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Introduction

The Internet of Things (IoT) is a technology in which everyday objects are
interconnected via the internet in order to send and receive data [1]. The IoT
experiences rapid growth, with an estimate of about 20.4 billion IoT devices
expected to be in operation by 2020 [2]. As with all interconnected applications,
the IoT is in the need of security, which can be a challenge to implement,
as embedded devices in this domain are commonly resource-constrained and
aimed at large-scale deployment, while keeping cost as low as possible. Within
this document we aim to provide an overview of research conducted on the
applications of hardware intrinsic security anchors, called Physically Unclonable
Functions (PUFs) that can potentially facilitate the implementation of security
within the IoT domain.

PUFs are a security primitive that exploits small-scale physical variations in
objects that occur during the production process. A basic assumption of PUFs
is that these variations cannot, within reasonable effort, be reproduced, and are
thus not under the control of the manufacturer, hence the term unclonable [3].

Several types of PUFs exist and the kind that will be subsequently referred
to are intrinsic PUFs, which are PUFs that are embedded on an integrated
circuit (IC) [3].

The basic operation of PUFs can be formalized by a challenge-response be-
havior. When a challenge C is applied to a PUF, the same yields a desirably
random response R. For this reason, every PUF possesses a set of challenge-
response pairs (CRPs), each of which maps a challenge C to a response R, by
a PUF P, s.t. P(C) = R.

In regards to formal properties, PUFs are [3] [4]:

Evaluable The function P is easy to evaluate given C.

1

mailto:ses@technikon.com
http://www.technikon.com


Unique The function P(C) contains identity-related information about the
physical entity that constitutes it.

Reproducible A response R = P(C) can be reproduced up to a correctable
error.

Unclonable When given P, it remains hard to construct a procedure Q, s.t.
P(C) ≈ Q(C).

Unpredictable Given only a set of CRPs S, where R = P(C) and C,R ∈ S,
it remains hard to compute R′ = P(C ′) and C ′ /∈ S.

One-Way When given R and P, there exists no efficient algorithm to find C,
s.t. P(C) = R.

Tamper Evident When the physical entity that constitutes P is altered, this
transforms P into P ′, s.t. P(C) 6= P ′(C) with high probability and also
not up to a correctable error.

In the above context, the qualifier easy is stated by [3] to be context-
dependent but typically corresponding to a variant of in polynomial time and
effort. Likewise, the qualifier hard is stated by [3] to reflect physical and tech-
nical difficulties or impossibility.

An important property of PUF responses is that they are typically influenced
by random noise. Thus, two responses that are obtained by two subsequent
evaluations of the same PUF using the same challenge C, that is R = P(C) and
R′ = P(C)′, will likely differ to a certain degree, which constitutes the so-called
intra-distance of a PUF. When representing PUF responses as bit strings of
length n, that means R, R′ ∈ {0, 1}n, said intra-distance can be expressed by
the number of different bits between the two responses from the same PUF,
using the same challenge, that is the Hamming distance:

D(R,R′) , #{i : Ri 6= R′
i}

Here, Ri and R′
i denote the i-th bit in R and R′ respectively. The intra-

distance, for two subsequent evaluations, is thus given by:

Dintra(R,R′) , D(R,R′)

The intra-distance of a PUF carries the notion of noise on the PUF responses
and is desired to be as small as possible [3]. The intra-distance can also be
represented as the fraction of different bits over responses of equal length n,
which will subsequently be referred to as the error-rate of a PUF:

E(R,R′) ,
D(R,R′)

n

Another property of PUFs is the so-called inter-distance, which carries the
notion of uniqueness. It is the distance between two PUF responses of equal
length n, which means RP , RQ ∈ {0, 1}n that have been obtained from two
different devices using the same challenge C, that is RP = P(C) and RQ =
Q(C):

Dinter(RP , RQ) , D(RP , RQ)
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In the same manner as the error-rate E , the inter-distance can also be ex-
pressed as a fraction over the total length of bits:

I(RP , RQ) ,
D(RP , RQ)

n

In this matter, the intra-distance is desired to be as low as possible, whereas
the inter-distance is desired to as close to 50 % as possible [3] [4].

Also, PUF responses can be biased towards either 0 or 1, which means that
there are more zeroes than ones or more ones than zeroes respectively. The bias
of a PUF response R can be represented by the so-called fractional Hamming
weight :

W(R) ,
#{i : Ri 6= 0}

|R|
Here, the fractional Hamming weight gives the percentage of ones in the

response, in contrast to zeroes. As the distribution of a PUF response should
desirably as even as possible, with the same amount of ones and zeroes, the
fractional Hamming weight should be as close to 50 % as possible.

In this paper, the error-rate E , the bias W and the fractional inter-distance
I are established as the average value over a set of N measurements, each mea-
surement consisting of two subsequent evaluations of either the same or two
different PUFs with the same challenge, the latter being the case when mea-
suring inter-distance. These average values will be denoted in the remainder of
this paper as EN , WN and IN respectively.

If all CRPs that correspond to a PUF would be known, a functionQ could be
constructed, s.t. Q(C) ≈ P(C), by which the PUF P could effectively be cloned.
In this matter, two different types of PUFs can be distinguished, strong PUFs
and weak PUFs. Strong PUFs possess a great number of CRPs, so that even if
a subset of those are in possession of an adversary, new challenges can still be
found for which the latter does not know the corresponding response. Therefore,
the challenge-response interface of strong PUFs can be publicly accessible as,
even when an adversary is able to challenge the PUF for an extensive period
of time, the PUF still cannot be cloned. The implementation of strong PUFs
is quite difficult however. Weak PUFs on the other hand possess only a few
or even just a single CRP. This means that the challenge-response interface of
this kind of PUF must be protected from being accessed by an adversary, as the
latter could potentially clone the PUF otherwise. Examples for strong PUFs are
so-called ring-oscillator PUFs or arbiter PUFs, whereas so-called SRAM PUFs
constitute a typical example of a weak PUF [3].

Because of their fundamental properties, two main fields of applications exist
for PUFs, which are Identification and Authentication, as well as Key Generation
and Storage [4].

PUFs can be used to identify and authenticate objects, in a similar way to
what can be achieved using biometry. This is due to the fact that they are
unique and reproducible [4]. An authentication scenario using PUFs usually
works in two phases, which are described in [3] and briefly explained in the
following. For such an authentication scenario we assume two participants, the
prover, which is the entity who wants to authenticate itself to the second party,
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called the verifier. In this scenario, the PUF will be embedded into the verifier’s
hardware. Furthermore, the prover will have a unique identifier called ID, by
which it claims its identity.

Enrollment phase During this phase, a subset of the CRPs of the prover’s
PUF are collected in a secure environment and then stored in the database
of the verifier. These database entries are indexed by the ID of the prover.

Verification phase In this phase, the prover initiates authentication to the
verifier by sending its ID. The verifier, in turn, searches for the database
entries that are stored under the prover’s ID and selects random CRP
(C,R). The challenge C that belongs to the CRP in question is then sent
to the prover. The prover then proceeds with challenging the PUF using
C, and sends the resulting response R′ to the verifier. The verifier then
checks if the received response R′ is sufficiently close to the response R,
which is stored in the database. If this is the case, the prover is successfully
authenticated, otherwise the authentication fails.

PUFs also present an opportunity for the secure generation of cryptographic
keys, as they fulfill two important requirements: a unique and unpredictable
source of randomness, as well as a form of protected memory in which keys
can be stored reliably. PUFs accomplish this by exploiting intrinsic, device-
unique randomness, in the form of PUF responses, which can be used for key
generation. As PUF responses can be measured repeatedly, with a desirably
small intra-distance between them, and the same key can be generated again
and again without the need for protected non-volatile memory (NVM) [3].

PUF responses by themselves, as already indicated, cannot be reliably re-
produced due to their appertaining random noise, and this random noise may
also be non-uniformly distributed. As cryptographic keys rely on both of these
properties however, a mechanism to realiably extract uniform random data from
a PUF response is needed. This can be accomplished by using fuzzy extractors,
and such extractors are described in detail by [5]. The detailed operation of
such fuzzy extractors will not be discussed in further detail at this point, for
sake of brevity.

Analysis of SRAM PUFs on existing ICs

A type of PUF that is frequently found in commodity hardware is the aforemen-
tioned SRAM PUF that works by exploiting manufacturing variations in Static
Random Access Memory (SRAM) components. On power-up, the memory cells
of the SRAM, each holding a binary digit, flip into a random state of either 0 or
1. This state is dependent on physical asymmetries in the SRAM cell. SRAM
PUFs have the advantage that SRAM components are already present in a wide
range of existing hardware, without the need to be separately introduced into
the architecture.

In order to use an SRAM component for the implementation of an SRAM
PUF, it is necessary to asses whether the SRAM component in question exhibits
the desired quality in terms of error-rate, bias and inter-distance. In [6] and [7],
the SRAM components present in several microcontroller units (MCUs) from
different vendors have been analyzed regarding these properties. An overview
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of the results of this analysis, in terms of error-rate and bias, is shown in table
1 below. For some models, more than one device was analyzed. Likewise,
the number of responses taken from the several devices varies due to technical
reasons. In both cases, the indicated values mean the average over the given
quantity of devices and number of responses.

Platform Quantity N EN WN

Arduino Mega 1 10 8.240 69.140
Arduino Uno 4 10 6.467 68.945

ESP32 2 100 6.501 63.562
ESP8266 2 20 6.225 50.019

Genuino 101 1 10 7.118 33.437
Genuino MKR1000 1 10 3.906 55.078

Nordic nRF51 1 10 1.822 54.609

Table 1: Properties of different SRAM PUF responses

From the above values it can be seen that the bias of all Arduino devices,
as well as that of the Genuino 100 and the ESP32 is fairly high and needs to
be improved, whereas other devices have a fairly even distribution of zeroes and
ones, with the ESP8226 being very close to 50 %. The intra-distances of all
devices are fairly low, with the Nordic nRF51 exhibiting an intra-distance as
low as 1.822 % and as high as 8.240 % for the Arduino Mega.

The average fractional inter-distance IN between different devices has also
been analyzed. A detailed listing of these values is not given for sake of brevity
however, and it is deemed sufficient to say that, on average, an inter-distance
IN of about 50.598 % can be established between all the above devices, with an
upper bound of 60.859 % and a lower bound of 42.578 %. This is fairly close to
the desired value of 50 %.

These results indicate that potential for PUF applications indeed exists on
several analyzed platforms that represent commodity hardware and are in line
with other research performed in this domain, e.g. in [8].

As SRAM PUFs are weak PUFs however, it has been concluded in [6] that
this kind of PUF, although easily available, suffer from the issue of how to
properly protect the PUF response. Such protection is not found to be given
in most analyzed device models, which means that the PUF cannot be used
for security critical applications as is and special precautions must be put into
effect, in order to protect only available response from being read out by an
adversary. Another potential issue with weak PUFs that has been found in
[6], is that measures which introduce a level of security into the system that is
sufficient to protect the PUF response, can potentially eliminate the advantages
of a PUF, as the respective functionality could then also be achieved by other
means. The PUF response, as well as the non-volatile memory (NVM) present
in a device could, for example, be protected by preventing the reprogramming
of an IoT device, after the required software has been flashed. In such a case it
would be possible to store a cryptographic key in NVM and not to use a PUF
at all. Also, research into practical strong PUFs is thus encouraged, as such

5



would enable to exploit the full potential of PUF technology. As stated earlier
however, this may be a difficult task to accomplish.

Identification and Authentication using PUFs

As mentioned before, the identification and authentication of objects are a main
field of application for PUF technology. In the following, an authentication
scheme for resource-constrained embedded devices that has been developed in
[9] will be presented, which is especially designed to be employed in the domain
of the Internet of Things (IoT). In line with what has been described in the
introduction, the authentication scheme consists of two entities, the verifier and
the prover. In this case, the target IoT device is the prover that wants to
authenticate itself to an authentication authority (AA), which represents the
verifier.

In the course of this authentication scheme, not only the authenticity of an
IoT device is proven to the AA, but also the integrity of the device’s bootloader.
The section in the NVM of a device that contains the code of the bootloader
will in the following be called bootloader section (BLS). For the authentication
scheme, the AA is equipped with a database, in which hash values of a device’s
BLS can be stored. In the following, it is assumed that the AA, prior to the
enrollment phase, already possesses the respective hash values of all relevant
devices.

During the enrollment phase the IoT device evaluates its SRAM PUF and
sends the resulting PUF response R to the AA. In turn, the AA sends its
public key PK to the IoT device. The AA stores the received PUF response
in its database and the IoT device stores the received public key in NVM. As
previously stated, this process has to take place in a secure environment and is
illustrated in figure 1.

Store:  SRAM PUF

Response R in Database

Store:  Authentication

Authority’s PK in NVM

Send: Authentication Authority's Public Key PK

Send: n-bit SRAM PUF Response R

IoT

PUF NVM

Authentication

Authority

Database SK

Bootloader

Figure 1: Enrollment in Secure Environment

During the evaluation phase the IoT device computes a so-called PUF-based
Device Identifier or PbDI. This is done by computing a hash of its BLS and
concatenating it with a newly obtained PUF response R′ and by encrypting the
result with the AA’s public key PK. The PbDI is then sent to the AA, which
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decrypts it using its secret key SK. The AA then compares the received PUF
response R′ to the PUF response R that is stored in its database and decides
if they match. As PUF responses are subject to noise, this match will most
likely never be exact and the decision is rather based on whether the responses
are sufficiently similar. Whether this is the case or not can be determined by
defining an upper limit to the Hamming distance between the two responses,
t, such that D(R,R′) ≤ t must hold true. The two PUF responses match if
this check succeeds and mismatch otherwise. In addition, the hash of the BLS
that was received from the IoT device is checked against the one stored in the
database of the AA, which must be equal. This is done in order to evaluated
the integrity of the device’s bootloader. If both conditions are met the device
is successfully authenticated. If one of the two conditions does not hold, the
authentication fails. This process is shown below in figure 2.

Send: ePbDI = EPK(PbDI)

Decrypt:  DSK ( EPK (PbDI) )

Result:  PbDI

Extract:  SRAM PUF response R’ from PbDI

Result:  R’

Extract:  Hash value of BLS H(BLS) from PbDI

Result:  H(BLS)

Compare:  H(BLS) = H(Bootloader)

Result:  ACK/decision based on equality

Compare:  R ≈t R’

Result:  ACK/decision based on error-threshold t

IoT

PUF NVM

Authentication

Authority

Database SK

Bootloader

Figure 2: Evaluation in the Field

In addition, the process above is executed solely in the boot stage of the
device and it is assumed that no other instructions can be executed parallel
to those in the BLS. At the end of the boot stage the cells of the SRAM are
initialized and the hash value of the BLS is erased from NVM. Because of this,
the response of the SRAM PUF and other sensitive information are no longer
present on the device after the boot stage. This protects the PUF response from
being read out by an attacker, unless modifications are introduced into the BLS
to change the behavior of the bootloader. In this case however, the integrity
check of the bootloader that is performed during the evaluation phase must fail.

Alternatively, the bootloader can be written to One-Time Programmablee
(OTP) memory, which can be written exactly once. This is done during the
enrollment phase, and the bootloader cannot be modified afterwards in a mean-
ingful way by neither an adversary nor a legitimate party. The evaluation phase
differs in this case as the ePbDI only consists of the encrypted PUF response
and no hashing of the BLS or integrity check for the same is required.
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Another variation of this scheme assumes that a target IoT device is capable
of operating without a flashed bootloader. In this matter, the bootloader is
only flashed to the device when authentication is needed and erased afterwards.
During the evaluation phase, the NVM contents of the device are erased and
the bootloader is flashed to the device by the AA. During the boot stage the
ePbDI is computed as above and sent to the AA. In this case also no hash of
the BLS is required.

The developed scheme comes with several benefits, such as economic ad-
vantages. It can be issued as a patch or update to existing devices. Another
benefit for manufacturers of IoT devices is that they do not have to deal with
the generation of unique identifiers. This eases the potential for security issues
at the site of manufacturing. Furthermore, the scheme enables intrusion detec-
tion to some extent, as modifications to the bootloader or to the public key of
the AA will cause the authentication process to fail. It has been concluded that
all variations of the scheme provide resilience against eavesdropping, modifica-
tion of hardware and against the cloning of identifiers, as well as against the
injection of malicious instructions into the bootloader. The variations of this
scheme that employ hashes or OTP memory respectively, additionally provide
protection against spoofing, in which an attacker attempts to impose the AA.
The scheme is not without weak points however, as it does not protect against
playback attacks for instance. In such a case, an attacker intercepts the ePbDI
during the authentication process and exploits it to successfully authenticate it-
self to the AA, despite being a completely different entity. However, this attack
can be coped with, for example, by introducing time stamps into the scheme,
such that the ePbDI is unique every time it is sent.

It should be noted that other security anchors such as Trust Platform Mod-
ules (TPMs) or Hardware Security Modules (HSMs) exist which potentially
provide a higher level of security than the proposed scheme. Such security an-
chors raise the complexity and cost of the product however, and the proposed
scheme has been designed with low cost solutions in mind that would otherwise
have no or very little security at all.

Conclusion

In this document, a brief overview has been provided over research activities in
the field of Physically Unclonable Functions (PUFs) that reach into the domain
of the Internet of Things (IoT) and their outcomes have been summarized. It has
been concluded that the practicality of PUF technology, especially when it comes
to SRAM PUFs, is still an open topic and enabling the sophisticated application
of the former in the IoT sector still needs further research. In the future, further
implementations are going to be analyzed and resource constrained devices will
be tested in order to assess the potential applications of PUFs within the IoT.
Furthermore, research will be conducted on the the application of PUFs for the
protection of intellectual property (IP), as well as the combination of PUFs and
block chain technology.
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