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Statement of Need

Hamiltonian models are used in a diverse array of systems in natural and engineering sciences, for example,
celestial mechanics, ship dynamics, chemical reactions, and structural mechanics. In two-degree-of-freedom
Hamiltonian systems, the fundamental phase space structures that partition dynamically distinct trajectories
and mediate transitions between multi-stable regions are stable and unstable invariant manifolds of an
unstable periodic orbit (UPO). In two-degree-of-freedom systems, the phase space is four dimensional and the
dynamics is constrained to the three dimensional energy surface which is partitioned by the two dimensional
stable and unstable manifolds of the UPO around an index-1 saddle equilibrium point (see Wiggins 2016 for
more details). Since in this case, the UPO anchors the invariant manifolds that partition trajectories, their
computation and stability analysis form the starting point for dynamical systems analysis. UPOsHam is
meant to serve this purpose by providing a module of numerical methods, along with example Hamiltonian
systems, for computing the unstable periodic orbits at any specified total energy as long as their existence is
guaranteed. Even though there are existing numerical methods for computing UPOs, we have found that they
either lack in reproducibility, have a steep learning curve for using the software, or have been written using
closed source software, and at times combination of these (Pollak, Child, and Pechukas 1980; Farantos 1998).
Our aim is to provide an open source package that implements some of the standard methods and shows the
results in the context of example Hamiltonian systems. This is meant as a starting point to integrate other
numerical methods in an open source package such that UPOs computed in dynamical systems papers can
be reproduced with minimal tweaking while providing an exploratory environment to further develop the
underlying methods.

Summary

The Python package, UPOsHam, is a collection of three methods in the form of submodules under uposham for
computing UPOs around index-1 saddles in the bottleneck of Hamiltonian systems. When the form is kinetic
(purely momenta-dependent terms) plus potential energy, the UPOs project as lines on the configuration
space (x, y) and connect opposite points of an equipotential line V (x, y) = E. The three methods described
below have been implemented as example Hamiltonian systems (also available as submodules under uposham)
and are described in §:Examples. The demonstration scripts available in the package show how to import
each of the methods and implement system-specific functions for computing the UPO.

The computed UPOs using the three methods for the coupled quartic Hamiltonian are compared in Figure 1.

Features: Available Methods

In this package, the user has the option to choose between the three methods described below. These are
implemented in separate scripts with functions that can be modified to define the total energy (Hamiltonian),
potential energy, vector field, Jacobian, and variational equations (Parker and Chua 1989).

Turning point

This method is based on finding the UPO by detecting trajectories initialized on the equipotential contour
(V (x, y) = E where V (x, y) is the potetial energy function and E is the total energy) that turn in the opposite
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directions (Pollak, Child, and Pechukas 1980). This method relies on the fact that for Hamiltonians of the
form kinetic plus potential energy, the UPO is the limiting trajectory that bounces back and forth between
the equipotential contour corresponding to the given total energy. To converge on this limiting trajectory,
the turning point method iteratively decreases the gap between the bounding trajectories that turn in the
opposite directions. Detection of the turning point is done using a dot product condition which leads to
stalling of the method beyond a certain tolerance (typically 10−6 in the examples here.)

Turning point based on configuration difference

Based on the turning point approach, we have implemented a new method which shows stable convergence
and does not rely on the dot product formula. Suppose we have found two initial conditions on a given
equipotential contour and they turn in the opposite directions. If the difference in x-coordinates is small
(≈ 10−2), the generated trajectories will approach the UPO from either sides. If the difference in x-coordinates
is large, we can integrate the Hamilton’s equations for a guess time interval and find the turning point (event
using ODE event detection) at which the trajectories bounce back from the far side of the equipotential contour
in opposite directions. We choose these two points as our initial guess and the difference of x-coordinates
becomes small. Without loss of generality, this method can be modified to either pick the difference of
y-coordinates or a combination of x and y coordinates. This choice will depend on the orientation of the
potential energy surface’s bottleneck in the configuration space.

Differential correction

This method is based on small (≈ 10−5) corrections to the initial conditions of an UPO and continuing to
desired total energy. The procedure is started from the linear solutions of the Hamilton’s equations and
which generates a small amplitude (≈ 10−5) UPO. This is fed into the procedure that calculates corrections
to the initial condition based on errors in the terminal condition of the UPO. This leads to convergence
within 3 steps in the sense of the trajectory returning to the initial condition. Once a small amplitude UPO
is obtained, numerical continuation increases the amplitude and, correspondingly, the total energy, while a
combination of bracketing and bisection method computes the UPO at the desired energy for a specified
tolerance (Naik and Wiggins 2019; Koon et al. 2011).

Example systems

Consider the following two-degree-of-freedom Hamiltonian model where x, y are configuration space coordinates
and px, py are corresponding momenta, V (x, y) is the potential energy, and T (x, y) is the kinetic energy.

Quartic Hamiltonian

This Hamiltonian can be considered as a low dimensional model of a reaction in a bath where the coupling is
controlled using a parameter. The potential energy is a double-well surface and the bath is modeled using a
harmonic oscillator.

H(x, y, px, py) = p2
x

2 − α
x2

2 + β
x4

4 + ω

2
(
p2

y + y2)
+ ε

2(x− y)2 (1)

where α, β, ω, ε are free parameters. When ε 6= 0, the system is referred to as the coupled quartic Hamiltonian,
and uncoupled quartic Hamiltonian otherwise.

De Leon-Berne Hamiltonian

This Hamiltonian has been studied as a model of isomerization of a single molecule that undergoes confor-
mational change (De Leon and Berne 1981; De Leon and Marston 1989) and exhibits regular and chaotic
dynamics relevant for chemical reactions.
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H(x, y, px, py) = T (px, py) + VDB(x, y) = p2
x

2mA
+

p2
y

2mB
+ VDB(x, y) (2)

where the potential energy function VDB(x, y) is

VDB(x, y) =V (x) + V (y) + V (x, y)
V (y) =4y2(y2 − 1) + εs

V (x) =Dx [1− exp(−λx)]2

V (x, y) =4y2(y2 − 1) [exp(−ζλx)− 1]

(3)

The parameters in the model are mA,mB which represent mass of the isomers, while εs, Dx denote the energy
of the saddle, dissociation energy of the Morse oscillator, respectively, and will be kept fixed in this study,
λ, ζ denote the range of the Morse oscillator and coupling parameter between the x and y configuration space
coordinates, respectively.

Visualization of UPOs

In Fig. 1, we compare the results for the three methods for the coupled quartic Hamiltonian to show that
they reproduce each other upto visual inspection.
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Figure 1: Comparing the UPOs at different total energies computed using the turning point (left), turning
point based on configuration difference (center), and differential correction (right) methods for the coupled
quartic Hamiltonian. Equipotential contour lines are shown as projection at py = 0.
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In Fig. 2, we compare the results for the turning point based on configuration difference method for the three
example Hamiltonians and find they are consistent for different total energies.
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Figure 2: Comparing the UPOs computed using the turning point based on configuration difference method at
different total energies for the three example Hamiltonian systems: Uncoupled quartic (left), De Leon-Berne
(center), Coupled quartic (right). Equipotential contour lines are shown as projection at py = 0.

Relation to ongoing research projects

We are developing geometric methods of phase space transport in the context of chemical reaction dynamics
that rely on identifying and computing the UPOs. Manuscripts related to the Quartic Hamiltonian and De
Leon-Berne Hamiltonian are under preparation.
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