, successively testing the BR(LBR) realizability
condition and extracting its associated elementary lat-
tice to obtain a cascaded BR(LBR) realizaton of a given
rational transfer function.

3 LBR Lattice Realization and the SC Test

In this section, we will show the equivalence of LBR
lattice realizability and lossless bounded realness of a
real rational transfer function and present the SC test
as a LBR lattice realizability criterion.

The following lemmas and theorem are concerned



with LBR realizability of @, (z) and Hy(2) respectively,
and are easy exercises of Definition 3, 4.

Lemma 1: A transfer matrix Q,(z) is LBR realizable iff
the following relations hold:

AZO > Arzlna BTLO — :l:Ann, Bnn = Zl:Ano

Proof: The desired result readily follows from a set of
relations

ATZLO > Arzln
ATZLO - Arzln = Brzln - BELO
AnOBn0 = Anann

which result from a conditon @, (z) is LBR

i = 1
By —dnBro = fi
gZAHOBHO - Anann = 0

for some non-zero f, and g, = +1.

Lemma 2: A transfer function Hy(z) of N-th order in
Figure 11s LBR realizable iff it holds for n = N ...| 1
A2 > A2 Bho=+A,,, Ba, = A0

nn’

Proof: Obvious from recursive application of Lemma
1 to Definition 4 together with a relation Hy(z) =
Boo/Aoo =1.

Finally, the following theorem establishes the equiv-
alence between LBR realizability and lossless bounded
realness of a real rational transfer function and allows
us to regard the SC test as their equivalent.

Theorem 1: A real rational transfer function Hy(z) is
LBR iff it is LBR realizable.

Proof: Tt suffices to show that Hy(z) is LBR if and only
if both @n(z) and Hy_1(z) are LBR. Since the ”if”
part is obvious, we have only to show the “only if” part.
Owing to the Jensen-Nevanlinna formula, a real rational
transfer function Hy(z) = Bn(z)/An(z) is LBR iff it
holds 1) Ay (#) has all its zeros outside the unit disk and
2) Bng = £An n_g for & = 0,1,..., N, which in turn
guarantee the existence of a LBR Qun(z). The lossless
bounded realness of Hy_1(z) results from a couple of
recurrence relations

An_1(2) = fn[BynvAn(2) — AvnBn ()]
zBy_1(2) = [n[AnoBn(2) — BnoAn(2)]

by taking into account the following identities
By_igx = AN_gN-g-1, k=0,1,..,N -1

and noting that Ay_;1(z) has all its zeros outside the
unit disk due to Rouche’s theorem.

It is in this general setting that the SC test could be
considered as a LBR realizability condition or equiva-
lently a lossless bounded realness criterion.

4 BR Lattic Realization of Transmission Lines

BR realization is not so tractable as LBR one, because
bounded realness of Hx(z) does not necessarily mean
that of Qn(z) and Hy_;(z). However the converse is
still alive, because

[An-1(2)° = [Bn-1(2) [An (2) P = IBn (2) %,
|Bn-1(2) [ [An-1(2)
for |z| = 1 imply |By(2)]? < |An(2)]? for |z] = 1, which
means Hy(z) is bounded real. With the aids of this

converse, we will extend the aforementioned LBR real-
izability condition to a BR one.

<
<

4.1 A Discrete model of passive transmission
lines

Before going on BR lattice realization of rational trans-
fer functions of transmission lines, we will propose a
discrete model of piecewise constant passive transmis-
sion lines. This model is composed of cascaded series
of uniform lattice sections, characterized by their “loss-
less boundary scattering”without delay and “absorp-
tive inside propagation” with the same isotropic delay,
and is general enough to cover almost actual passive
transmission-lines.

To be more specific, let us introduce a quadruple of
physical system parameters, right and left reflection co-
efficients k¥ and right and left transmission coeflicients
7'ni to model “boundary scattering”, which are further
reduced to a single parameter &, owing to lossless scat-
tering without delay such that

and also a couple of system parameters, right and left
absorption coefficients n¥ to model “absorptive inside
propagation”.

Then noting each section has the same isotropic delay
: , we are led

W=

and applying a delay-transfer rule to “zz
to an n-th transfer matrix

1 _"fnn;t :|

_ nt
@nlz) = ﬁ_ﬁg[—wn/w-l (1/nr )2

for n = N, ..., 1. Furthermore, defining A, (z) and B, (2)
in terms of Ay(z) and By(z) as

[20] = eteerte [ 2] w

we can easily obtain the equation (2) for n = N, ..., 1.
This shows that a transfer matrix @, (z) of an n-th el-
ementary lattice of our model is a bounded real matrix
satisfying the following relation:

Qn(2)11Qn(2)21 = Qn(2)12Qn(2)22~



4.2 An algebraic algorithm for BR realization

Let us begin with a lemma on bounded realness of a
transfer matrix @,(z) and only cite it without proof
because of shortage of space.

Lemma 3: A transfer matrix @, (z) is bounded real iff
the following relations hold:

InAno > Anp
grzz(AZO - BELO) Z Arzln - Brzln
grzl(ArLO = Bn0)2 Z (Ann = Bnn)2

Lemma 4: A transfer matrix @, (z) is BR realizable, iff
A2 > B2 forn=N,.., 1

Proof: Obvious from Lemma 3 because there does not
exist ¢, if the above inequality does not hold.

The following theorem is concerned with BR realiz-
ability of a given BR transfer function Hy(z) and is
obvious from Definition 4 and Lemma 4.

Theorem 2: A real rational function Hpy(z) is strictly
BR realizable, iff it holds

Ano > A7, Ao > Bpg
under the minimal choice of ¢, for n = N,...,1 and
B, < Ad,.

For rational transfer functions in 4.1, this BR realiz-
ability condition also comprises their “bounded realness
test by BR realization” in the following manner:

Theorem 3: A real rational function Hy(z) belonging
to the class in 4.1 is not only strictly BR realizable but
also strictly BR, iff it holds

Ao > AL, Az > By
AnoAnn = BnobBan

under the special choice of g, = Bpn/Ano for n =
N,..,1and B3, < A%,.

Proof: Tt suffices to show inequalities A%, > A%y and
A%, > B3, as well as bounded realness of Hy_1(z) if
Hy(z) is bounded real. Both inequalities readily fol-
low from the holomorphy of Hy(z) and the maximum
modulus principle. Bounded realness of Hy_1(z) can be
easily deduced by reducing the linear fractional trans-
formation (3) to

zHy-1(z) = [Hn(2) — (Bno/Ano)]
/1 = (Bno/Ano) Hn (2)]
by the use of
gN = Byn/Ano, Bno/Ano = Ann/BnN

and following the similar augument in the proof of The-
orem 1.

5 Conclusions

In this paper, we presented a LBR realization problem in
a more general setting, and showed the SC test known
as a stability criterion of discrete time systems could
also be regarded as “lossless bounded realness test by
LBR realization” of real rational transfer functions on
the unit disk. And then we have extended the LBR
realizability condition to a bounded real one.

Our realization method has many advantages com-
pared with the other ones. Firstly, our method is al-
gebraic based upon a euclidian algorithm using only
arithmetic operations of polynomial coefficients, while
Vaidyanathan’s one is analytic in nature because it re-
quires to find out maximum absolute points of transfer
functions at each step of the two-pair extraction proce-
dure [2],[3]. Secondly, by preserving the lattice structure
of general transmission lines and providing direct rela-
tions to their physical properties, ours is amebable to
their physical realization in terms of the physical sys-
tem parameters common to scattering systems [6].

Although we have not yet succeeded in establish-
ing complete relationship between BR realizability and
bounded realness of real rational functions on the unit
disk, we conclude this paper by saying that these alge-
braic criteria will play a very important roll in not only
realization problems but also axiomatic system theory
only by using elemantary arithmetic operations [5],[6].
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