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Abstract. This paper describes an offline authentication scheme for
resource-constrained embedded devices designated for applications in the
Internet of Things (IoT). The novelty of the work is the combination of
SRAM based PUF structures and hash values of the bootloader to de-
rive a device unique fingerprint. We propose the usage of asymmetric
encryption to secure the communication path. On top of the descrip-
tion of the generic concepts, we also present alternative variations using
additional components such as one-time programmable (OTP) memory.
The schemes are thoroughly evaluated against a set of relevant attack
scenarios.

Keywords: PUF, bootloader, IoT, hash, authentication, attacks

1 Introduction

The Internet of Things (IoT) is going to be one of the primary drivers of the
digital transformation that society will undergo in the coming years. The Oxford
dictionary defines the IoT as an interconnection via the internet of computing
devices embedded in everyday objects, enabling them to send and receive data1.
This definition clarifies the fact that embedded devices are one of the biggest
fundamentals in the IoT architecture. The main goal of IoT systems is to improve
productivity, efficiency and customer satisfaction while keeping all the data and
information secure. Security is thus one of the most challenging areas when it
comes to designing IoT systems. As IoT devices can be subject to substantial
constraints, such as low processing and battery power, small memory, as well
as the lack of a graphical user interface, the implementation of sophisticated
security measures may pose a significant challenge.
There exist various types of protocols to achieve entity authentication, mutual
authentication, device identification and similar. It is however essential to have
a clear understanding of the practical requirements, the use case scenario and
objectives of each involved party, before one can attempt to effectively develop
a suitable security solution.

1 https://en.oxforddictionaries.com/definition/internet_of_things
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1.1 Our Contribution and Structure of the Paper

In this paper we propose an Static Random Access Memory (SRAM) Physically
Unclonable Function (PUF) based ”offline” authentication scheme with the goal
to verify if an IoT target device is genuine, i.e. not a counterfeited product. Of-
fline means in this context that the verifier has physical access to the device and
thus exerts control over its power supply and is able to directly connect to its
wired interfaces. On top of the general description of our scheme we also propose
suitable alternative implementations. The developed protocols take into account
limitations due to constrained IoT environments and are evaluated against most
relevant attacks.

Within this chapter, a short introduction as well as a summary of related work
is given. In Chapter 2 we provide an overview of the relevant background and
the most important notations and definitions. The core part of this paper is
presented in Chapter 3, where we provide an overview of the proposed scheme
and describe possible alternatives. In Chapter 4 we highlight the resistance of
our scheme against relevant attacks. The paper ends with a conclusion and sum-
mary in Chapter 5. In addition we provide a set of relevant definitions in the
Appendix.

1.2 Related Work

2001 Pappu [10] introduced so called Physical One-Way Functions in his PhD
thesis. The idea was based on obtaining an optical response pattern from shining
a laser on an epoxy wafer. Later, in 2002, it was Gassend et. al [3] who took up
the concept and translated it into Silicon Physical Random Functions. He made
use of random variations caused by the manufacturing process to uniquely iden-
tify integrated circuits (ICs). Lee et al. [7] described in 2004 the Arbiter PUF
and in 2007 Guajardo et al. [4] mentioned the first time so-called SRAM PUFs.
Later various other concepts where introduced, such as the Butterfly, D flip-flop
or Buskeeper PUFs. For an elaborate overview of PUF types and concepts please
be referred to [9]. For other state-of-the-art research on PUF notations, compar-
ison of post-processing and PUF related schemes please read the PhD theses of
Roel Maes [8] and Jeroen Delvaux [2], which we consider as very complete.
Many PUF based authentication schemes published in literature consider strong
PUFs as suitable candidates. Jeroen Delvaux pointed out in his PhD thesis [2]
that those schemes are being proposed quite loose and unconnected. Koeberl et
al. describe in [5] a device authentication scheme based on SRAM PUFs. The
paper is based on a predecessor paper, namely ”Practical device authentication
scheme using SRAM PUFs” [6]. Both papers share the goal to build a simple de-
vice authentication scheme utilizing SRAM PUFs. There are however also clear
differences to our scheme. First we do not perform any post-processing (e.g. error
correction) on the constrained device, as such processes can be quite expensive.
This step is foreseen on the more powerful evaluator side. Further, there is no
resistance against physical attacks provided in the papers of Koeberl et al. In
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our paper we clearly assess the robustness of the scheme.
Intrinsic ID2 published different white papers and product briefs, such as Quidikey,
Broadkey or Citadel where they utilize SRAM PUFs for device authentication.
Very often practical details are however not exposed, which makes it hard to
thoroughly verify their schemes.

2 Background and Notation

A PUF provides, when queried with a challenge C a response R. In this paper
we only focus on digital PUFs, i.e. C and R can be understood as binary strings
of length n. In literature there is a differentiation between so-called strong and
weak PUFs. Guajardo et al. define a PUF being strong in [4] if the number of
challenge-response pairs (CRPs) is exponentially large. In other words, the PUF
has so many CRPs such that an attack (performed during a limited amount of
time) based on exhaustively measuring the CRPs only has a negligible probabil-
ity of success [4]. If the number of CRPs is rather small the PUF is called weak.
Within this paper we focus on weak PUFs only.

Due to their physical nature, PUFs are inherently noisy. The consequence is
that a PUF output R measured multiple times on the same device, will differ in
its value slightly, depending on the technology and framework conditions. This
distance, expressed by the relative Hamming distance is referred to as the intra-
device distance.

One essential property of PUFs is that their responses should not be biased,
as this has a negative impact on the overall entropy. In other words, the proba-
bility of the occurrence of zeros and ones should be equal. A common approach
to determining this property is the calculation of the Hamming weight, defined
as the number of bits that are non-zero. Often the fractional Hamming weight
is used, where the weight is divided by the number of bits.

For a particular challenge, the inter-device distance between two different PUF
instantiations is defined as the distance between the two responses, resulting from
applying this challenge simultaneously to both PUFs. It is therefore a measure
of the uniqueness between PUFs, which indicates how easy it is to distinguish
or identify different devices. For uniqueness, it is desirable to have an (relative)
inter-device distance close to 50%, which means that on average half the bits
prefer a different response bit value.

For many applications and in particular for PUF-based key generation it is
important to accurately estimate the entropy of a PUF response. Entropy is a
function of the distribution of a random variable and expresses the amount of
uncertainty one has about the outcome of the random variable. In this paper we

2 https://www.intrinsic-id.com/
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do not dig into the aspects of post processing (privacy amplification and infor-
mation reconciliation) and entropy estimation. We acknowledge the importance
of such assessments when it comes to implementations, our paper is however
focusing purely on the conceptional view and not considering implementation
details. On top of the PUF response R we use also the hash value H of the
bootloader section (BLS) to derive a device specific fingerprint. Throughout this
paper, we refer to the PUF response R, in combination with the bootloader hash
value H (in case of hash-based variation), as the PUF-based Device Identifier,
short the PbDI.

3 Hardware Authentication Using SRAM PUFs

Within this chapter, we first describe potential applications for our solution, as
well as the authentication scheme. The primary field of application is the medical
sector, including appliances such as body-worn vital sign monitors but also smart
homes. Beside the solution’s field of application, important environmental con-
ditions and assumptions are presented in order to make a clear statement about
the premises the authentication scheme is built on. Afterwards, the scheme’s
authentication procedure is described in detail. In addition to the primary hash-
based variation, two alternatives are described as well. This chapter concludes
with a summary of the key aspects of our solution.

3.1 Field of Application

Industry is the main driving force of the Internet of Things. First IoT solutions
were implemented in this sector in the form of distributed sensor networks as
a next step after Machine to Machine (M2M) communications. Due to its use
case scenarios, it is an obvious fact that IoT security requires a multi-layered
approach. From a device point of view, it should be considered at the design
phase that keeps hardware, software, and data secure through their entire life
cycle.
IoT systems can be found among others in the healthcare domain, such as pre-
sented in [1]. Commonly, the main idea of such systems includes simple and cen-
tralized monitoring of patients independently of their location. With the help
of a discrete, wireless, non-intrusive body-worn monitor, healthcare providers,
physicians and authorised personnel are allowed to monitor the key biometrics
outside the usual clinical setting, while patients go about their daily lives. On
top of the medical usage of IoT, a typical example of IoT implementations in
real life is the smart home. There is no exact definition what a smart home is,
but in general, this is a combination of connected devices with some kind of
actuators. These devices can be controlled remotely (e.g. by a smartphone) or
they can have a pre-programmed instructions.
However, due to the fact that uncontrolled access to these systems by third par-
ties - no matter if within healthcare or the smart home domain - can lead to data
leakage, the security and data preserving has great importance. The proposed
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use case within this paper is an offline authentication scheme for IoT devices.
Within the context of this use case we consider the resources of these IoT de-
vices to be limited and it is assumed that attackers can obtain physical access
to them, as well as to their interfaces. In this matter, a trusted party aims to
evaluate, whether an IoT device is legitimate and still behaves in it’s originally
intended manner.

3.2 Environmental Conditions and Assumptions

The scheme proposed in the next section was designed to be used in environments
where offline authentication can take place and attackers have the capability to
physically tamper with the device. It is necessary to mention that we do not
consider security of the evaluator’s side, which is referred to in the following
chapters as the Authentication Authority, short the AA. The evaluation of se-
curity of databases, decision taking mechanisms, etc. have to be done separately
as they heavily depend on implementation-specific properties. Also, this scheme
does not cover security of bootloader/firmware/software over-the-air (OTA) up-
dates. In case OTA updates are required, their security, as well as influence on
the proposed scheme, should be assessed separately.
The scheme is based on the following assumptions:

– No other instructions can be executed in parallel to the bootloader instruc-
tions;

– Bootloader instructions are the very first to be executed after power on;
– Reading-out data from NVM (e.g. memory dump) is only possible for the

attacker if one has physical access to a target device.

3.3 Proposed Scheme

In order to avoid the malicious modification of hardware, we use resources, such
as SRAM that are already built into most commodity embedded devices. The
PUF-based identity is defined as the start-up values of the SRAM cells, which
are obtained during the boot stage. In addition to the PUF-based identity, the
hash value of the non-volatile memory sections, in which the bootloader program
code is stored, a so-called bootloader section (BLS), is required. By computing
the BLS hash value during boot of the IoT device, the genuineness and integrity
of the bootloader program code can be verified.
Overall, the scheme is composed of two entities, namely the target IoT device it-
self and the authentication authority, where the evaluation and verification of the
IoT device happens. Therefore, at least the resource-intensive post-processing of
the sensitive SRAM PUF output is outsourced from the target IoT device, whilst
reducing the attack capabilities and saving in turn resources of the IoT device.
As mentioned above, the scheme itself is divided into two phases, the enrolment
and the evaluation phase. The enrolment phase is only performed once in a se-
cure environment before the IoT device is deployed in the field. The evaluation
phase is performed in the field, whenever a verification is needed. Both phases
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are described in detail within the subsequent paragraphs.

The Enrolment Phase consists of two main tasks, the provision of the start-
up values of the target IoT device’s SRAM cells (SRAM PUF response) to the
authentication authority and the transmission of the authority’s public key PK
to the IoT device stored in the NVM. Therefore, the enrolment process has to
be done in a secure environment. Since all the resource-intensive procedures are
done on the AA’s side, the solution is more lightweight for low-resource IoT
devices and contributes to wide usage opportunities. Besides holding the n-bit
SRAM PUF response, the authority already possesses the original bootloader
program code as well as its hash, hence both do not have to be transmitted
during the enrolment phase.

Store:  SRAM PUF

Response R in Database

Store:  Authentication

Authority’s PK in NVM

Send: Authentication Authority's Public Key PK

Send: n-bit SRAM PUF Response R

IoT

PUF NVM

Authentication

Authority

Database SK

Bootloader

Fig. 1: Enrolment in Secure Environment

In detail, the Enrolment Phase comprises of the following steps:

Enrolment Phase

1: Boot target IoT device.
2: Send n-bit response R to authentication authority.
3: Store received response R in authority’s database.
4: Send authority’s public key PK to IoT device.
5: Store received public key PK of authority in IoT’s non-volatile memory

(NVM).

During the Evaluation Phase, the PUF-based Device Identifier, the PbDI, of
the target IoT device is provided to the authentication authority. As mentioned
before, the PbDI is composed of the SRAM PUF response R′ and the hash value
of the bootloader memory section H(BLS). For a secure transmission, PbDI is
encrypted with the help of the AA’s public key PK, which was stored during the
enrolment phase. We denote the encrypted PbDI as ePbDI. In order to start the
verification procedure and evaluate the integrity and original behaviour of the
target IoT device, the AA has to decrypt the ePbDI first by using its secret key
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SK. Afterwards, the AA has to extract R′ as well as the hash value H(BLS) in
order to perform comparison checks between the entries of the response-database
and the hash value H(Bootloader) of the genuine bootloader program code.
When comparing R′ against R, a certain number of bits in R′ will not match
the ones in R, due to the noise occurring in R′. We describe the number of
bit errors present as the Hamming Distance between R and R′, HD(R,R′).
Furthermore, a threshold t is defined, by which the evaluation phase will either
succeed or fail if more than t errors are detected, thus resulting in HD(R,R′) > t.
We subsequently note HD(R,R′) ≤ t as R ≈t R′. Beside the comparison of
the responses, H(BLS) is compared against H(Bootloader) in order to check
for equality, which is subsequently noted as H(BLS) = H(Bootloader). As a
result of both comparison checks, the genuineness and integrity of the target IoT
device will be proven in case of a positive result, otherwise these properties will
be invalidated. It should be kept in mind, that the procedure is purely done in
the boot stage of the target IoT device and it is required to reboot the device,
if it is in power-on state, or boot it for running the evaluation phase.

Send: ePbDI = EPK(PbDI)

Decrypt:  DSK ( EPK (PbDI) )

Result:  PbDI

Extract:  SRAM PUF response R’ from PbDI

Result:  R’

Extract:  Hash value of BLS H(BLS) from PbDI

Result:  H(BLS)

Compare:  H(BLS) = H(Bootloader)

Result:  ACK/decision based on equality

Compare:  R ≈t R’

Result:  ACK/decision based on error-threshold t

IoT

PUF NVM

Authentication

Authority

Database SK

Bootloader

Fig. 2: Evaluation in the Field

In detail, the Evaluation Phase comprises of the following steps:
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Evaluation Phase

1: Establish connection via suitable interface and initiate boot/reboot of device
2: Compute PUF-based Device Identifier PbDI, composed of SRAM PUF re-

sponse R′ and hash value of BLS:
– Compute hash value of bootloader section (BLS).
– Keep H(BLS) in SRAM cache, which is not used for PUF response generation.
– Get SRAM PUF response R′.

3: Encrypt PbDI with the AA’s public key PK, resulting in EPK(PbDI), respec-
tively in ePbDI.

4: Send ePbDI to authentication authority.
5: Process ePbDI on authority side:

– Retrieve and decrypt ePbDI by means of the AA’s secret key SK.
– Retrieve/extract actual SRAM PUF response R′ and hash value H(BLS) of the
BLS.

6: Perform comparison checks of original SRAM PUF response R and actual pro-
vided SRAM PUF response R′ by using corresponding response-database entries.

7: Perform comparison checks of hash value of the original bootloader program
code and provided hash value of the BLS.

8: Decide, whether the device is authentic, legitimate and unaltered or not.

Right after the boot stage, the initialization of the SRAM cells has to be per-
formed as a part of the bootloader before the starting of the firmware and/or
the main software. As a result, the sensitive information, respectively the PUF
response, is no longer available and cannot be exploited by malicious firmware or
software. Besides the initialization of the PUF-related SRAM cells, also the hash
value of the BLS has to be deleted to limit the attacker’s capabilities. For either
of the two additional variations introduced in the following, the explanations
as well as steps of the verification procedure are closely related to our primary
variation above, however there are slight differences, which are pointed out in
detail below.

3.4 Alternative Variations of the Scheme

It is crucial for the verifier to know whether the bootloader of a device is genuine
and trusted as it is dealing with the fundamental security anchors of the target
device. One of the key elements of the scheme described above is indeed the
computation of the hash value of the corresponding bootloader section, which
serves as a proof of genuineness and integrity for the bootloader. However, there
are alternative solutions which can provide these proofs as well, and they are
going to be described in the next sections.

OTP-based alternative variation: In this variation the bootloader is written
to an OTP in order to provide a proof of bootloader genuineness and integrity.
The additional requirement for this variation of the scheme is that a target
device has OTP memory. Information can be written to this memory only once,
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which is done in the enrolment phase, but ”read” operations can be performed
without limitations. In case that this requirement is satisfied, the bootloader will
be flashed to the target IoT device in a secure environment before sending the
latter to end users. This guarantees that neither attacker nor verifier can modify
it in a meaningful way. The steps of evaluation phase for this variation of the
scheme are as follows:

OTP-based variation of the scheme

1: Establish connection via suitable interface and initiate boot or reboot of device;
2: Device enters bootloader stage and performs the following operations:

– Get PUF response R′;
– Obtain ePbDI via encryption of R′ with public key PK;
– Send ePbDI to verifier;
– Delete ePbDI as well as R′ from the memory of device;
– Initialize SRAM section which was used for R′ generation;
– Proceed with starting firmware and/or software;

3: Process ePbDI on AA side:
– Receive and decrypt ePbDI;
– Perform comparison checks of original SRAM PUF response R and actual pro-
vided SRAM PUF response R′ by using response-database entries;

4: Make threshold-based decision, whether the device is authentic, legitimate and
unaltered or not.

One of the most important properties of this variation of the scheme is that it
cannot be applied to devices which do not offer programmable OTP. Further-
more, using this scheme does not allow for bootloader updates to occur. Nev-
ertheless, firmware and software updates are still possible. If there is a strong
need in bootloader updates, they can potentially be enabled by splitting the
bootloader into two or more stages. In this case, the first bootloader stage is
responsible for all processes related to authentication and subsequent stages for
all the other processes. Here, the first stage has to be written to OTP. All in-
structions of subsequent bootloader stages may then be stored in NVM.

Flashing-based alternative variation: This variation of the scheme is based
on the requirement, that applications of the target IoT devices can operate nor-
mally without a flashed bootloader. This requirement is easier to satisfy, than
the ones from the previously described variations, as it neither does not need
additional hardware nor software libraries for normal functioning. When authen-
tication needs to take place, the verifier erases all the content of the memory
of the target device, verifies it via flashing the bootloader and performing its
instructions, erases the bootloader and, as the verifier is in possession of the
application code - flashes the application in order to bring the device back to
normal functioning. The steps of the evaluation phase for this variation have the
following structure:
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Flashing-based variation of the scheme

1: Establish connection via suitable interface, erase all content of memory of the
device and flash bootloader;

2: Device starts bootloader stage and performs the following operations:
– Get PUF response R′;
– Obtain ePbDI via encryption of R′ with public key PK;
– Send ePbDI to verifier;
– Delete ePbDI as well as R′ from memory of the device;
– Initialize SRAM section which was used for generation of R′;
– Delete bootloader;
– Flash application to bring device back to normal operation;

3: Process ePbDI on AA side:
– Receive and decrypt ePbDI;
– Perform comparison checks of original SRAM PUF response R and actual pro-
vided SRAM PUF response R′ by using response-database entries;

4: Make threshold-based decision, whether the device is authentic, legitimate and
unaltered or not.

An interesting point is that this variation of the scheme is compatible with boot-
loader, firmware and software updates and can be issued as a software update
for existing devices which meet all necessary requirements.
Another property of this variation is that an attacker unnoticeably can obtain an
SRAM PUF response of the target device. It can happen via flashing a malicious
bootloader for reading-out the PUF response and bringing the device back to
normal functioning afterwards. This is not a critical point, as even if an obtained
PUF response is used for cloning, such a clone will always send a PUF response
which belongs to its SRAM (if available). Such behavior is possible due to the
fact that all the software which may contribute to counterfeiting is deleted on
the first stage of the evaluation phase.

3.5 Key Aspects

The availability of the SRAM PUF and genuineness as well as integrity of the
bootloader represent the foundation of the scheme. Besides this, we identify three
key aspects of the scheme in respect to security, which are listed below:

Key Aspect 1: Proof of the genuineness of the bootloader, which is specific for
every variation of the scheme (hash-, OTP- and flashing-based variation). It
is required for ensuring the genuineness of the bootloader and assuring that
the device sends its original SRAM PUF response to the verifier.

Key Aspect 2: Encryption of the data with the authentication authority’s
public key during the execution of the bootloader. It is needed for hardening
security of the SRAM PUF as well as for adding resistance to cloning at-
tacks as eavesdropped data may be easily exploited. In the proposed scheme,
asymmetric encryption is used in order to reduce the number of potentially
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successful attack scenarios as well as to support simpler key management.
In case the security of the communication channel is guaranteed in another
way, it is not obligatory to use encryption in this scheme.

Key Aspect 3: Sending of the ePbDI during the execution of the bootloader.
In case the ePbDI is not sent during the bootloader stage, it cannot be
deleted before the subsequent stages commence. This may present an oppor-
tunity for the attacker to exploit the ePbDI during the execution of firmware
and/or software.

As a result, all the critical steps of the evaluation phase are done in the boot-
loader stage of the target IoT device. Therefore, its instructions cannot be ma-
nipulated by other software. Even if the firmware or software is infected by
malicious code, it cannot influence the bootloader as they are being executed
during later stages. In case it is not possible to put trust into bootloader stage,
the added value of entire scheme is questionable.
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4 Assessment and Discussion

In this chapter we aim to review the security requirements and how our scheme
contributes to them. Any variation of the scheme provides protection from modi-
fication of hardware and eavesdropping attacks, as any device, which is applying
our concept, due to the guaranteed integrity of the bootloader, will send its orig-
inal SRAM PUF response in an encrypted form.
The scheme’s ability of offline authentication contributes to the verifier’s aware-
ness of the very first step of the procedure - the reboot of the target device. In
case of online authentication it is hard for the verifier to be sure whether the
device has rebooted or not. This is not the case if physical access is granted,
since the verifier can control the power supply of the device and improve as-
surance whether authentication takes place during the execution of bootloader
instructions. In case an additional energy source is connected to the device, it
does not remain undetected as the verifier has physical access. If one can solve
a problem of awareness regarding the reboot process, the described scheme can
be used in online cases as well.

The main motivation in using asymmetric cryptography in this scheme is to
protect the data, which is transmitted to the AA, from eavesdropping3 and
spoofing, as only the AA can decrypt the ePbDI. The benefit of this kind of
cryptography is that secure key storage, which cannot be found in most of the
resource constrained embedded devices, is not an obligatory requirement. From
the practical point of view, we recommend to use lightweight asymmetric cryp-
tography (e.g. NTRU) in order to keep resource usage of devices on a low level.
Symmetric cryptography may still be used in such conditions, but only in case
the security of key storage is guaranteed. Also, in this case the overall added
value of the scheme may become questionable as the unique identifier may be
secured the same way as the symmetric key.
The way of accessing the device is also crucial when distinguishing attackers
who intend to manipulate the device. As a result, they can be divided into two
groups: those who have physical access and those who do not have it. The differ-
ence between the two groups of attackers lies in the types of attacks which they
can perform. The absence of attackers’ physical access provides protection from
identifier cloning, modification of hardware and similar attacks. In combination
with the added value of the scheme, specific requirements can be met in various
conditions. Table 1 clearly depicts the discussed variations as well as the case
of identifier (ID) storage in NVM, and their resistance (3), weakness (5) or
inapplicability (m) to several feasible attacks, whilst considering the attacker’s
device access method. Storage of the identifier within the NVM was considered
the non-secured case and therefore this option is shaded in grey in Table 1.

3 The definition of eavesdropping as well as other attacks are introduced in the Ap-
pendix.
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Table 1: Protection from Attacks
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Eavesdropping 5 3 3 3 5 3 3 3

Malware
Injection into

Bootloader
Instructions

5 3 3 m 3 3 3 m

Bootloader
Removal

5 5 3 m 3 3 3 m

Spoofing 5 3 3 5 5 3 3 3

Playback
Attack

5 5 5 5 5 5 5 5

Modification of
Hardware

5 3 3 3 m m m m

Identifier
Cloning

5 3 3 3 m m m m

Table 1 illustrates the additional protection of our scheme against relevant
attacks in comparison to storage of sensitive information in NVM. In our case,
the sensitive data is protected by means of a device identifier based on a PUF
and the bootloader. It strongly improves the security of the embedded device
and significantly hardens potentially successful attack scenarios as common tech-
niques of hijacking content from NVM cannot be applied. Nevertheless, there are
even more advantages that are provided by our scheme:

– The scheme brings economic advantages as it can be issued as a patch or up-
date for existing devices (OTP variation may require additional hardware);

– Manufacturers do not have to deal with the generation of unique identifiers
which helps to prevent potential security issues that arise by processing
sensitive information at manufacturing sites;

– It offers some degree of intrusion detection, as in case the public key is
modified or removed, communication with the AA will be affected which
will automatically lead to an unsuccessful authentication.

Another element of intrusion detection arises from the computation of hashes
within the bootloader stage. If this computation is possible for a target device,
firmware or software hashes may be used additionally in any variation of the
scheme for contributing to overall security improvements. However, this potential
advantage heavily depends on the implementation scenario.
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When designing a cryptographic scheme, it is unavoidable to have a couple of
weak spots, which have to be kept in mind while designing real life implementa-
tions. Situations in which an attacker can access the NVM of a target device may
occur and one may be in a position to manipulate the bootloader. It is not critical
for the authentication process if the attacker manipulates firmware or software
as both execute after the bootloader stage. If the bootloader is modified with
malicious intent, the hash value of the BLS will not match with the hash value
of the genuine bootloader which is stored on the AA’s side, which will cause
the authentication to fail. Nevertheless, if an attacker has deep understanding
of the implementation-specific architecture and bootloader instructions, he or
she can perform a specific attack which may lead to sensitive data leakage. An
attacker needs to make a memory dump for obtaining the BLS hash H, erase the
bootloader and re-install the modified one. Afterwards the attacker can obtain
R′ and return the device to pre-attack stage. By doing this, it may be possible
to make a clone of the target device in question. Such clone can then be used
for a playback attack based on values of a BLS hash H and PUF response R′,
via writing a software for another device to provide stolen data as an output at
the request of the verifier. It is to be noted that this attack is not feasible for
the OTP-based variation.
It may also be possible to perform a playback attack by using cloning, based
on a man-in-the-middle attack, without knowing the H and/or R′. The attacker
may have a chance for intercepting the ePbDI and exploit it for cloning of the
device without knowing the PbDI. One may be in a position to program a de-
vice in such way that it sends the intercepted packet in encrypted format after
the reboot. In such a case, the verifier will get a packet of the original device
and successful authentication may take place despite the fact that it was sent
by a completely different device. In order to cope with this weak spot, every
packet in real life implementation should be unique. There are several ways to
generate uniqueness, however we recommend to use timestamps for this kind of
purposes. Also, it may be possible to use noise-based properties of SRAM PUF
for this goal, but further evaluation of them is needed as this anchor has a very
probabilistic nature.
Another weak spot arises from the field of public key management. It may be
possible to force a device to use a malicious public key instead of the one origi-
nally provided by the AA via injecting it into NVM. This may enable stealing the
H and R′, and may put an attacker in the position to make a clone which sends
H and R′ of the previously attacked device instead of its own. This problem
does not cancel the added value of the scheme as it is much harder to perform
the previously described manipulations than to copy a unique device identifier
from the NVM of a target device to the NVM of a clone. Also, this problem is
out of scope in case a public key is written to OTP, which cannot be removed or
modified (OTP-based variation). This negates the opportunities attackers have,
in order to get the PbDI in unencrypted form, but makes public key updates
almost impossible.
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When evaluating added value as well as possible application scenarios, it should
be taken into account that there may exist security anchors which fit high se-
curity applications much better than the proposed scheme. Some of them, like
Trusted Platform Module (TPM) and Hardware Security Module (HSM), can
guarantee a higher level of security if they are properly integrated. However, the
proposed scheme was designed to be used in solutions which have very poor or
no security at all, and for which anchors like TPM or HSM are infeasible or
uneconomic. It is important to note that we position the proposed scheme as a
low cost, intermediate solution between almost no security and different, more
expensive sources of security like those mentioned above.

5 Conclusion and Summary

The employment of PUF technology in security critical applications has been
a heavily debated topic in the past years. Supporters praise the outstanding
properties allowing for secure key storage, especially in areas where the resources
are constrained. Critics point out the instability due the physical nature as well
as the problem of PUF evaluability and confidence in the technology. In this
paper we present a simple authentication scheme using SRAM based PUFs.
The novelty of our solution can be clearly seen from the key aspects which are
introduced in section 3.5. In fact, it is based on the combination of public key
encryption with weak PUFs, as well as the attestation of bootloader integrity
by using hash values (or its alternatives), to realize a lightweight authentication
scheme. This way we aim to provide an answer to if and how PUF technology
could be employed within the authentication process of IoT applications. We
do not only provide a conceptual view, but also analyse against which attacks
our scheme would be resistant and against which this is not the case. We do see
niche areas where there are advantages in using PUFs. When it comes to high
security applications and attackers with extensive resources, we however take
the position that sophisticated measures, like the usage of hardware security
modules may be more appropriate.
We will continue to move forward with the analysis of further implementations
and will also test our solution on common resource-constrained devices, such as
the Microchip AVR4 micro-controllers and their well-known SoC product range
ATmega, as for instance.

4 Formerly known as two independent brands, namely Microchip and Atmel AVR,
before company merger in 2016
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List of Abbreviations

AA Authentication Authority

BLS Bootloader Section

CRP Challenge-Response Pairs

ePbDI Encrypted PbDI

HSM Hardware Security Module

ID Identifier

IoT Internet of Things

M2M Machine to Machine

NVM Non-Volatile Memory

NTRU Nth Degree Truncated Polynomial Ring Units

OTA Over-the-Air Programming

OTP One-Time Programmable NVM

PbDI PUF-based Device Identifier

PK Public Key

PUF Physical Unclonable Function

SK Secret Key

SoC System on a Chip

SRAM Static Random-Access Memory

TPM Trusted Platform Module
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APPENDIX

Below we list a set of definitions which are helpful for a better understanding of
the authentication scheme itself as well as the chapter on attacks and evaluation.

Bootloader
A set of instructions which is performed after the unmodifiable
device-specific processes which take place right after the moment
when the power is switched to ”ON”.

Hamming distance
In the PUF context the Hamming distance between two responses,
interpreted as bit strings, is a count of the number of disagreeing
bits.

Intra-device-
distance

The Hamming distance between the two responses, resulting from
applying the same challenge twice to one PUF.

Inter-device
distance

The Hamming distance between the two responses, resulting from
applying a challenge simultaneously to two different PUFs.

Hamming weight The number of bits in a string that are non-zero.

Physical access
A condition when a verifier or an attacker is in a position to control
the power supply of a target device and to directly connect to its
wired interfaces.

Offline
authentication

Authentication which takes place in conditions when a verifier has
physical access to the target device.

Online
authentication

Authentication, which takes place in conditions when a verifier does
not have physical access to the target device.

Target device
A device which undergoes authentication procedures by a verifier
and may undergo attack procedures from an attackers’ side.

Eavesdropping
An attack in which attacker tries to steal information that a target
device transmits over a network.

Malware injection
into bootloader

An attack in which malicious instructions are added to existing
instructions of bootloader.

Bootloader
removal

An attack in which an attacker by some means removes the
bootloader of a target device in order to prevent it from functioning
as originally intended.

Spoofing
An attack in which an attacker acts as verifier in order to obtain
protected data.

Playback attack

An attack which exploits the replay of messages from some context
within the intended context, thereby fooling participating sides into
falsely assuming that expected procedure has been successfully
completed. In our specific context, it is based on two preparatory
steps: unique identifier hijacking and development of software-based
clone.

Unique identifier
hijacking

An attack in which an attacker obtains access to the unencrypted
identifier and exploits it for malicious purposes.

Modification of
hardware

An attack in which a modification or substitution of hardware
components is done for malicious reasons.

Identifier Cloning
Extracting the unique identifier from a target device and injecting it
into a counterfeited device instead of the original identifier of the
latter.


	A PUF Based Hardware Authentication Scheme for Embedded Devices

