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EXECUTIVE SUMMARY 

 

The Copernicus Global Land Service (CGLS) is earmarked as a component of the Land service to 

operate “a multi-purpose service component” that provides a series of bio-geophysical products on 

the status and evolution of land surface at global scale. Production and delivery of the parameters 

take place in a reliable, automatic and timely manner and are complemented by the constitution of 

long-term time series. 

From 1st January 2013, the Copernicus Global Land Service is providing a series of bio-

geophysical products describing the status and evolution of land surface at global scale. Essential 

Climate Variables like Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation 

(FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, 

the areas of water bodies, and additional vegetation indices, are generated every hour, every day 

or every 10 days from Earth Observation satellite data.  

The Dynamic Land Cover map at 100 m resolution is a new product in the portfolio of the CGLS 

and targets to deliver a yearly global land cover map at 100 m spatial resolution. Land cover plays 

a major role in the climate and biogeochemistry of the Earth system. The CGLS Land Cover 

product provides a primary land cover scheme with 18 classes. Next to these classes, the product 

also provides a set of four vegetation continuous field layers that provide proportional estimates for 

vegetation cover for the land cover types forest, herbaceous vegetation, shrub and bare ground. 

This continuous classification scheme may depict areas of heterogeneous land cover better than 

the standard classification scheme and as such can be tailored for application use (e.g. forest 

monitoring, crop monitoring, biodiversity and conservation, monitoring environment and security in 

Africa, climate modelling, etc.) 

This first Land Cover map (V1.0) is provided for the 2015 reference year over the African continent, 

derived from the PROBA-V 100 m time-series, a database of high quality land cover training sites 

and several ancillary datasets. 

This Algorithm Theoretical Based Document (ATBD) describes the methods used for classifying 

the land cover on PROBA-V data at 100 m resolution on continental scale. 
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1 BACKGROUND OF THE DOCUMENT 

1.1 SCOPE AND OBJECTIVES 

The scope of this document is to describe the theoretical basis and justification that underpins the 

implementation of the dynamic land cover product at 100 m resolution Version 1 provided in the 

Copernicus Global Land Service. It details the methodology to be applied on the PROBA-V data, 

together with a description of the limitations.  

A thorough validation of the products is performed by a full quality assessment exercise 

[CGLOPS1_VR_LC100m-V1] according to the Service Validation Plan [CGLOPS1_SVP]. 

 

1.2 CONTENT OF THE DOCUMENT 

This document is structured as follows: 

 Chapter 2 recalls the users requirements, and the expected performance 

 Chapter 3 describes the retrieval methodology 

 Chapter 4 identifies the limitations 

 Chapter 5 outlines some risks of failure and their mitigation 

 

1.3 RELATED DOCUMENTS 

1.3.1 Applicable documents 

AD1: Annex I – Technical Specifications JRC/IPR/2015/H.5/0026/OC to Contract Notice 2015/S 

151-277962 of 7th August 2015 

AD2: Appendix 1 – Copernicus Global land Component Product and Service Detailed Technical 

requirements to Technical Annex to Contract Notice 2015/S 151-277962 of 7th August 2015 

AD3: GIO Copernicus Global Land – Technical User Group – Service Specification and Product 

Requirements Proposal – SPB-GIO-3017-TUG-SS-004 – Issue I1.0 – 26 May 2015. 

 

1.3.2 Input 

Document ID Descriptor 

CGLOPS1_SSD Service Specifications of the Copernicus Global Land 

Service. 

CGLOPS1_SVP Service Validation Plan of the Copernicus Global Land 

Service. 

CGLOPS1_URD_LC100m User Requirements Document of the Dynamic land 
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cover 100m product 

CGLOPS1_TrainingDataReport_LC100

m 

Report describing the training dataset used for Dynamic 

Land Cover 100m product 

GIOGL1_ATBD_WB1km-PROBAV-V2 Algorithm Theoretical Basis Document of Collection 1km 

water body detection version 2 from PROBA-V 

1.3.3 Output 

Document ID Descriptor 

CGLOPS1_VR_LC100m-V1 Validation Report describing the results of the 

scientific quality  assessment of the Dynamic land 

cover 100m product 

CGLOPS1_PUM_LC100m-V1 Product User Manual Document of Dynamic land 

cover 100m product 

1.3.4 External documents 

PROBA-V http://proba-v.vgt.vito.be/ 

PROBA-V User Manual User Guide of the PROBA-V data, available on http://www.vito-

eodata.be/PDF/image/PROBAV-Products_User_Manual.pdf  

SPOT-VGT Collection 3 User 

Manual 

User Guide of the SPOT VEGETATION Collection 3 data, 

available on 

http://www.vgt.vito.be/pages/SPOT_VGT_PUM_v1.0.pdf 

 

 

 

http://www.vito-eodata.be/PDF/image/PROBAV-Products_User_Manual.pdf
http://www.vito-eodata.be/PDF/image/PROBAV-Products_User_Manual.pdf
http://www.vgt.vito.be/pages/SPOT_VGT_PUM_v1.0.pdf
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2 REVIEW OF USERS REQUIREMENTS 

According to the applicable document [AD2] and [AD3], the user’s requirements relevant for 

Dynamic Moderate Land Cover are:  

 Definition:  Dynamic global land cover products at 300m and/or 100m resolution using UN 

Land Cover Classification System (LCCS) 

 Geometric properties:  

o Pixel size of output data shall be defined on a per-product basis so as to facilitate 

the multi-parameter analysis and exploitation. 

o The baseline datasets pixel size shall be provided, depending on the final product, 

at resolutions of 100m and/or 300m and/or 1km.  

o The target baseline location accuracy shall be 1/3 of the at-nadir instantaneous field 

of view. 

o Pixel co-ordinates shall be given for centre of pixel. 

 Geographical coverage:  

o geographic projection: lat long 

o geodetical datum: WGS84 

o pixel size: 1/112° - accuracy: min 10 digits 

o coordinate position: pixel centre 

o global window coordinates:  

 Upper Left: 180°W-75°N 

 Bottom Right: 180°E, 56°S 

 

 Accuracy requirements: Overall thematic accuracy of dynamic land cover mapping 

products shall be >80%. The overall accuracy assessment (including confidence limits) will 

be based on a stratified random sampling design and the minimum number of sampling 

points per land cover class relevant to the product shall be calculated as described in 

Wagner and Stehman, 2015. 

 

Few workshops were held in 2016 to consult different stakeholders to understand users’ needs for 

global land cover maps. A feasibility study was performed to define the guidelines to create the first 

LC100 map. More details can be found in [CGLOPS1_URD_LC100m]. 

Table 1 provides a summary of the major requirements from the stakeholders, while Table 2 shows 

an overview of the requested classes to be covered by the mapping. 
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Table 1: Summary of stakeholder requirements 

Land cover change information 

Forest modelling/REDD+ 
Forest change information is needed for identifying areas of tree 

loss and gain. 

Crop monitoring Static land cover maps of a high accuracy are of high priority  

Biodiversity and 

conservation 

Reliable information on the extent, location and change of habitats is 

needed for integration in a change alert system. 

Monitoring Environment and 

Security in Africa (MESA) 

Depending on application, both types of maps are needed: change 

maps and static land cover map. 

Climate modelling 

Priority is given to stable land cover maps. Change maps are 

desirable as well, accompanied with a measure of reliability 

quantifying their statistical accuracy. 

Resolution 

Forest modelling/REDD+ 1-20 m – higher is better 

Crop monitoring 100 m resolution is satisfactory for cropland mask 

Biodiversity and 

conservation 
1-20 m – higher is better 

Monitoring Environment and 

Security in Africa  
100 m is acceptable  

Climate modelling 
100 m resolution is very good to produce better PFT fraction 

estimations at coarser scales 

Accuracy/error information 

All users 

Overall thematic accuracy > 80% and should be based on stratified 

random sampling design, with a number of sample points per land 

cover class calculated (Wagner et al, 2015)  

Accuracy estimates should be not only overall, but also class 

specific. 

Accuracy has to be calculated at different geographical levels, e.g. 

regional, national, continental, global 

Minimum error has to be less than 15% or 20% at class level and at 

regional or national level (large country).  

Qualifying the error in a spatial manner is important, e.g. using 

covariance matrices, (Tsendbazar et al, 2015). 

Thematic requirements 

Forest modelling/REDD+ 

Mapping human impact on forest: primary and secondary forests, 

intactness, core/edge, managed/unmanaged, as well as forest 

parameters such as tree height and carbon stock/biomass, NPP, 
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etc. 

Crop monitoring 

More classes on managed land/cultivated areas: irrigation, big/small 

farming, permanent crops, fallow, grassland (artificial, natural), 

some plantations 

Biodiversity and 

conservation 

Savannah, wooded shrubs, wetlands, natural vs man-made; 

Abandoned land; 

Infrastructure such as mines, roads, built infrastructure, including 

settlements, roads, electric lighting, canals and water control 

structures. 

Monitoring Environment and 

Security in Africa  

Forestry, Inland Waters,  Pastoral Resources, Land Cover Change 

Assessment (including urbanization), Land Degradation, Natural 

Habitat Conservation  Assessment, Monitoring and Assessment of 

Environmental Impacts of Mineral Resources Exploitation 

Climate modelling from 

vegetation 

Classes related to PFTs: trees vs shrubs vs grasses, C3 crops vsC4 

crops vs irrigated crops; leaf types;  managed vs natural classes, 

change vs phenology, etc.  

 All users 
More land cover classes of Level 2. More details in a section below. 

UN LCCS should be used by default. 

Projection 

All users 
Commonly used projection (e.g. WGS 1984, EPSG: 4326), 

eventually easy to convert. 

Access 

All users 
Easy and open access, options for countries with slow connections, 

options to choose between global and regional products 

Other requirements 

All users 

Yearly updates and consistency among consecutive products. 

Continuity on nomenclature of the land cover products.  

Reprocess operations should be performed whenever the 

nomenclature evolves. 

A clear distinction should be made between “date of issue” and the 

“data used” (period). 
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Table 2: List of land cover classes requested by users 

Code 
Level 

1 

Code 
Level 

2 
UN LCCS level Land cover class 
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10  A12A3A20B2 Forest/tree cover X  X X X 

 11 
A12A3A20B2D2

E1 
Evergreen Needleleaf forest 

X   X X 

 12 
A12A3A20B2D1

E1 
Evergreen Broadleaf forest 

X   X X 

 13 
A12A3A20B2D2

E2 
Deciduous Needleleaf forest 

X   X X 

 14 
A12A3A20B2D1

E2 
Deciduous Broadleaf forest 

X   X X 

 15 
A12A3A20B2D1

D2 
Mixed forest 

X  X   

 16 

A12A3A10B2X
XXX (assuming 

that an intact 
forest is a very 
dense forest) 

Intact forest 

X  X  X 

 17 - Secondary forest X  X  X 

 18 A11A1 Managed forest X  X  X 

  A11A1 Plantation forest/tree crops X X X  X 

  A11A1 Oil palm plantation X X    

  - Forest logging X X X   

  A12A3 
Dominant tree species, e.g. 
spruce, pine, birch 

X  X   

  A11A1(A2/A3) Shifting cultivation system X X   X 

20  
AA12A4A20B3(

B9) 
Shrub 

  X X X 

 21 
A12A4A20B(B9

)XXE1 
Evergreen shrubs   X   

 22 
A12A4A20B3(B

9)XXE2 
Deciduous shrubs   X   

30  
A12A2(A6)A20

B4 
Herbaceous vegetation   X X X 

  

A12A6A10 // 
A11A1A11B4X
XXXXXF2F4F7

G4-F8 

Pasture/managed grassland     X 

  A122(A6)A10 Natural grassland   X  X 

  A12A2 Grass types for Western Africa   X   

  

A12A3A11B2X
XXXXXF2F4F7

G4-A12; 
A12A3A11B2-

A13; A12A1A11 

Savannas   X   

40  A11A3 
Cultivated and managed 
vegetation/agriculture 

 X X X X 

 41 A11A3XXXXXX Irrigated cropland  X   X 
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Code 
Level 

1 

Code 
Level 

2 
UN LCCS level Land cover class 

F
o

re
s

t 
m

o
d

e
ll

in
g

/R
E

D
D

+
 

C
ro

p
 m

o
n

it
o

ri
n

g
 

B
io

d
iv

e
rs

it
y
 

M
o

n
it

o
ri

n
g

 E
n

v
ir

o
n

m
e

n
t 

a
n

d
 

S
e

c
u

ri
ty

 i
n

 A
fr

ic
a
 

C
li

m
a

te
 m

o
d

e
ll
in

g
 

D3(D9) 

 42 
A11A3XXXXXX

D1 
Rainfed cropland  X   X 

 43 A11A3 Big and small farming/field size  X    

 44 A11A1-W8/A2 Permanent crops  X   X 

 45 A11A3 Row crops  X    

 
 

A11A2 
Crop types: long/short cycle or 
winter/summer crops 

 X    

  A11A2 Multiple crop cycles  X    

50  B15A1 Urban/built up   X X X 

60  B16A1(A2) Bare/sparse vegetation    X X 

70  B28A2(A3) Snow and Ice    X X 

80  B28A1 Open water    X X 

  
A24A1(A2/A3/A

4) 
Wetland   X X X 

  A24A3 Mangroves X  X   

 

Green colour indicate classes that can be included into the legend without any risk; yellow shows 

classes that will potentially be integrated into the legend dependent on the results of the risk 

assessment after some tests; and red is for classes that are to be analysed in a second evolution 

of the map, as the risk is too high and require additional effort. 
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3 METHODOLOGY DESCRIPTION 

3.1 OVERVIEW 

The CGLS Dynamic Land Cover Map at 100 m resolution (CGLS LC100) product is generated by 

combining several proven individual methodologies through: 

1. Data cleaning and outlier detection techniques, 

2. Applying data fusion techniques at multiple levels, 

3. Supervised classification through collecting reference data, including crowdsourcing 

techniques, 

4. Including established third party datasets via expert rules. 

The workflow, shown in Figure 1, can be divided into the following sections:  

1. data cleaning & compositing,  

2. data fusion,  

3. metrics generation,  

4. training data generation,  

5. ancillary datasets products,   

6. classification / regression,  

7. cover fraction layers generation,  

8. land cover map generation. 

 

 

Figure 1: Workflow diagram for the CGLS Dynamic Land Cover 100m product for Africa 2015 
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To generate the product, 5-daily PROBA-V multi-spectral image data with a ground sampling 

distance (GSD) of ~0.001 degree (~100 m) is used as primary earth observation (EO) data, and 

PROBA-V daily multi-spectral image data with a GSD of ~0.003 degree (~300 m) secondarily. Next 

to a status mask cleaning using the internal quality flags of the PROBA-V EO data, a temporal 

cloud and outlier filter built on a Fourier transformation is applied to clean the data. Next, the 5-

daily PROBA-V 100 m and daily 300 m datasets are fused using a Kalman filtering approach. The 

Kalman-filled 100 m data set is then automatically checked for consistency before extracting 

several metrics. Therefore, a harmonic model is fitted through each of the reflectance bands of the 

time series data as well as each of the additional derived vegetation indices for each time series 

step. Next to the parameters of the harmonic model which are used as metrics for the overall level 

and seasonality of the time series, descriptive statistics are extracted for the reference year as well 

as for the vegetation season and off-season within that reference year using phenological 

parameters (e.g. start- and end of season) extracted from the harmonic model itself. Overall, 392 

metrics are extracted from the PROBA-V EO data.  

The training data is collected through manual classification using Google Maps and Bing images at 

10 m spatial resolution using the Geo-Wiki Engagement Platform (http://www.geo-wiki.org/). 

Therefore the training data not only includes the land cover type, but also the cover fractions of the 

main land cover classes in PROBA-V 100 m resolution. In the classification preparation, the 

metrics of the training points are analysed for intra- and inter- specific outliers, as well as screened 

for the best metrics combinations to run an optimized classification. The optimized training data is 

then used in a supervised classification using Random Forest techniques.  

Finally, we build upon the success of previous global mapping efforts and/or other ancillary 

datasets. Therefore, the external datasets are resampled to PROBA-V 100 m spatial resolution 

and included via expert rules in the land cover map generation step. The produced land cover map 

uses a hierarchical legend based on the United Nations and Cover Classification System (LCCS). 

Compatibility with existing global land cover products is hereby taken into account. A novelty of this 

product is the generation of vegetation continuous fields that provide proportional estimates for 

vegetation cover for trees, herbaceous vegetation, shrub and bare ground. The input are the cover 

fractions collected for all training points which are used in a Random Forest regression. 

 

3.2 INPUT DATA 

Eight different sets of input data are used in the CGLS LC100 product workflow, i.e. PROBA-V S1-

TOC reflectance data for 100 m and 300 m, PROBA-V 100 m land/sea mask, FAO global 

ecological zones dataset, shoreline vector layer for Africa, DLR’s Global Urban Footprint Plus 

mask, JRC’s Global Human Settlement mask, JRC’s Global Surface Water product, and NASA’s 

Shuttle Radar Topography Mission dataset. 

http://www.geo-wiki.org/
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3.2.1 PROBA-V TOC daily synthesis surface reflectances for 100 m and 300 m 

Global PROBA-V level 3 Top Of Canopy daily synthesis (S1-TOC) products are used as main input 

in the CGLS LC100 product workflow. More details about the generation of the geometrically and 

atmospherically corrected S1-TOC product can be found in the [PROBA-V User Manual]. 

The PROBA-V Level 3 Top of Canopy daily synthesis products used in the CGLS LC100 workflow 

are provided at a ground sampling distance (GSD) of ~0.001 degree (~100 m spatial resolution) 

and a GSD of ~0.003 degree (~300 m spatial resolution). The surface reflectance is available for 

four spectral bands corresponding to the selected measurement (Table 3). The atmospheric 

correction is performed using SMAC 4.0 (Rahman and Dedieu, 1994). Standard input data layers 

includes Normalized Difference Vegetation Index (NDVI), geometric viewing and illumination 

conditions, reference to date and time of observations for four reflectance bands (Table 3) and a 

status map containing identification of snow, ice, shadow, clouds, land/sea for every pixel (Table 

4). The data is stored in a szip compressed hdf5 file.  

 

Table 3: Spectral characteristics of the PROBA-V bands 

Spectral band Wavelength 

BLUE 0.447 – 0.493 µm 

RED 0.610 – 0.690 µm 

NIR 0.770 – 0.893 µm 

SWIR 1.570 – 1.650 µm 

 

Table 4: Status Map bit mapping of the PROBA-V data 

Bit Name Description 

1 -3 Observation 

000: clear 

010: undefined 

011: cloud 

100: snow/ice 

4 Land/sea mask 
0: sea 

1: land 

5 SWIR quality flag 
0: invalid data 

1: valid data 

6 NIR quality flag 
0: invalid data 

1: valid data 

7 RED quality flag 
0: invalid data 

1: valid data 

8 (Most significant) BLUE quality flag 
0: invalid data 

1: valid data 
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The status mask bit mapping for the S1-TOC 300 m and S1-TOC 100 m products is the same. For 

each pixel of the product the following information can be extracted: the observation status (bits 1 

to 3) is based upon the most optimal observation used for the daily synthesis; the land/sea mask 

bit (bit 4) is an exact copy of the PROBA-V land/sea mask; Bits 5, 6, 7 and 8 are quality flags for 

the daily synthesis spectral bands (quality flag is set to 1 when the radiometric quality is good). 

 

3.2.2 PROBA-V land/sea mask 

The PROBA-V land/sea mask was implemented in the PROBA-V spacecraft on-board algorithms 

in order to predict the land/sea transitions to reduce the amount of data generated. The PROBA-V 

land/sea mask was generated out of the SPOT VGT land/sea mask [SPOT-VGT Collection 3 User 

Manual]. 

Since the land/sea mask is implemented in the PROBA-V S1-TOC status mask, the land/sea mask 

can be easily extracted and is shown in Figure 2.  

 

Figure 2: PROBA-V land/sea mask for the African continent 

 

3.2.3 FAO global ecological zones dataset 

In order to group EO data for faster processing or adaptation of algorithms to specific regions, we 

use the global ecological zone (GEZ) dataset for 2010 of the Food and Agriculture Organization of 

the United Nations (FAO) (FAO, 2012). FAO defines an ecological zone (EZ) as: “A zone or area 

with broad yet relatively homogeneous natural vegetation formations, similar (not necessarily 

identical) in physiognomy. Boundaries of the EZs approximately coincide with the map of Köppen-

Trewartha climatic types, which was based on temperature and rainfall. An exception to this 
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definition are “Mountain systems”, classified as one separate EZ in each Domain and 

characterized by a high variation in both vegetation formations and climatic conditions caused by 

large altitude and topographic variation” (Simons, 2001). 

Figure 3 shows the GEZ dataset for the African continent. Overall, 14 ecozones subdivide the 

African continent and are used to subset the EO data in several processing steps in the CGLS 

LC100 product workflow. 

 

 

Figure 3: FAO global ecological zones dataset for the African continent. Image edited – original from 

http://foris.fao.org/static/data/fra2010/ecozones2010.jpg (FAO, 2012) 

 

3.2.4 Shoreline vector layer for Africa 

The shoreline layer is mainly used to distinguish between open land water and open sea water. We 

used the 30 m shoreline vector layer of the U.S. Geological Survey (USGS) which was produced 

from Landsat 7 EO data for the Africa Ecosystem Project (Sayre et al., 2013). 

We use the USGS shoreline layer instead of the PROBA-V land/sea mask since the PROBA-V 

land/sea mask consist of a buffer around the land masses in order to show the land/sea transition 

http://foris.fao.org/static/data/fra2010/ecozones2010.jpg
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zones. Therefore the PROBA-V land/sea mask is not usable for distinguishing open land water 

pixels from open sea water pixels. Figure 4 shows an example of the USGS shoreline vector layer 

for the Street of Gibraltar overlaid to a Google Earth image and the PROBA-V land/sea mask.  

 

 

Figure 4: The USGS shoreline vector layer (Sayre et al., 2013). Zoom in to the Street of Gibraltar 

showing the shoreline vector layer (red) overlay to a Google Earth image (left) and to the PROBA-V 

land/sea mask (right). Note that the PROBA-V land/sea mask has a buffer around the land masses in 

order to map land/sea transitions. 

 

3.2.5 DLR’s Global Urban Footprint plus (GUF+) layer 

In order to generate an urban mask in the CGLS LC100 workflow, DLR’s Global Urban Footprint 

Plus layer (GUF+) for 2015 (Marconcini et al., 2017a, Marconcini et al., 2017b) is used. The GUF+ 

layer used mainly multi-temporal Sentinel-1 radar data in combination with multi-temporal Landsat-

8 multispectral optical data to detect urban structures with a spatial resolution of 10 m. Compared 

to DLR’s GUF layer which is using TerraSAR-X and TanDEM-X radar data, the GUF+ Sentinel-1 

radar data is provided via the open data policy. Therefore the GUF+ layer is freely available. Figure 

5 shows an example of the GUF+ 2015 layer for the Street of Gibraltar. 



Copernicus Global Land Operations – Lot 1 
Date Issued: 25.09.2017 
Issue: I1.00 

 

 

Document-No. CGLOPS1_ATBD_LC100m-V1 © C-GLOPS1 Lot1 consortium  

Issue:     I1.00 Date: 25.09.2017 Page: 29 of 88 

 

 

Figure 5: The DLR Global Urban Footprint plus layer (Marconcini et al., 2017b). Zoom in to the Street 

of Gibraltar showing the urban areas in black. Note: in red the USGS shoreline vector layer is shown. 

 

3.2.6 JRC’s Global Human Settlement (GHS) layer 

A second external dataset needed to generate an urban mask in the CGLS LC100 workflow is 

JRC’s Global Human Settlement Layer (GHS) for 2014 (Pesaresi et al., 2015). The GHS built-up 

grid used the 30 m Landsat EO data archive to generate a human settlement layer with a spatial 

resolution of 38 m. Compared to the GUF+ layer which uses solely EO data in the generation, the 

GHS built-up infrastructures mask is created by combining global archives of fine-scale satellite 

imagery, census data, and volunteered geographic information in a spatial data mining technology 

(model) (Pesaresi et al., 2015). The GHS built-up grid raster dataset data is provided via the open 

data policy. Figure 6 shows an example of the GUF+ 2015 layer for the Street of Gibraltar. 

 

Figure 6: The JRC Global Human Settlement layer (Pesaresi et al., 2015). Zoom in to the Street of 

Gibraltar showing the urban areas in black. Note: in red the USGS shoreline vector layer is shown. 
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3.2.7 JRC’s Global Surface Water (GSW) product 

In order to generate a water product (permanent and temporary water bodies) in the CGLS LC100 

workflow, JRC’s Global Surface Water (GSW) product is used (Pekel et al., 2016). The GSW used 

the 30 m Landsat 5, 7 and 8 EO data archive to generate a mask showing the water surfaces that 

are visible from space, including natural and artificial water. Therefore, the thermal properties and 

spectral properties of water and other features in the Landsat spectral bands were used to 

separate pixels acquired over open water from those acquired over other surfaces (Pekel et al., 

2016). Within the CGLS LC100 workflow, we use maximum water extent and water seasonality 

2014-2015 layers (Pekel et al., 2016). The maximum water extent provides information on all the 

locations ever detected as water over the Landsat data archive period (32 year period) and the 

water seasonality layer provides information regarding the intra-annual distribution of surface water 

(number of months when the pixel is detected as water). Figure 7 shows an example of the GSW 

maximum water extent layer and the water seasonality 2014/2015 layer for the Street of Gibraltar. 

 

 

Figure 7: The JRC Global Surface Water product (Pekel et al., 2016). Zoom in to the Street of Gibraltar 

showing the maximum water extent layer (left) and the water seasonality mask for 2014/2015 (right). 

Note: in red the USGS shoreline vector layer is shown in the maximum water extent layer (left image). 

 

3.2.8 NASA’s Shuttle Radar Topography Mission Global 1 arc second dataset 

For the generation of the water bodies potential mask (WBPM) within the CGLS LC100 product 

workflow, the National Aeronautics and Space Administration (NASA) Shuttle Radar Topography 

Mission (SRTM) plus digital elevation model (DEM) data in 1 arc second resolution (SRTMGL1) is 

used as input (NASA, 2013). SRTM was the primary payload on the STS-99 mission of the Space 

Shuttle Endeavour, and provided the first complete high-resolution digital elevation model (DEM) 

on a near-global scale from 56° S to 60° N. The global 1 arc second dataset provides a ~30 m 

spatial resolution and is the third version of this dataset which improved the DEM quality by filling 

void pixel with the ASTER Global Digital Elevation Model, the Global Multi-resolution Terrain 
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Elevation Data, and the National Elevation Dataset (NASA, 2013). Figure 8 shows an example of 

the SRTMGL1 dataset for the Street of Gibraltar. 

 

 

Figure 8: The NASA Shuttle Radar Topography Mission Global 1 arc second dataset. ). Zoom in to the 

Street of Gibraltar. Note: in red the USGS shoreline vector layer is shown. 

 

3.3 DATA CLEANING & COMPOSITING 

3.3.1 Overview 

The first section in the CGLS LC100 product workflow (Figure 1) is the data cleaning and 

compositing section (Figure 9). Input data is EO data from the PROBA-V multi-spectral satellite as 

described in 3.2.1. Next to the SM cleaning of the 100 m and 300 m PROBA-V TOC data for the 

reference year plus/minus 3 months (up to 548 daily observations)), a temporal outlier cleaning 

algorithm called madHANTS is applied. In order to reduce the noise in the S1 synthesis products 

as well as to generate regular time steps, a median compositing algorithm is used to generate 5-

daily and 10-daily TOC composites. For the 300 m PROBA-V data also a harmonized 5-daily 

median composite (HMC5) for the whole PROBA-V data archive (2013 – 2017) is produced. 

Therefore, a harmonization algorithm called HANTS is used. 
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Figure 9: General overview of the data cleaning and compositing section in the CGLS LC100 product 

workflow. Note: Numbers in the upper left corner of data container indicate the number of layers - 

here number of observations. 

 

3.3.2 The HANTS and madHANTS algorithms 

The Harmonic ANalysis of Time Series (HANTS) algorithm and derived madHANTS (median 

absolute deviations of the Harmonic ANalysis of the Time Series) algorithm are frequently used in 

the CGLS LC100 product workflow. 

The HANTS algorithm is an evolution of the fast Fourier transform (FFT) algorithm to perform 

Fourier analysis (Verhoef, 1996; Roerink et al., 2000). It was developed to deal with time series 

data with irregularly spacing and to identify and remove outliers as well as reconstruct the removed 

data in one step (Verhoef, 1996). Since we only use the HANTS algorithm to identify the most 

significant frequencies and/or to generate a gap-less time series profile by applying the identified 

frequencies, we developed an algorithm to screen the times series observations for temporal 

outliers (mainly clouds and haze) based on the HANTS algorithm. Therefore, we combined the 

HANTS algorithm with an outlier test based on median absolute deviations (MAD) (Walker, 1931) – 

which created the madHANTS algorithm. Next to a performance gain compared to the original 

HANTS algorithm used for outlier detection, the madHANTS algorithm is more adaptable to the 

data. The madHANTS algorithm works in two steps:  

1. First, the HANTS algorithm is applied on the original time series data and for each time step 

(index) the harmonized value is calculated out of the phases and amplitudes of the 
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identified frequencies. The usage of 3 frequencies above the zero-frequency (so overall 4 

frequencies) showed the best performance-to-accuracy ratio for the CGLS LC100 product 

workflow where the time series profiles for each pixel are 1 ½ years long (reference year 

plus/minus 3 months).  

2. In the second step, the outlier detection is performed - the original pixel values along the 

time series are evaluated against the corresponding harmonized values via the MAD outlier 

test. Therefore, an evaluation score is calculated for each pixel value along the time series 

profile. The evaluation score is calculated using Equation 1. In the original MAD test (Leys 

et al., 2013), this evaluation score was calculated by subtracting the median of all pixel 

values from the current pixel value xi in the numerator of the division. The adaptation in 

Equation 1 using instead the median the corresponding harmonized pixel value in the 

numerator allows a better adaptation of the outlier detection algorithm to seasonality. 

 

 nHANTSnHANTS

HANTSii

xxxxmedian

xx
s






,...,11

 

Equation 1 

, where s is the evaluation score to determine if a pixel value along a time series is an 

outlier compared to the neighbouring time steps, xi is the current pixel value of the to test 

time series step, xiHANTS is the harmonized pixel value of the current time step using the 

HANTS algorithm. 

A threshold of 3.5 standard deviations is used to determine if a pixel value has to be characterized 

as outliers compared to the neighbouring pixel values in the time series. The MAD outlier test was 

chosen since the MAD as a measure of statistical dispersion is more resilient to outliers in a data 

set than the standard deviation. Where in the standard deviation the distances from the mean are 

squared (thus outliers can heavily influence it), in the MAD the deviations of a small number of 

outliers are irrelevant (Leys et al., 2013). Figure 10 shows an example of the applied madHANTS 

algorithm on a PROBA-V 100 m time series of a pixel a location 9.459° lon, 6.562° lat.  

Figure 10 also shows a shortcoming of the reconstructed time series using the HANTS algorithm 

(red line). Since the HANTS algorithm needs several observations in the beginning and end of the 

time series to find the optimal solution, the amplitudes and phases of the identified frequencies 

don’t produce always reliable results for the reconstruction of the original time series in the 

beginning and end of the time series (up to 10 time series steps). Therefore, we decided to extent 

the EO time series data of the reference year for that the CGLS LC100 product is produced by 

plus/minus three months. 
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Figure 10: Example for the madHANTS temporal outlier detection algorithm. Note: blue stars mark all 

original pixel values in the time series (invalid observation values are set to -1), the red line shows 

the harmonized time series by applying the amplitudes and phases of the identified frequencies 

during the HANTS transformation, red squares show the detected outliers which are 3.5 standard 

deviations away from the harmonized pixel value. 

 

3.3.3 Median Composites (MC) generation 

The general workflow for the data cleaning and compositing section (outlined in Figure 9) can be 

split in two steps. The first is the generation of SM cleaned and temporal outlier cleaned 5-daily 

and ten-daily median composites (MC) for the 100 m and 300 m time series data. The median 

compositing reduces the random component of the noise compared to the S1-TOC. 

Overall three processing sub-steps are needed in order to generate the 5-daily (MC5) and 10-daily 

(MC10) TOC composites for the S1-TOC PROBA-V EO data (Figure 9). First, the PROBA-V multi-

spectral TOC image data with a ground sampling distance (GSD) of ~0.001 degree (~100 m) and 

PROBA-V multi-spectral TOC image data with a GSD of ~0.003 degree (~300 m) are retrieved 

from the S1 (daily) Collection 1 archive for the African continent for the reference year 2015 plus 3 

months before and after the reference year. This can be up to 548 observations (time steps) for 

each single pixel for the 1 ½ years long time series for the PROBA-V 100 m archive as well as the 

PROBA-V 300 m archive. Each dataset of a time step consists of four spectral bands and the 

corresponding SM file (see chapter 3.2.1) which are handled simultaneously. The status mask 

cleaning sets pixel flagged as noise, cloud, or sea to a “no data” value. 

In the next processing sub-step, the madHANTS algorithm (see 3.3.2) is applied to clean the time 

series from remaining haze and undetected clouds.Therefore, the madHANTS outlier test is 

conducted for the blue and SWIR reflectance bands of the PROBA-V S1-TOC SM cleaned 100 m 

time series (300 m respectively). The combination of detected outliers in the blue as well as SWIR 
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reflectance bands showed the best overall detection of temporal outliers. The madHANTS outlier 

test is pixel-based which means that the time series profile of each pixel is evaluated 

independently. As soon a time step in the blue or SWIR reflectance band was detected as an 

outlier, this time step is flagged in all four reflectance bands of that pixel. Figure 11 shows an 

example of the madHANTS temporal outlier cleaning algorithm. In order to optimize the workflow, 

the madHANTS algorithm is applied simultaneously on all pixels within an image line of a PROBA-

V tile using multi-core computing as well as several PROBA-V tiles are processed simultaneously 

via cloud computing. Output of the madHANTS processing step are PROBA-V S1-TOC SM and 

outlier cleaned 100 m time series for the four reflectance bands (300 m respectively). Figure 12 

shows an example of the data quality improvement by applying the SM cleaning and temporal 

outlier cleaning processing steps on a PROBA-V S1-TOC 100m image. 

 

 

Figure 11: Example showing the temporal outlier detection using the madHANTS algorithm on the 

blue and SWIR reflectances of a pixel a location 9.459° lon, 6.562° lat. Note: red curve shows the 

harmonized time series; blue shows the valid pixel values; green shows flagged outliers cumulative 

detected in the blue or SWIR reflectance band. 
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Figure 12: Example for data cleaning process of PROBA-V 100m image from 2016-03-06. Image is 

shown as false color composite (RGB = SWIR, NIR, blue) for a sample area in tile X18Y06 (Nigeria) – 

left) raw image, middle) status masked cleaned image (quality flagged areas are shown in red), right) 

madHANTS cleaned image (additional pixels which are flagged as outliers or clouds are shown in 

blue). 

 

The last processing sub-step is the generation of the MC5 and MC10 data sets for the 100 m and 

300 m time series data. The MC5 (MC10 respectively) composites for the four spectral bands are 

obtained by calculating the median of the S1-TOC daily reflectance values over a 5-days window 

(10-days window respectively). The MC is calculated across the four spectral bands for each pixel 

and all pixels in a tiled TOC-S1 image simultaneously. Output of the MC generation step are 

PROBA-V MC5-TOC SM and outlier cleaned as well as PROBA-V MC10-TOC SM and outlier 

cleaned 100 m time series for the four reflectance bands (300 m respectively). 
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3.3.4 Long-term 5-daily Median Composite (HMC5) generation 

The second step in the general workflow for the data cleaning and compositing section (outlined in 

Figure 9) is the generation of the long-term 5-daily median composite (HMC5) for the PROBA-V 

S1-TOC 300 m time series. Since the HMC5 is produced out of the whole PROBA-V data archive 

(2013 – 2017), the HMC5 workflow had to be adapted to the data volume and differs slightly from 

the MC generation workflow (section 3.3.3).  

First, all PROBA-V daily multi-spectral TOC image data with a GSD of ~0.003 degree (~300 m) is 

retrieved from the S1 (daily) Collection 1 archive for the African continent. This can be over 1500 

observations (time steps) for each single pixel for the current 4 years (2013-2017) of PROBA-V. 

Next follows the status mask cleaning which flags pixel stated as noise, cloud, or sea to a “no data” 

value. 

Instead of proceeding with the temporal outlier screening of the PROBA-V S1-TOC SM cleaned 

300 m time series data, the HMC5 workflow generates the MC5 composites first (Figure 9). This 

was needed since the madHANTS algorithm gets slower the longer the time series gets, which 

made a time effective processing impossible. The 5-daily compositing compress the data amount 

by factor 5. Again, the MC5 composites for the four spectral bands are obtained by calculating the 

median of the PROBA-V S1-TOC SM cleaned 300m daily reflectance values over a 5-days 

window. Output are PROBA-V MC5-TOC SM cleaned 300 m time series for the four reflectance 

bands. Now follows the temporal outlier screening and removal using the madHANTS workflow as 

explained in section 3.3.3. Output of that are PROBA-V MC5-TOC SM and outlier cleaned 300 m 

time series for the four reflectance bands. 

The final sub-step is the generation of the harmonized composites. Therefore, the HANTS 

algorithm is used (see section 3.3.2). For each pixel and reflectance band independently, the 

HANTS algorithm identifies the four most significant frequencies (3 frequencies above the zero-

frequency) in the time series profile of the PROBA-V MC5-TOC SM and outlier cleaned 300 m 

data. Then the phases and amplitudes of the identified frequencies are used to generate a 

harmonized time series for each pixel and reflectance band. Finally, the HMC5 is cut to the same 

time intervals as the PROBA-V MC5-TOC 300 m data set. Output are PROBA-V HMC5-TOC SM 

and outlier cleaned 300 m time series for the four reflectance bands. 
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3.4 DATA FUSION 

3.4.1 Overview 

High seasonal cloud coverage in several African regions are challenging for all optical based land 

cover classification approaches. In order to overcome the low data density and therefore data gaps 

in the PROBA-V 100 m MC5 time series product (see Figure 13), PROBA-V 300 m data which has 

a daily revisit time is fused in via a Kalman filtering, also known as linear quadratic estimation, 

approach (Kalman, 1960).  

 

 

Figure 13: Number of cloud free data observations for PROBA-V 100 m and PROBA-V 300 m in the 

reference year 2015 for Africa. Note: Blue circled area indicates area with lowest observation density 

in Africa. 

 

Figure 14 illustrates an overview for the data fusion section in the CGLS LC100 product workflow 

(Figure 1). Overall three processing steps are needed in order to produce high resolution (100 m) 

time series with the temporal observation density of the low resolution (300 m) time series. Input 

data are the PROBA-V 100 m and 300 m 5-daily and 10-daily median composites as well as the 

generated PROBA-V 300 m long-term 5-daily median composite four all four PROBA-V reflectance 

bands. In a first step, data gaps in the 100 m and 300 m MC5 time series are filled with 

corresponding existing observations in the MC10 time series, and huge data gaps (> 25 days) in 

the 300 m MC5 time series are additionally filled with the corresponding observations in the HMC5. 

In the next step, the Kalman-filtering approach is applied in order to generate dense, high 

resolution MC5 time series. The last step is the screening of the fused 100 m and 300 m for 

outliers and the consistency of the data is checked. 
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Figure 14: General overview of the data fusion section in the CGLS LC100 product workflow. Note: 

Numbers in the upper left corner of data container indicate the number of layers - here number of 

observations. 

 

3.4.2 Data Fusion pre-processing 

Input data in the data fusion pre-processing step are the generated PROBA-V MC5, MC10 and 

HMC5 time series cubes for all four reflectance bands (see section 3.3 and Figure 14). In detail: 

 PROBA-V 100m MC5-TOC SM & outlier cleaned for the blue, red, NIR and SWIR band; 

 PROBA-V 100m MC10-TOC SM & outlier cleaned for the blue, red, NIR and SWIR band; 

 PROBA-V 300m MC5-TOC SM & outlier cleaned for the blue, red, NIR and SWIR band; 

 PROBA-V 300m MC10-TOC SM & outlier cleaned for the blue, red, NIR and SWIR band; 

 PROBA-V 300m HMC5-TOC SM & outlier cleaned for the blue, red, NIR and SWIR band. 

In the data fusion pre-processing, small gaps (5 – 10 day gaps) in the 100 m and 300 m MC5 time 

series products are filled with the pixel values of the MC10 time series products for the 

corresponding time steps. In a second step, bigger gaps (> 25 day gaps) in the 300 m MC5 time 

series product are filled via interpolation with the HMC5 300 m long term trend product for the 

corresponding time series steps (see Figure 15). This is needed in order to guide the Kalman 

filtering approach in cases were no PROBA-V 100 m and 300 m MC5 data is available for more 

than 1 months in the row for a pixel. Note: big gaps are not filled in the 100 m data – therefore the 

Kalman-Filtering approach is used. The post-processing works tile based meaning all pixels and 

corresponding pixel time series are processed simultaneously for the 100 m (300 m respectably) 
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time series datasets. Moreover, all four PROBA-V reflectance bands are processed 

simultaneously. 

Output of the pre-processing are two gap-filled datasets, the PROBA-V MC5-TOC SM & outlier 

cleaned and gap filled 100 m time series for the four reflectance bands, and the PROBA-V MC5-

TOC SM & outlier cleaned and gap filled 300 m time series for the four reflectance bands. 

 

 

Figure 15: Example for data fusion pre-processing results for PROBA-V 300m MC5 time series for 

pixel location 9.459° lon, 6.562° lat. Top: continuous gap length in the time series (dashed green line 

indicates threshold for small gaps, dashed red line indicates threshold for big gaps), middle: time 

series before pre-processing (blue line shows original 5-daily median composite time series, green 

line shows original 10-daily median composite time series, red line shown the long term harmonized 

time series for the full PROBA-V archive), bottom: 300m time series after pre-processing (blue line 

shows the original 5-daily median composite time series, orange line shows the final pre-processed 

time series which will be used for the data fusion). 

 

3.4.3 Data Fusion using the Kalman-Filtering approach 

The Kalman-filtering approach is a recursive algorithm that combines a model of a series of 

measurements of different variables observed over time with existing measurements with partly or 

fully missing variables in order to produce estimates of the unknown variables at each time step in 

the time series, even if no measurements are available for certain time steps (Welch & Bishop, 

2006; Kempeneers et al., 2016). Goal is to produce a complete time series for all variables.  

The Kalman filter algorithm used in our workflow was introduced by Sedano et al. (2014) and is 

available as open source software in the pktools (http://pktools.nongnu.org). Kempeneers et al. 

(2016) applied their Kalman filter implementation successfully on PROBA-V data. The pktools 

http://pktools.nongnu.org/
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implementation of the Kalman-filtering approach for data fusion shows a slight difference compared 

to the original approach stated by Sedano et al. (2014): instead of interpreting the trend between 

two time stamps of the pixels of the higher resolution data which are falling within one pixel of the 

coarse resolution data (9 PROBA-V 100 m pixels are within one PROBA-V 300 m pixel at the 

same geographic location) as independent variables of the coarse pixel trend (spectral unmixing), 

all fine resolution pixels get the same trend between two time stamps as the estimated trend 

between this two time stamps in the coarse resolution data (Kempeneers et al., 2016). Neglecting 

spatial context can be an issue, in particular for heterogeneous landscapes (Kempeneers et al., 

2016), but has a huge influence on the processing speed. Figure 16 illustrates this concept and 

shows that the pixel values of the fine resolution image between time step k-1, k, and k+1 are still 

independent for each other, but still all fine resolution pixel value trends follow the single trend of 

the pixel values of the coarse resolution image between the time stamps. 

 

 

Figure 16: Principle of the Kalman-filtering approach for EO data fusion using the pktools algorithm. 

Adapted from Kempeneers et al. (2016). 

 

Input data into the Kalman-Filtering processing step are the PROBA-V MC5-TOC SM & outlier 

cleaned and gap filled 100 m time series for the four reflectance bands, and the PROBA-V MC5-

TOC SM & outlier cleaned and gap filled 300 m time series for the four reflectance bands. The four 

reflectance bands are processed independently from each other, but multi-core processing is used 

to process all data simultaneously. The pktools Kalman-filter algorithm is run in three modes which 

have to be processed sequentially. In the first run, the forward mode, the pixel values for all time 
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steps in the fine resolution data (PROBA-V 100m) are predicted for the current date meaning the 

prediction model is built up by walking forward through the time steps. In the second run, the 

backward mode, the algorithm is running back in time and predicts all pixel values for all time steps 

in the fine resolution data. In the third run, the smooth mode, the pixel information and calculated 

uncertainties for each time step in the time series profiles of the forward and backward modes are 

combined by calculating weighted averages taking the uncertainties of the modes into account, 

which result in more reliable estimates with lower uncertainties. Output of the data fusion step is a 

continuous, gap-free 5-daily time series in fine resolution - PROBA-V MC5-TOC SM & outlier 

cleaned and gap & kalman filled 100 m time series - for the four reflectance bands. 

 

3.4.4 Data Fusion post-processing 

The last step in the data fusion workflow is the post-processing in which the Kalman filled PROBA-

V 100 m MC5-TOC data is screened for consistency and introduced outliers. This is needed since 

long concurrent gaps in the 100 m time series profiles can lead to extreme values (artefacts) when 

also in the 300 m data not enough observations are available. The gap filling with harmonized 

HMC5 data in the 300 m time series profiles can guide the Kalman-Filter over these gaps, but still 

can lead to unexpected predictions. Also the mentioned simplification of the Kalman-filtering 

algorithm in the pktools (see section 3.4.3) by applying only a single trend to all fine pixels within 

one coarse pixel, can create artefacts in extreme heterogeneous landscapes. 

The post-processing step can be split into three sub-steps which have to be processed 

sequentially for each reflectance band, but all four PROBA-V reflectance bands can be processed 

simultaneously via multi-core processing. The sub-steps are: 

 data clamping: the predicted reflectance values for the four PROBA-V bands have to be 

clamped to the maximal reflectance range from 0 to 1. That is needed since introduced 

extreme values can be higher or lower than the maximal reflectance values range. 

 Re-injection: Since the kalman-filled time series is completely generated from the 

estimated/predicted reflectance values for each time step, the original measured values 

(PROBA-V MC5-TOC SM & outlier cleaned and gap filled 100 m time series values) have 

to be re-injected into the time series profiles. This process is needed in order to only fill the 

missing time steps in the measured data with the predicted reflectance values of the 

kalman-filtering approach. 

 outlier detection: introduced artefacts in the time series does not have to be extreme 

values, therefore the estimated reflectance values have to be checked against their 

neighbours and overall for consistency. We use the madHANTS algorithm for the temporal 

outlier screening (see section 3.3.2). All identified outliers are flagged as “no data” values in 

the time series profiles. 

Output of the data fusion post-processing is a consistent PROBA-V 100 m time series for the 

reference year in 5-days intervals (PROBA-V MC5-TOC SM & outlier cleaned and gap & kalman 

filled & outlier cleaned 100 m time series ) for the TOC reflectance data in the blue, red, NIR and 
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SWIR wavelength regions. An example for tile X18Y06 before and after applying the data fusion 

approach is shown in Figure 17. 

 

 

Figure 17: top) PROBA-V 100 m MC5 pre-processed image (areas with missing data is shown in 

white), bottom-left) PROBA-V 100 m MC5 image after data fusion approach, bottom-right) zoom in to 

full PROBA-V resolution of left image over red box shown in top image (the area in the red box had 

no observations at all for that time stamp and shows, after data fusion, consistent image data). 

Example over a test area in tile X18Y06 (Nigeria), on 2016-03-06. 

 

3.5 METRICS GENERATION 

3.5.1 Overview 

Figure 18 illustrates an overview for the metrics generation section in the CGLS LC100 product 

workflow (Figure 1). The term “metrics” refers in the case of LC classifications of time series to 

quantitative indicators or proxies which can be used to describe the time series or time series 
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behaviour. These metrics are the main input into the classification / regression algorithm in order to 

produce LC maps. 

Overall three processing steps are needed in order to produce all metrics for the CGLS LC100 

product. The first step is the calculation of time series of additional vegetation indices (NDVI, EVI, 

SIPI, NBR, NIRv) out of the four reflectance bands of the PROBA-V 100m data fused time series 

profiles. Moreover, a HSV colour transformation, phenology analysis, water bodies probability map, 

and additional masks generation is performed in the first processing step. During the second 

processing step, the metrics extraction, the descriptive statistics of the time series profiles of the 

four PROBA-V reflectance bands and five calculated vegetation indices (VI) and two color 

transformed bands are extracted for each pixel. Furthermore, the harmonic metrics as attributes for 

the overall level and seasonality of the time series are extracted for the reflectance bands and VI’s 

profiles. Also a textural metric showing the uniformity of a pixel compared to its neighbouring pixels 

(3x3 box) is generated. In the last processing step, the post-processing, the 392 generated metrics 

for each PROBA-V 100m pixels are combined into one container. 

 

 

Figure 18: General overview of the metrics generation section in the CGLS LC100 product workflow. 

Note: datasets marked in red are re-used in sub-steps of a processing step. Numbers in the upper 

left corner of data container indicate the number of layers. 
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3.5.2 Pre-Processing 

The pre-processing step of the metrics generation section can be subdivided into five sub-steps 

(Figure 19): in the first, additional vegetation indices for each time step in the PROBA-V 100 m 

MC5-TOC data fused time series are generated; in the second, the HSV colour transformation is 

carried out; in the third, the water bodies probability map is generated out of the DEM; in the fourth, 

the phenology product is generated for the PROBA-V 100 m time series data; and in the fifth sub-

step, additional masks are generated. 

 

 

Figure 19: Overview of the processing sub-steps within the pre-processing step of the metrics 

generation section in the CGLS LC100 product workflow. Note: Numbers in the upper left corner of 

data container indicate the number of layers. 
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3.5.2.1 PROBA-V Vegetation Indices generation 

We decided to use only already established and successfully proven VI’s in the CGLS LC100 

product workflow. Since the multi-spectral PROBA-V satellite provides only four spectral bands 

(see section 3.2.1), the list of usable VI’s is limited. Overall, we identified five VI’s in the literature: 

1. Normalized Difference Vegetation Index (NDVI) using the red and the NIR reflectance 

bands (Tucker, 1979). The NDVI is one of the oldest, most well-known, and most frequently 

used VI. The combination of its normalized difference formulation and use of the highest 

absorption and reflectance regions of chlorophyll make it robust over a wide range of 

conditions. It can, however, saturate in dense vegetation conditions when the Leaf-Area-

Index (LAI) becomes high. The value of this index ranges from -1 to 1. The common range 

for green vegetation is 0.2 to 0.8. Equation 2 shows the formula for the NDVI: 

redNIR

redNIR
NDVI




  

Equation 2 

 , where NIR and red refers to the corresponding PROBA-V reflectance bands. 

2. Enhanced Vegetation Index (EVI) using the blue, red, and NIR reflectance bands (Huete, et 

al., 2002). The EVI was developed to improve the NDVI by optimizing the vegetation signal 

in high LAI regions by using the blue reflectance to correct for soil background signals and 

reduce atmospheric influences, including aerosol scattering. This VI is therefore most 

useful in high LAI regions, where the NDVI may saturate. The value of this index ranges 

from -1 to 1. The common range for green vegetation is 0.2 to 0.8. Equation 3 shows the 

formula to calculate the EVI for PROBA-V: 

)1*5.7*6(
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redNIR
EVI  

Equation 3 

, where NIR, red and blue refers to the corresponding PROBA-V reflectance bands. 

3. Structure Intensive Pigment Index (SIPI) using the blue, red, and NIR reflectance bands 

(Blackburn, 1998). The SIPI is designed to maximize the sensitivity of the index to the ratio 

of bulk carotenoids (for example, alpha-carotene and beta-carotene) to chlorophyll while 

decreasing sensitivity to variation in canopy structure (for example, leaf area index). 

Increases in SIPI are thought to indicate increased canopy stress (carotenoid pigment). 

Applications include vegetation health monitoring, plant physiological stress detection, and 

crop production and yield analysis. The value of this index ranges from 0 to 2. The common 

range for green vegetation is 0.8 to 1.8. Equation 4 shows the calculation formula for 

PROBA-V: 

redNIR

blueNIR
SIPI




  

Equation 4 

 , where NIR, red and blue refers to the corresponding PROBA-V reflectance bands. 
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4. Normalized Burn Ratio (NBR) using the NIR and the SWIR reflectance bands (Key and 

Benson, 2005). The NBR is a commonly used index used to detect burned areas and in 

some cases to estimate the burn severity. Equation 5 shows the calculation formula: 

SWIRNIR

SWIRNIR
NBR




  

Equation 5 

, where NIR and SWIR refers to the corresponding PROBA-V reflectance bands. 

5. Near-Infrared reflectance of vegetation (NIRv) using the red and the NIR reflectance bands 

(Badgley et al., 2017). The NIRv is one of the newest VI’s and is the product of total scene 

NIR reflectance and the normalized difference vegetation index (NDVI). Badgley et al. 

(2017) state that “…from a physical perspective, NIRV represents the proportion of pixel 

reflectance attributable to the vegetation in the pixel.”. The formula adapted for PROBA-V 

data is shown in Equation 6: 

red
redNIR

redNIR
NIRV *08.0 













  

Equation 6 

 , where NIR and red refers to the corresponding PROBA-V reflectance bands. 

 

Input data into the calculation of the VI’s are the PROBA-V MC5-TOC SM & outlier cleaned and 

gap & kalman filled & outlier cleaned 100 m time series (for easier readability shorted to PROBA-V 

MC5-TOC data fused 100m, see Figure 19) for all four reflectance bands. The calculation of the 

VI’s is carried out independently for each MC5 time step in the time series profiles and follows the 

Equation 2 to Equation 6. Thus, all five VI’s and time steps can be processed simultaneously. 

Output are VI time series profiles which are named: 

 PROBA-V 100m MC5-NDVI, 

 PROBA-V 100m MC5-EVI, 

 PROBA-V 100m MC5-SIPI, 

 PROBA-V 100m MC5-NBR, 

 PROBA-V 100m MC5-NIRv. 

 

3.5.2.2 PROBA-V HSV colour transformation 

The HSV colour transformation is an approach that transforms the RGB (Red, Green, Blue) color 

space into the HSV (Hue, Saturation, and Value) color space which decouples chromaticity and 

luminance. The HSV color space is commonly used in image processing. It is a nonlinear 

transformation of the RGB color space using equations 7, 8 and 9 presented in Figure 20.  

Current remote sensing applications which use the HSV color transformation are e.g. surface water 

detection algorithms. Therefore, by analyzing the distribution of the pixels in the Hue - Value 

space, the pixels can be classified as “water” and as “no water” based on thresholds (Pekel et al., 
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2014; Bertels et al., 2016). Also the water product generation algorithm within the CGLS LC100 

product workflow uses the HSV color transformation. Furthermore, we decided to use the time 

series of Hue and Value as indices in the metrics extraction process. 

Input in the HSV color transformation are the red, NIR and SWIR reflectance bands of the PROBA-

V 100m MC5-TOC data fused time series profiles with R mapped to SWIR band, G to NIR band 

and B to the RED band (Figure 20). The Hue (H) is defined as the dominant wavelength of the 

perceived color. It is the visual perceptual property corresponding to the categories called yellow, 

blue, green, etc. Hue is considered as an angle between a reference line and the color point, going 

from 0° to 360°. The Saturation (S) is defined as the degree of purity of the color and may be 

intuitively considered as the amount of white mixed in a color. This component represents the 

radial distance from the cone center going from 0 to 1. The nearer the point is to the center, the 

lighter is the color. The Value (V), which is a brightness approximation, represents the height of the 

axis of the HSV cone, going from 0 to 1. This axis describes the gray levels. 

Again, the calculation of Hue and Value is carried out independently for each MC5 time step in the 

time series profiles. Output are Hue and Value time series profiles which are named: 

 PROBA-V 100m MC5-HUE, 

 PROBA-V 100m MC5-VALUE. 

 

 

                                            E7 
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      E9 

 

Figure 20: The HSV color space and the formulas for transforming the RGB color space into the HSV 

color space. Note: V=Value, S= Saturation, H=Hue, R=red, G=green, B=blue. 

 

3.5.2.3 Water Bodies Potential Mask (WBPM) generation 

Pixels in hilly terrain having low reflectance values due to shadow or dark vegetation are often 

misclassified as water bodies. To minimize these commission errors, a Water Bodies Potential 

Mask (WBPM) is generated which indicates if a location has the ability to hold a water body. The 

algorithm for the WBPM is based on Bertels et al. (2016), and uses the National Aeronautics and 

Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) plus digital elevation 

model (DEM) data in 1 arc second resolution (SRTMGL1) (NASA, 2013) as input, which has 30 m 
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horizontal and 1 m vertical resolutions. For a detailed description of the algorithm see 

[GIOGL1_ATBD_WB1km-PROBAV-V2]. Main change to Bertels et al. (2016) original algorithm 

was the usage of a DEM with a higher resolution, since the original algorithm was developed for 

PROBA-V data with a GSD of 1 km. 

The mask was constructed in three steps: 

1. Search for the lowest points in the terrain: A pixel is a candidate for the lowest point and 

a potential water body (WB) when the pixel elevation is lower or equal to the pixel 

elevation of its eight surrounding neighbours. Therefore, the 8 pixels neighbourhood of 

each SRTMGL1 pixel is evaluated. 

2. Filtering and expanding the detected lowest points: The next step in generating the 

WBPM is expanding the detected lowest points depending on the topography. For each 

detected lowest point, an imaginary water level is raised in steps of 1m till the maximum 

rise of 5m or the flooding condition is reached. As long as the edge of the potential WB 

is not flooded, its area is extended according to the raised level, i.e. all neighbouring 

pixels having the additional elevation are added to the potential WB area. This is 

schematically shown in a two dimensional representation in Figure 21.  

 

 

Figure 21: The Water Bodies Potential Mask generation algorithm – filtering and expanding the 

detected lowest points. Expanding the initially detected lowest point by systematically raising an 

imaginary water level in steps of 1 m. Note: the corresponding 30 m spatial resolution pixels are 

indicated by the dots at the bottom. 

 

3. Deriving the WBPM: In the final step, the 30 m spatial resolution potential WBs map is 

re-sampled to the PROBA-V 100 m spatial resolution. For each pixel in the PROBA-V 

image, the corresponding pixels in the 30m potential WBs map are located.  

 

30m 
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Each pixel in the resulting 100 m WBPM can have one of two flags: 1=”potential water body”, 

0=”no water body possible”. The WBPM is used as an extra input in the classification/regression 

step of the CGLS LC100 product workflow. The main intent of this “metric” is to guide the classifier 

in decisions like: 

 Grassland vs. wetland 

 Bare or dark soil vs. water 

 

3.5.2.4 PROBA-V 100m Phenology Product generation 

Vegetation and its live cycle are influenced by seasonal and inter-annual variations in climate and 

other factors (such as elevation). Phenology is the study of these changes in the timing of seasonal 

events. Of main importance from a RS point of view in classification approaches are the start and 

end date of a vegetation cycle as well as the number of vegetation cycles in a year. This can help 

in the distinguishing between different vegetation or agriculture classes.  

Remote sensing is able to consistently generate estimates of the start, peak, duration, and end of 

the growing season over large areas. However, these phenological parameters are only an 

approximation of the true biological growth stages. Van Hoolst et al. (2016) has developed a 

procedure which derives such phenological information from time series of VI such as the NDVI. . 

In general terms, Van Hoolst et al. (2016) algorithm inspects a time series of dekadal VI (e.g. 

NDVI) images and detects, for a given civil year (January to December), the number of green 

seasons (0, 1 or at most 2), and for each such cycle (green seasons) the start of the season 

(SOS), the end of the season (EOS) and, optionally, also some other variables such as MOS (date 

of maximum), the VI-values at SOS/MOS/EOS, the season length, etc. The algorithm is 

implemented in the GLIMPSE module PHENOdef which is part of the SPIRITS (Software for the 

Processing and Interpretation of Remotely sensed Image Time Series) software (Eerens et al., 

2014). Input in the module is the generated PROBA-V 100m MC5-NDVI time series profile (see 

section 3.5.2.1) which covers the reference year plus/minus 3 months. The following processing 

steps are then carried out (Figure 22): 

1. Smoothing of the NDVI profile with a running mean filter of length 5, which replaces each 

observation by the mean of itself plus the two neighbouring values at the left and right; 

2. Flagging of exceptions for land pixels without apparent seasonality (equatorial forest, 

desert, water) by comparing the mean NDVI to a threshold; 

3. Finding of all remaining local maxima (blue dots) and prune them via different tests/steps 

until at most two cycles remain (the most significant ones) within the reference year; 

4. For each season (1 or 2) the SOS is defined as the moment when the rising NDVI-curve 

cuts a threshold, and EOS as the date when the descending curve crosses a second 

threshold. Often the time series of a pixel only contains one maximum (or cycle) which is 

labelled as “Season1” (SOS1/EOS1), but if the reference year contains two seasons, they 

are labelled chronologically: “Season 1” is the one with the earliest maximum in the 

concerned target year and “season 2” is the last one, regardless their mutual importance. 
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Output of the PHENOdef sub-step in the pre-processing step of the metrics generation section are 

five raster datasets in PROBA-V 100 m resolution which are input in several other processing 

steps (Figure 23 and Figure 24): 

1. Start date of Season 1 in the reference year (PROBA-V 100m SoS1); 

2. End date of Season 1 in the reference year (PROBA-V 100m EoS1); 

3. Start date of Season 2 in the reference year (PROBA-V 100m SoS2); 

4. End date of Season 1 in the reference year (PROBA-V 100m EoS2); 

5. A mask giving the number of Seasons in the reference year (PROBA-V 100m NoS). 

 

 

Figure 22: Example for the phenology product processing. Note: PROBA-V 100m NDVI values in red, 

smoothed curve in green, identified local maxima are shown as blue dots. Blue lines indicate 

important phenological metrics (SoS = start of season, MoS = mid of season, EoS = end of season) 

and vertical black lines indicate the reference year). 

SoS 

EoS 

MoS 
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Figure 23: Phenology for Africa 2015 in PROBA-V 100m spatial resolution. (top-left) Start of season 1, 

(top-right) end of season 1, (bottom-left) start of season 2, (bottom-right) end of season 2. Note: the 

phenology dates are shown in decades starting with the year before the reference year (first decade 

of reference year = 37). 

 

3.5.2.5 Generation of PROBA-V quality masks and phenology masks 

Since we use data fusion algorithms in the CGLS LC100 workflow, we decided to generate quality 

flags for several processing steps which use the data fused time series profiles. Moreover, the 

metrics extraction algorithm needs phenology masks instead of derived dates. Overall, two quality 

layers and two phenology masks are generated in this processing sub-step. 

The first quality layer is a binary mask and called time series gap mask (tGAPmask). The mask is 

used to evaluate the influence of the Kalman filling approach on the data quality by flagging these 

pixels in the image which have possible a higher uncertainty in the filled-in data. The basic 

principle is to calculate the longest concurrent gap between two valid observations in the time 

series of a pixel, and then to evaluate the length of this gap. Input into this approach is the red 

reflectance band of the PROBA-V MC5-TOC SM & outlier cleaned and gap filled 100 m time series 

as well as the five output layer of the PROBA-V phenology product (see section 3.5.2.4). The 

number of seasons and their start and end dates are used to calculate the longest concurrent data 
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gap in 5-daily increments for the reference year, the combined vegetation season (time of season 

1 plus season 2), and the off-vegetation season (time in the reference year which didn’t belong to 

one of the maximal 2 vegetation seasons). Then, the three gap lengths for each pixel are 

evaluated against adaptive thresholds. A pixel is flagged as a tGAP (or in other words, pixel with a 

higher change of uncertain filled data) when one of the following rules is fulfilled: 

1. data gaps longer than 30 – 60 days in the combined vegetation season (threshold 

depends on the overall length of the vegetation season of a pixel divided by 3); 

2. data gaps longer than 60 – 90 days in the off-vegetation season (threshold depends on 

the overall length of the off-vegetation season of a pixel divided by 3); 

3. data gaps longer than 90 days in the reference year (important for pixel with no 

seasonality). 

The second quality layer contains six parameters which were calculated during the tGAPmask 

generation, and which can be used as quality indicators and/or directly as a metric in the 

classification/regression process of the CGLS LC100 product workflow. The six raster layers are: 

1. Number Of Valid Observations (NOVO) in the reference year 

2. number of valid observations in the combined vegetation season 

3. number of valid observations in the off-vegetation season  

4. length of longest concurrent data gap in the combined vegetation season  

5. length of longest concurrent data gap in the off-vegetation season  

6. overall length of the vegetation season  

Note: these metrics can reach a value up to 72. For pixels without seasonality, the vegetation 

season is set to the reference year but the overall length of the vegetation season is set to 0. 

The two phenology masks were also already calculated during the tGAPmask generation. The first 

mask is a binary mask flagging all time stamps in the time series profile of a pixel which are within 

the combined vegetation season of the reference year. This mask is later used in the metrics 

extraction processing step. The second mask, also a binary mask, flags all pixels in the image 

which have one or two vegetation seasons. The names of all produced masks are: 

 PROBA-V 100m tGAPmask (binary mask, 1 = pixel has high change of uncertain filled 

data) 

 PROBA-V 100m NOVO container including: 

o PROBA-V 100m NOVOref_year (integer, max 72) 

o PROBA-V 100m NOVOon (integer, max 72) 

o PROBA-V 100m NOVOoff (integer, max 72) 

o PROBA-V 100m LocDGon (longest concurrent data gap)(integer, max 72) 

o PROBA-V 100m LocDGoff (longest concurrent data gap) (integer, max 72) 

o PROBA-V 100m LoVS (length of vegetation season) (integer, max 72) 

 PROBA-V 100m MC5-PHENOmask (binary mask, 1 = time step is in vegetation 

season) 

 PROBA-V 100m SEASONALITYmask (binary mask, 1 = pixel has vegetation season/s) 
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Figure 24: Quality masks. (top-left) tGAPmask showing pixels with high change of uncertain filled 

data during the data fusion step, (top-right) number of vegetation seasons in reference year, (bottom-

left) SEASONALITYmask indicating if a pixel has a seasonality, (bottom-right) length of the combined 

vegetation seasons in decades. 

 

3.5.3 Metrics extraction 

The metrics extraction, the second processing step in the metrics generation section (Figure 18), 

generates the main input data for the LC classification and regression process. The metrics 

condense the information content of the time series profiles for each pixel and allow so the analysis 

of complex inter-annual behaviours of vegetated and non-vegetated land areas via easy to 

interpretable and comparable variables. Input in the metrics extraction step are the four reflectance 

bands of the PROBA-V MC5-TOC data fused 100m time series profiles (see section 3.4), the five 

PROBA-V 100m vegetation indices time series profiles generated in the pre-processing step (see 

section 3.5.2.1), the PROBA-V 100m HUE and VALUE time series profiles of the HSV colour 

transformation pre-processing step (see section 3.5.2.2), and the PROBA-V 100m MC5-

PHENOmask showing for each pixel and time step in its profile if an observation belongs to the 

vegetation period (see section 3.5.2.5). 
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Several methods can be applied to derive metrics information from RS time series. In the simplest 

approaches, time is just treated as an identifier and multiple observations are directly used as input 

features for the classification, but that would increase dramatically the data volume for the classifier 

to choose. An easy solution to condense the information content is that statistical metrics are 

derived for the different intervals of the time series and then used as input for the classifier. An 

additional solution is the fitting of models to the time series profiles and using either the model 

parameters for classification directly, or deriving statistical metrics from these models with their 

harmonized time series profiles. The advantage of using harmonic model parameter next to 

descriptive statistics in a supervised classification approach has been shown by Eberenz et al. 

(2016). Within the CGLS LC100 product workflow we decided to combine the methods. We derive 

descriptive statistics for the reference year of the time series profiles, then fit a harmonic model 

through the time series profiles and use the model parameters as attributes, and finally we 

calculate descriptive statistics for the vegetation and off-vegetation season from the harmonized 

time series profiles of the model. The model generation and descriptive statistic calculation has to 

be processed sequentially, therefore we used multi-core processing to process all pixel of an 

image and all input bands simultaneously.  

 

3.5.3.1 Harmonic metrics 

The first sub-step is the generation of the harmonic metrics. Thus, a harmonic model is fitted 

through each of the reflectance bands as well as the five additional generated VI’s and the two 

colour transformed bands of the PROBA-V 100 m time series (overall 11 input time series profiles 

for each pixel in the image). The harmonic model is again based on the HANTS algorithm using a 

Fourier transformation (see section 3.3.2for a detailed HANTS description). We use 3 frequencies 

above the zero-frequency in the HANTS-modelling process in order to capture annual and inter-

annual variations of the time series. The seven model parameters of the harmonic model – 

meaning the phases and amplitude of the identified most significant frequencies in the time series 

profiles - are used as metrics for the overall level and seasonality of the time series. 

Output of this sub-step are overall 77 harmonic metrics (7 model parameter for each of the 11 input 

bands) which are directly used in the classification/regression approach. Moreover, for each of the 

input bands, a harmonized time series profile in 5-daily time steps is generated using the identified 

phases and amplitudes which are then used as additional input in the descriptive metrics 

generation sub-step. Figure 25 shows an example for a harmonized time series profile of the NDVI. 
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Figure 25: Example for a harmonized time series profile. The result of the HANTS model is shown in 

red dots, where the blue dots show the real observations. 

 

3.5.3.2 Descriptive metrics 

Descriptive statistics are quantitative parameters which provide simple summaries about the time 

series or parts of the time series. We decided to use the following 9 parameters in our analysis: 

1. mean: for identifying the central value of a time series; 

2. standard deviation: to quantify the amount of variation within the pixel values of a time 

series profile; 

3. minimum: to identify extrema in the time series;  

4. maximum: to identify extrema in the time series; 

5. minimum-maximum range: to identify the interval in which the pixel values of a time series 

are located; 

6. sum: to quantify the overall throughput of the time series in a given time length; 

7. median: to identify the “middle” value which separates the higher half of the pixel values in 

the time series from the lower one; 

8. 10th percentile: to identify the pixel value below which 10% of the pixel values of the time 

series can be found; and  

9. 90th percentile: identify the pixel value below which 90% of the pixel values of the time 

series can be found. 

The 9 descriptive statistics are independently calculated for each of time series profiles of the 11 

input bands (4 reflectance bands, 5 VI’s, and 2 colour transformed bands) for the reference year, 

the combined vegetation season and the off-vegetation season (Figure 26). Where for the 

reference year the “original” time series profiles (PROBA-V 100m MC5-TOC data fused reflectance 

bands and derived VI’s plus HUE/VALUE) are used, the harmonised time series profiles (see 

section 3.5.3.1 – reconstructed 5-daily time series profiles using the phases and amplitudes of the 
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identified frequencies in the original time series) of the 11 input bands together with the PROBA-V 

PHENOmask are used to calculate the statistics for the vegetation and off-vegetation season. This 

is needed since the data fused PROBA-V 100m time series profiles (and therefore the derived 

products) can still contain data gaps which can have a low influence on the statistics of the 

reference year, but a high influence on the statistics of short vegetation seasons. 

Output of this sub-step are overall 297 descriptive metrics (9 parameter for each of the 11 input 

bands multiplied by 3 time intervals) which are directly used in the classification/regression 

approach. 

 

 

Figure 26: Example for splitting the time series profiles in reference year, vegetation season and off-

vegetation season. Blue line show the identified reference year in the time series profile and red lines 

the time steps to separate vegetation from off-vegetation season. Note: shows an example with only 

one vegetation season in the reference year.  

 

3.5.3.3 Textural metrics 

In order to describe the uniformity of a pixel compared to its neighbours, we created a textural 

metric. Input in the calculation is the median (descriptive statistic, see 3.5.3.2) parameter for the 

reference year part of the time series profiles, where the textural parameter is calculated for each 

of the 11 input bands independently. The textural metrics can be seen as an additional descriptive 

metric since it is generated by calculating the standard deviation of a 3x3 moving window for each 

pixel. Thus, low values show that a pixel is in a homogeneous area compared with the 

neighbouring pixels, where high values show a more heterogeneous land cover. 

Output of this sub-step are overall 11 textural metrics (one for each of the 11 input bands) which 

are directly used in the classification/regression approach. Figure 27a shows an example for 

textural metric generated for a whole tile. 
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3.5.4 Post-Processing 

The last processing step in the metrics generation section (Figure 18), the post-processing, warps 

up all results of the metrics extraction step and adds additional metrics generated during the pre-

processing step. The huge amount of metrics data is easier to handle when all metrics for each 

pixel in an image can be found in one file, therefore we decide to generate virtual raster datasets 

(VRT) out of the single metrics files. The VRT file is an XML encoded file which stores the location 

of the metric files on the server for each pixel and can also hold additional metadata for each file. 

Next to the metrics generated in the metrics extraction sub-step, the additional metrics include the 

phenological parameters for start and end of season (PROBA-V 100m SoS1, PROBA-V 100m 

SoS2, PROBA-V 100m EoS1, PROBA-V 100m EoS2), the seasonality mask (PROBA-V 100m 

SEASONALITYmask) index indicating if a pixel has a seasonality overall, and the length of the 

vegetation season (PROBA-V 100m LoVS). Moreover, the Water Bodies Potential Mask (PROBA-

V 100m WBPM) is used as a topographic parameters/metric indicating if a pixel could be possible 

a water body. 

Overall, 392 metrics (7 harmonic metrics plus 27 descriptive metrics plus 1 textural metric for the 

11 time series profiles (4 reflectance bands, 5 vegetation indices, 2 colour transformed bands) plus 

7 additional metrics) are combined in the VRT file and are input in the classification/regression 

section of the automated processing chain. Figure 27 shows a visualization of some selected 

metrics. 

  

 

Figure 27: Examples of the 392 derived metrics for tile X18Y06 (Nigeria). Left: texture metric (the 

lighter the color the more homogeneous is the pixel compared to its surrounding pixels), middle: 

standard deviation of the Structure Intensive Pigment Index for the vegetation season (the greener 

the color the higher is the SIPI change within the vegetation season), right: sum of the Enhanced 

Vegetation Index for the reference year (the redder the colour the more vegetation). 
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3.6 ANCILLARY DATASET PRODUCTS 

In order to include ancillary datasets in the CGLS LC100 product workflow (Figure 1), the external 

datasets have to be pre-processed. This includes the resampling to PROBA-V 100 m resolution 

and/or the complete generation of ancillary datasets by using third-party algorithms. The ancillary 

datasets are not only input in the LC map generation process, but also in the training data 

generation and the classification/regression section of the workflow. Overall, four ancillary products 

have to been generated: a buffered ecozone vector layer product, the African shoreline mask, the 

urban area mask, and the two water body products. 

 

3.6.1 Ecozone Buffering product 

In order to group EO data for faster processing or adaptation of algorithms to specific regions, we 

use the global ecological zone (GEZ) dataset for 2010 of the FAO (FAO, 2012) (see section 3.2.3). 

This vector layer can be directly used in several processing steps, but for the training data 

generation we need a buffered version in order to reduce border effects during the 

classification/regression. Thus, each ecozone in the GEZ 2010 layer was buffered with a 2 degree 

buffer using the QGIS software (open source Geographic Information Software package). 

 

3.6.2 Shoreline product 

In order to distinguishing open land water pixels from open sea water pixels in the post-

classification process, we need a shoreline mask. This mask is generated out of the USGS African 

shoreline vector layer (Sayre et al., 2013) (see section 3.2.4). The USGS shoreline vector layer 

was rasterized and then resampled to the PROBA-V 100 m spatial resolution using the QGIS 

software.  

3.6.3 Urban product generation 

The detection of urban structures is one of the most challenging tasks in LC classification 

processes. Instead of handling this task in our workflow by an own process, we decided to 

incorporate existing knowledge. The PROBA-V urban mask was generated through the 

combination of DLR’s Global Urban Footprint Plus layer (GUF+) for 2015 (Marconcini et al., 2017a, 

Marconcini et al., 2017b) and JRC’s Global Human Settlement Layer (GHS) for 2014 (Pesaresi et 

al., 2015). Both datasets are explained in detail in section 3.2.5 and 3.2.6, respectively. 

Both raster layers had to be resampled to the PROBA-V 100 m spatial resolution in a first step. 

And secondly, the GUF+ and GHS layers have been fused whereby missing urban areas in the 

GUF+ layer have been incorporated from the GHS layer (mainly needed for islands). 
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3.6.4 Water Products Generation 

The detection of surface water bodies is another challenging task in LC classification processes. 

Again, we decided to incorporate existing knowledge in the way of using external data and 

algorithms to form an own PROBA-V 100m water body detection algorithm (called WetProducts 

generation) (Figure 28). The main change compared to Bertels et al. (2016) algorithm is the 

incorporation of JRC’s maximum water extent and water seasonality 2014-2015 layers (Pekel et 

al., 2016) (see section 3.2.7). The maximum water extent (provides information on all the locations 

ever detected as water over the Landsat data archive period) and the water seasonality layer had 

to be resampled from the 30 m Landsat resolution to the PROBA-V 100 m spatial resolution in a 

pre-processing step. 

As shown by Figure 28, the water body detection algorithm consists of three major steps. The 

SWIR, NIR and RED bands of the 5-daily composites (MC5) for the reference year 2015 are 

transformed to HUE, SATURATION and VALUE using a RGB to HSV colorimetric transformation 

(see section 3.5.2.2). Subsequently, the application, per pixel, of specific threshold values on HUE, 

VALUE and NDVI while taking into account the Maximum Water Extent Mask (MWEM) allows 

water body detection. All threshold values were empirically defined. Subsequently the Land/Sea 

mask, the Shoreline Mask and the water seasonality layer are used to re-imprint the permanent 

water body pixels. Finally, a water occurrence layer is calculated based on the WB detection 

statistics. 

 

 

Figure 28: General overview of the Water Bodies Detection Algorithm.  
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The following datasets, generated in previous processing steps, are needed for the PROBA-V 

100m water body detection: 

 PROBA-V 100m MC5-NDVI time series profiles (see section 3.5.2.1), 

 PROBA-V 100m MC5-HUE time series profiles (see section 3.5.2.2), 

 PROBA-V 100m MC5-VALUE time series profiles (see section 3.5.2.2), 

 Maximum Water Extent product from the JRC Global Surface Water (GSW) dataset (see 

section 3.2.7), 

 Water Seasonality 2014/2015 product from the JRC GSW dataset (see section 3.2.7), 

 the PROBA-V 100m Land/Sea Mask (see section 3.2.2), and 

 the PROBA-V 100m Shoreline Mask (see section 3.6.2). 

Figure 29 gives a schematic overview of the decision tree used for the detection of the three 

different water body classes, i.e. permanent WBs, wetlands and temporary WBs. First, a check on 

valid data pixels is performed. Both the HUE and VALUE pixels must have values greater than 

zero and the NDVI pixels may not have a ‘No data’ value. Subsequently, thresholds on HUE, 

VALUE and NDVI are applied to detect water body pixels for which their statistics are being 

updated, i.e.  

(i) the pixel must be indicated by the Maximum Water Extent Mask and  

(ii) its NDVI must be less than 0.32, or the NDVI is greater than or equal to 0.32 and its 

VALUE is less than or equal to 0.11 and  

(iii) its HUE must be greater than 120 or its VALUE must be greater than 0 and less than or 

equal to 0.14.  

The ‘total N° of valid observations’ (TotalObs) is increased with each MC5 for each valid pixel; the 

‘total N° of water detections’ (TotalDetect) on the other hand is increased only for each detected 

water body pixel. The ‘maximum N° of consecutive detected water body’ (MaxFreq) will hold the 

longest consecutive period that a pixel was detected as water body. The ‘overall water occurrence’ 

(OverallPerc) is calculated as the ratio TotalDetect/TotalObs. Once the statistics are calculated, the 

final water body detection is done. When the ‘overall water occurrence’ is greater than 90% and 

the pixel has at least eleven valid observations unless the shoreline or land/sea mask indicate 

them as water or the seasonality layer indicates water over the whole year, the pixel is indicated as 

‘permanent water body’. When the ‘overall water occurrence’ is greater than 5% and the ‘total 

NDVI’ (which is the sum of the NDVIs for all MC5s) is greater than 17.5, the pixel is indicated as 

‘Wetland’, when the ‘total NDVI’ is less than 17.5 the pixel is indicated as a ‘temporary water body’.  

The obtained water classes, i.e. ‘Permanent water body’, ‘Wetland’ and ‘Temporary water body’ 

are subsequently used to imprint them in the final land cover maps. The water body statistics are 

outputted as a separate layer. 
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Figure 29: Decision tree of the water body detection algorithm. 

 

3.7 TRAINING DATA GENERATION 

Training data has been collected through the Geo-Wiki engagement platform. A new branch of 

Geo-Wiki (http://geo-wiki.org/) was developed for collecting reference data at the required 

resolution and grid (PROBAV-100m pixels). It shows the pixels to be interpreted on top of Google 

Earth and Bing imagery, where each pixel is further subdivided into 100 sub-pixels of 

approximately 10m x 10m each. Using visual interpretation of the underlying very high resolution 

imagery, experts (group of people trained by IIASA staff) interpret each sub-pixel based on the 

land cover type visible, which includes trees, shrubs, water objects, arable land, burnt areas, etc. 

This information is then translated into different legends using the UN LCCS (United Nations Land 

Cover Classification System) as a basis [CGLOPS1_URD_LC100m].  

The distribution of sample sites is systematic, with the same distance between sample sites, which 

is approximately 35 km. However, land cover data are not collected at every sample site as the 

frequency depends on the heterogeneity of land cover types by region and availability of valid 

PROBA-V 100m imagery. 

http://geo-wiki.org/
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In total, the experts have classified almost 24,000 unique locations 

[CGLOPS1_TrainingDataReport_LC100m]. The quality of the data has been checked by revisiting 

locations that were either inter – or intra- land cover class outliers from a remote sensing 

perspective. This screening was done by creating a rule matrix of calculating the RMSE between 

the metrics of all ground reference data. This analysis is comparable with the data screening in the 

training data optimization step (see section 3.8.3), but instead of directly removing suspicious 

training points, the training points were check by visual interpretation. Training points that were 

wrongly classified or those were it was impossible to identify the land cover class by visual 

interpretation, were removed. Final training dataset consists of circa 20,000 sample sites (Figure 

30). 

 

 

Figure 30: Training points with discrete land cover class for the CGLS LC100 product workflow. 
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Since the classification/regression is conducted in geographical subsets, in the next step the 

training data was split up in those subsets. Therefore, we used the buffered GEZ 2010 layer (see 

section 3.6.1), since the 2 degree buffer around each ecological zone is used to reduce border 

effects during the classification/regression processing step. Moreover, the tGAPmask (see section 

3.5.2.5) was applied to ensure that all training points have sufficient time series data. In detail, 

training points in locations with long data series gaps (longer than 30 – 60 days in the vegetation 

season, or longer than 60 – 90 days in the off-vegetation season, or longer than 90 days in the full 

reference year; see section 3.5.2.5) are more prone to introduced noise, since the long gaps are 

filled by the data fusion approach (see section 3.4), and therefore removed from further 

processing. 

In the next step, the PROBA-V time series metrics (see section 3.5.4) were extracted for the 

geographic location of each training point. Output is a complete training data set for each 

ecological zone in the GEZ 2010 layer containing the land cover ground reference information and 

the spectral information of the EO time series data condensed in the form of the metrics. 

 

3.8 CLASSIFICATION / REGRESSION 

3.8.1 Overview 

In order to adapt the classification/regressor algorithms to continental patterns, the 

classification/regression of the data is carried out in data subsets (called ecozones) using the FAO 

ecological zones dataset (see section 3.2.3). Prior to the classification/regression of the EO data 

(Figure 1), additional pre-processing and optimization steps of the training data are needed. 

Therefore, the training datasets provided for each ecozone are screened for inter-class outliers for 

each ecozone independently. Next, the best bands (metrics) for each ecozone are identified via an 

all relevant feature selection process in order to optimize the classification/regression algorithms 

for each ecozone (see section 3.7). Moreover, during the optimization phase also the 

classification/regression algorithm parameter are optimized for each ecozone using a combined 

random and grid search approach. Finally, the land cover classification and regression to estimate 

the cover fractions for each pixel is conducted scenario-based. A wide range of algorithms are 

available as classifiers in LC mapping approaches. Due to its relatively simple parameterization, 

computation efficiency, and high accuracy, we decided to use the random forest (RF) classification 

and regression algorithm within the CGLS LC100 product workflow. Moreover, the RF algorithm 

was successfully applied to derive LC from seasonal models and metrics of PROBA-V time series 

(Eberenz et al., 2016). 

 

3.8.2 The Random Forest Approach 

Random forests or random decision forests are supervised machine learning methods for 

classification, regression and other tasks. It is called “supervised” learning because the algorithm 

knows the correct classification answers for the input training data. The algorithm iteratively makes 
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predictions on the training data classes and is corrected by the input data - learning stops when the 

algorithm achieves an acceptable level of performance. 

The random forest algorithm operates by constructing a multitude of decision trees during the 

training phase and outputting the class that is the mode of the classes (classification) or mean 

prediction (regression) of the individual trees during the classification/regression phase. In easy 

words, the RF algorithm grows many classification trees based on bootstrapped samples of the 

input training data. To classify a new pixel from the input dataset (metrics), the input dataset is put 

down each of the trees in the forest. Each tree gives a classification or regression result plus a 

"vote" for that class. The RF algorithm chooses the classification/regression result having the most 

votes (over all the trees in the forest) as the final result for that pixel (Figure 31). Advantages of the 

RF method over other classifiers includes the ability to accommodate many predictor variables 

(metrics), as well as the fact that it is a non-parametric classifier which does not assume any 

underlying distribution in the training samples (Eberenz et al., 2016).  

 

 

Figure 31: The Random Forest classifier principle. Image by Niraj (2016). 

 

3.8.3 Training data and classifier/regressor optimization 

Since we use ecozones to subset the EO data, the RF classifier/regressor algorithms should be 

optimized for each ecozone trainings dataset prior the prediction phase. This ensures that the 

problem – unclassified pixels within each ecozone – is optimally solved by the RF algorithm giving 

the different training data classes distribution in each ecozone. 

The training data used in the CGLS LC100 classification was selected by experts (see section 3.7). 

Nevertheless, inter class confusion might still be present between individual ground reference data 

(training points). In a first step, ground reference data analysis is performed individually for each 

ecozone-based training data set  to exclude confusing data from each dataset. This task is 

accomplished in several sub-steps: 



Copernicus Global Land Operations – Lot 1 
Date Issued: 25.09.2017 
Issue: I1.00 

 

 

Document-No. CGLOPS1_ATBD_LC100m-V1 © C-GLOPS1 Lot1 consortium  

Issue:     I1.00 Date: 25.09.2017 Page: 66 of 88 

 

1. The input metrics of all training points within one ecozone are scaled to make all features, 

individual metrics, comparable. For this approach, the combination of the metrics for one 

training point is interpreted as bands in a spectra (as in hyper-spectral RS); 

2. A rule matrix is created by calculating the RMSE between the spectra (function of the 

scaled metric values over the amount of metrics) of all training points. This results in a 

square N by N matrix, where N is the total number of training point spectra (Figure 32). 

  

 

 

Figure 32: Rule matrix calculated for the total of N training points which belong to four different LC 

classes. For each training point the RMSE value is calculated with all the other training points, i.e. 

c11 with c11, c12, c13 till c4n, subsequently c12 with c11, c12, c13 till c4n and so on. 

 

3. The rule matrix is used to exclude inter-class outliers. E.g. when the median RMSE value of 

“training point c11 calculated with the remaining spectra of its own class (Class 1)” is 

greater than the median RMSE value of “training point c11 calculated with all the spectra of 

the other classes” than training point c11 could be excluded from the dataset. This check is 

repeated for each ground reference spectrum in each class. Output is a list of suspicious 

inter-class outliers and a calculated impact score. 

4. All inter-class outliers with an impact score over 50% are removed from further processing. 

 

In a second step, the best metrics to separate the LC classes are selected for each ecozone-based 

training dataset by using the inter-class outlier cleaned datasets. The best metrics are defined as 

those which have the highest separability compared to the other metrics. For each metric, the 

separability is calculated by comparing the metric values of one LC class to the metric values of 
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another LC class. All LC class combinations are handled. The separability is calculated following 

Equation 10: 

totB+totA

nB+nA
=SAB

 Equation 10 

 

Here SAB is the separability between LC class A and LC class B with nA and nB the number of 

training points metrics from resp. LC class A and LC class B that fall outside the common values of 

LC class A and B. Finally, totA and totB are the total number of training point metrics for resp. LC 

class A and B. The final training point separability is the mean of the calculated separabilities for all 

LC class combinations. And, subsequently, the best metrics are those which have the highest final 

training point separability. The best metrics selection is used to sort the 392 metrics (see section 

3.5.4) by their separability (highest to lowest) for each ecozone-based training dataset. 

In order to overcome the Hughes phenomenon (Hughes, 1968) due to the fact that the 392 metrics 

include a high information redundancy, an all-relevant feature selection approach is used to select 

those best metrics for each ecozone-based training dataset which solve the 

classification/regression problem best. This step is needed since the identified best metrics can still 

be redundant (carry the same information content). The aim of this processing step is to identify 

those of the sorted best metrics which are non-redundant. The advantage of an all-relevant feature 

selection approach compared to the usual minimal-optimal selection approach is that “it tries to find 

all features carrying information usable for prediction, rather than finding a possibly compact 

subset of features on which some classifier has a minimal error” (Kursa, 2017). We used the 

Boruta package by Kursa et al. (2010) in our automated workflow. The Boruta algorithm is as a 

wrapper around a RF classification algorithm. It iteratively removes the metrics which are proved 

by a statistical test to be less relevant than random probes. Output of this processing step is a list 

for each ecozone-based training dataset of the maximal 50 best metrics which are non-redundant. 

The last optimization step is the hyper-parameter search for each ecozone-based training dataset. 

In detail, the optimal parameters to identify the best machine learning RF model created by the 

training data for each ecozone are called hyper-parameter. Since these hyper-parameters cannot 

be learned directly from the training data in the standard model training process, we used a 

combined grid and random search with a five folded cross-validation to identify the optimal model 

parameter for each ecozone-based training data set. 

 

3.8.4 Scenario-based Classification 

For the supervised classification, the RF classifier implemented in the scikit-learn package was 

used (Pedregosa et al., 2011). This implementation has the advantage that the ensemble of 

decision trees classifiers which build up the random forest classifier are combined by averaging 

their probabilistic prediction (sklearn, 2017), and not let each classifier vote for a single class 

(Breiman, 2001). The RF classification was conducted for each ecozone independently using the 

GEZ 2010 dataset to split up the input data (generated metrics for the PROBA-V time series), and 
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using the ecozone-specific generated training datasets and hyper-parameters. Next to the 

classification results showing the discrete class for each pixel, also the predicted class probability 

for each pixel is generated. Overall three Random Forest classification scenarios for each ecozone 

with different settings have been carried out: 

1. “pure class” scenario (CL1): in this scenario, only training points with a cover percentage 

over 95% in the bare, grassland, shrub, forest, or agriculture class are used. This scenario 

can be interpreted as endmember selection (extreme sample reduction in terms of purity) 

and classification. A pixel’s metrics/spectral profile is matched to the metric/spectral 

signature of a specified land cover type (endmember). By incorporating the predicted class 

probability, the pixels with “pure” land cover classes can be identified (e.g., a pixel classified 

as forest with 90% predicted class probability would mean that the classifier is to 90% 

certain that the pixel is forest with a minimum of 95% of forest cover). 

2. “discrete class” scenario (CL2p5): in this scenario, all training points which were classified 

as forest, shrub, grassland, agriculture or bare are used. 

3. “forest type” scenario (CL4): in this scenario, only training points with a forest cover 

percentage over 15% and a valid forest type attribute (e.g. evergreen needleleaf, evergreen 

broadleaf, deciduous needleleaf, deciduous broadleaf) are used. The resulting map is 

therefore a forest type map and later used to subdivide the forest class. 

The scenario-based classification was implemented in order to overcome weakness in the all-in-

one classification scheme. Instead of using all training classes at once, the scenario based 

classification produces thematic maps which can be fused by analysing the class probabilities and 

LC extents of the different scenarii. 

 

3.8.5 Scenario-based Regression 

A novelty of the CGLS LC100 product is the generation of vegetation continuous fields that provide 

proportional estimates for vegetation cover of trees, herbaceous vegetation, shrub and bare 

ground. The input data are the cover fractions collected for all training points which are used in a 

Random Forest regression. The RF regression was conducted for each of the main land cover 

types (forest, shrub, grassland, agriculture, bare) and ecozones independently using the GEZ 2010 

dataset and using the ecozone-specific generated training datasets and hyper-parameters. Overall 

five regression scenarios for each ecozone have been carried out: 

1. Forest (R1): the forest cover percentages of training points are used in the regression 

model. 

2. Shrub (R2): the shrub cover percentages of training points are used in the regression 

model. 

3. Herbaceous vegetation (R3): the grassland cover percentages of training points are used in 

the regression model. 

4. Bare (R4): the bare cover percentages of training points are used in the regression model. 
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5. Agriculture (R5): the agriculture cover percentages of training points are used in the 

regression model. Note: the agriculture cover fraction map is only used to create an 

agriculture mask and will be not delivered as a cover fraction layer in the final product. 

 

3.9 COVER FRACTION LAYERS GENERATION 

3.9.1 Regression post-processing 

The last processing step in the generation of the cover fraction layers for forest, shrubs, 

herbaceous vegetation, and bare as part of the CGLS LC100 product is the regression post-

processing (Figure 1). Input are the cover fraction layers, indicating the proportional estimates of 

land cover for the specific land cover type, which were generated by the scenario-based RF 

regression step (see section 3.8.5). The main processing step is a linear normalization for pixels 

with a cover fraction sum of more than 100 % in the combined five regression results (R1-R5). In 

detail, pixels with an overall percentage over 100 % in the combined cover fractions result of forest, 

shrub, grassland, agriculture and bare are proportional scaled that their sum is 100 %. Moreover, 

the permanent water body mask as part of the PROBA-V 100m WetProducts (see section 3.6.4) 

and PROBA-V 100 m urban mask (see section 3.6.3) are incorporated by setting the pixel values 

for all cover fractions to 0 % in as permanent water body or urban area identified pixel locations. 

 

3.9.2 Metadata 

Finally, metadata attributes compliant with version 1.6 of the Climate & Forecast conventions (CF 

V1.6) and the colorbars translating the vegetation continuous fields code into the legend are 

injected. Overall four final cover fraction layers are provided: 

1. LC100-COV-FOREST 

2. LC100-COV-SHRUB 

3. LC100-COV-GRASSLAND 

4. LC100-COV-BARE  

As already mentioned in section 3.8.5, a cover fraction layer for the agriculture class is not 

provided and only used to generate an agriculture mask for the LC map generation process. Main 

reason for this decision is the high confusion of the agriculture LC class with the grassland and 

shrubland LC class in the lower cover percentage value range (0 – 25 %). 

Figure 33 shows the four provided CGLS LC100 cover fraction layers for the land cover classes 

forest, shrub, herbaceous vegetation and bare. The shown colours for the cover fractions are the 

ones integrated as RGB colour bars in the metadata of the products. 
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Figure 33: The cover fraction layers for the forest, shrub, herbaceous vegetation and bare land cover 

classes of the CGLS LC100 product for Africa 2015 (shown at continental scale). 

 

3.10 LAND COVER MAP GENERATION 

3.10.1 Overview 

In order to generate the CGLS LC100 discrete map product, three processing steps are needed 

(Figure 34). Input are the results of the PROBA-V 100m time series classification and regression 

results, the PROBA-V 100m NOVO container holding the number of valid observations in the 

reference year (NOVOref_year) layer, the PROBA-V 100m WetProducts layer, and the external 

urban and shoreline masks. In the first step, the pre-processing, the input dataset are assembled 
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and additional information layers are generated. Next, expert rules are applied to combine the 

existing knowledge represented by the ancillary datasets with the classification and regression 

results. The last step in the discrete map product generation is the infusion of metadata. 

 

 

Figure 34: General overview of the Land Cover map generation section in the CGLS LC100 product 

workflow. 

 

3.10.2 Assembling and generation of the input datasets for the expert rules 

Overall 12 datasets are input in the expert rules step which combines the scenario-based 

classifications and regressions results with the ancillary datasets. Most of the input datasets were 
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already generated in the prior CGLS LC100 product workflow sections. Only three input layer have 

to be generated in this pre-processing step. 

First, in order to incorporate the vegetation cover fraction layers (see section 3.9) in the LC map 

generation process, a discrete map is generated by applying the training data rules 

[CGLOPS1_TrainingDataReport_LC100m] on the normalized forest, herbaceous vegetation, 

shrub, bare ground and agriculture cover fraction layers. In detail, during the training data 

collection (see section 3.7 and[CGLOPS1_TrainingDataReport_LC100m]), a set of rules has been 

established to assign a training point with its by visual interpretation estimated cover fraction 

percentages to a discrete class (e.g. training point with cover percentages of 65 % forest and 35 % 

shrubs is classified as an “open forest” training point) [CGLOPS1_TrainingDataReport_LC100m]. 

The final discrete LC map can be seen as a reverse classification process, since the LC class was 

not directly assigned by a classification algorithm. Moreover, since only the cover fraction layers for 

vegetation are produced during the regression step, the LC map only show natural vegetation and 

agriculture. This discrete LC map is called Cover-2-discrete (CL5) during the expert rules. 

Next, the normalized agriculture cover fraction layer (R5n) was used to generate an agriculture 

mask by applying a threshold. The threshold was empirically defined and set to 30 %. The masked 

is called CL6 (agriculture mask) in the expert rules. The last input layer which is generated is a 

maximum natural vegetation mask. Therefore, the normalized cover fraction layers for forest, 

herbaceous vegetation, shrub and bare ground are processed and, for each pixel, the LC class 

with the maximum cover fraction is assigned. This input layer is called CL7 (max. natural 

vegetation) in the LC map generation process (Figure 34). 

The following datasets are the final input in the expert rules to generate the CGLS LC100 discrete 

map: 

1. Random Forest classification result of the “pure class” scenario (CL1); 

2. Predicted class probability layer of the Random Forest classification result of the “pure 

class” scenario (CL1_probabilities); 

3. Random Forest classification result of the “discrete class” scenario (CL2p5); 

4. Predicted class probability layer of the Random Forest classification result of the “discrete 

class” scenario (CL2p5_probabilities); 

5. Random Forest classification result of the “forest type” scenario (CL4); 

6. Discrete map generated from the five normalized cover fraction layers (CL5); 

7. Agriculture mask generated from the normalized agriculture cover fraction layer (CL6); 

8. Maximum natural vegetation mask generated from the normalized cover fraction layers for 

forest, herbaceous vegetation, shrub and bare ground (CL7); 

9. “number of valid observations” mask showing pixels with no PROBA-V 100 m observations 

in the whole reference year (novo mask) (see section 3.5.2.5); 

10. PROBA-V 100m urban mask (urban mask) (see section 3.6.3); 

11. WetProduct layer including the permanent water body mask, temporary water body mask, 

and herbaceous wetland mask (WetProducts) (see section 3.6.4); and 

12. PROBA-V 100m Shoreline mask (Shoreline). 
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3.10.3 Map Generation 

For combining all classification scenarii and ancillary datasets into a final LC map, expert rules 

implemented as a decision tree are applied pixel-based on the input data. Overall 10 expert rules 

have been identified and established (Figure 35 to Figure 43). The predicted class probabilities are 

used as thresholds in the decision tree in order to generate the 18 class discrete map product, but 

are not the only deciding factor. The 18 discrete classes in the CGLS LC100 product are shown in 

Table 5. 

 

Table 5: The 18 discrete classes of the CGLS LC100 discrete product. Note: final classes are shown 

in bold. 

Forest Closed forest evergreen needleleaf closed forest 

evergreen broadleaf closed forest 

deciduous needleleaf closed forest 

deciduous broadleaf closed forest 

Open forest evergreen needleleaf open forest 

evergreen broadleaf open forest 

deciduous needleleaf open forest 

deciduous broadleaf open forest 

shrubs   

herbaceous vegetation   

cropland   

urban   

bare/sparse vegetation   

snow/ice   

water permanent water bodies  

temporary water bodies  

open sea  

herbaceous wetland   

 

Before the first expert rule, shown in Figure 35, is applied on the input data, two output dataset are 

initialized with a “no data” value – the PROBA-V 100m LC and PROBA-V 100m LC probabilities 
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datasets. Afterwards the decision tree is applied pixel-based on all 12 input datasets. Expert rule I 

(imprint agriculture mask rule) imprints the agriculture mask within the African land masses, as well 

as sets the class probabilities for all agriculture pixels. Since the agriculture mask was generated 

from the normalized agriculture cover fraction layer, no class probabilities are directly available. 

Thus, the class probabilities are extracted from the CL1 and CL2p5 classification scenarios – with 

higher priority on the CL1 scenario – and where no probability can be extracted is set to the “no 

data” value (Figure 35). 

 

 

Figure 35: Expert rule I of the CGLS LC100 discrete map generation process. 

 

Remaining “nodata” pixels in the PROBA-V 100m LC map are input in expert rule II (pure class 

rule) (Figure 36). Therefore, only pixels with a predicted class probability over 90 % and with no 

agriculture LC class are used from the CL1 classification scenario. These rules can be seen as the 

pure endmember classification of the natural vegetation. The CL1 class and probability value is 

copied to the final dataset (Figure 36). Next, the 50% rule (expert rule III) is applied on the 

remaining “nodata” pixels. Pixel locations of the CL2p5 classification scenario with a predicted 

class probability smaller 90 % in CL1 scenario and a predicted class probability bigger equal 50 % 
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in CL2p5 scenario and not being an agriculture class are written to the output dataset. Moreover 

the corresponding class probability for these pixels is copied (Figure 36). 

 

 

Figure 36: Expert rules II and III of the CGLS LC100 discrete map generation process. 

 

Expert rule IV deals with the CL5 – the discrete LC map generated from the normalized cover 

fraction layers by applying the training data rules -  and is split into two parts (Figure 37). In part a, 

remaining “no data” pixels in the output dataset which have a predicted class probability smaller 90 

% in the CL1 scenario and a predicted class probability smaller 50 % in the CL2p5 scenario and 

where the CL5 class equals the pixel class in the classification scenario CL2p5 plus are not 

agriculture in CL2p5, are copied to the output dataset together which the corresponding class 

probability. Part b of the rule, applies rule IVa respectively to CL1 (Figure 37). Thus, the CL5 LC 

map was mainly used as an extra decision rule for pixels with a low class probability – a therefore 

high chance of a misclassification - in the classification scenarios CL1 and CL2p5. 
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Figure 37: Expert rules IV of the CGLS LC100 discrete map generation process. 

 

After applying expert rule IV, most of the land masses pixels which are not urban or inland water 

bodies got their final LC class already assigned. Expert rule V was developed to fill all remaining 

land masses pixels which don’t belong to the water or urban classes and are still “no data” values 

in the output dataset. This has to be done in four steps (Figure 38, Figure 39, and Figure 40). In 

step one, Expert rule Va, remaining pixels which are grassland in classification scenario CL2p5 

and not agriculture in CL2p5 and were classified as shrub or open forest in CL5 are identified and 

the LC class of CL5 is written to the output dataset. For these identified pixels, no class probability 

can be assigned (Figure 38). The remaining output pixel locations with “no data” values are then 

filled up with the results of the classification scenario CL2p5 if the LC class is not agriculture and 

also the corresponding class probabilities are taken over (Figure 38).  
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Figure 38: Expert rule Va of the CGLS LC100 discrete map generation process. 

 

Step two of expert rule V identifies those of the remaining “no data” pixels in the output dataset 

which are not agriculture in the CL5 discrete map and copies them to the output dataset (again no 

class probability can be assigned for these pixels) (Figure 39). Remaining land masses pixels with 

no assigned LC class (other than water or urban) in the output dataset are subject to expert rule 

Vc. This rule selects those of the remaining pixels which pixel locations have not an agriculture LC 

class in the CL1 classification scenario and copies the LC class of CL1 together with the class 

probability (Figure 39). If then still “no data” pixels have no assigned LC class, expert rule Vd was 

implemented to fill those. Thus, the maximum natural vegetation mask generated from the 

normalized cover fraction layers for forest, herbaceous vegetation, shrub and bare ground (CL7) is 

used. This mask gives for each pixel location the LC class which had the highest cover fraction 

percentage in the inputted cover fraction layers. All remaining land masses pixels with no assigned 

LC class (other than water or urban) in the output dataset are filled with the corresponding LC 

class from CL7 (again no class probability can be assigned for these pixels) (Figure 40). 
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Figure 39: Expert rules Vb and Vc of the CGLS LC100 discrete map generation process. 

 

 

Figure 40: Expert rules Vd of the CGLS LC100 discrete map generation process. 

 

Expert rule VI is now implementing the remaining hard masks: the permanent water body mask, 

the temporary water body mask, the herbaceous wetland mask and the urban mask. These hard 

masks can be overruling, meaning they can even overwrite a pixel with an already assigned LC 
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class in the output dataset. First, in expert rule VIa, the herbaceous wetland mask is compared to 

the classification results of scenario CL2p5. If a wetland mask pixel is also classified as grassland 

in the CL2p5 classification map, then pixel location is set as herbaceous wetland in the output 

dataset (Figure 41). This kind of check is also applied to the temporary water body mask (expert 

rule VIc). Only those temporary water body locations which are not classified as agriculture in the 

output dataset are taken to the output dataset (again no class probability can be assigned for these 

pixels) (Figure 41). In contrast to that, the permanent water body mask and urban mask are truly 

overruling masks and are directly written to the output dataset (expert rule VIb and VId in Figure 

41). Moreover the class probabilities are set to 100 % for pixels in these two masks. 

 

 

Figure 41: Expert rules VIa – VId of the CGLS LC100 discrete map generation process. 

 

Expert rules VII, VII and IX are clean up rules, where rule VII sets “no data” pixels outside the 

African land masses to the LC class permanent water, checks expert rule VIII the NOVO mask for 

pixel with no PROBA-V 100m observations in the reference year. This was implemented to make 

sure that pixels with absolutely no EO observation data are set to the “no data” value even when 
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the data fusion has maybe generated artificial time series data (Figure 42). Expert rule IX applies a 

shrub to open forest conversion (Figure 43). We noticed a slightly overestimation of shrubland in 

the classification CL2p5 scenario. This is mainly due to confusion between shrubland and open 

forest in the RF classification algorithm, since training points with low forest cover fractions can 

have similar metric profiles than shrubland training points. The CL5 map which was created by 

applying the training data rules on the normalized cover fraction layers don’t show this 

shortcoming. Thus, expert rule IX checks all in the output dataset as shrub classified pixels against 

the CL5 classification, and overwrites those pixels were the LC class values is open forest in CL5. 

 

 

Figure 42: Expert rules VII and VII of the CGLS LC100 discrete map generation process. 
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Figure 43: Expert rules IX and X of the CGLS LC100 discrete map generation process. 

 

The results of “forest type” classification scenario (CL4) are used in the final expert rule number X 

(Figure 43). The CL4 layer is used to separate the discrete classes “closed forest” and “open 

forest” in the output dataset into the different forest type classes. 

 

3.10.4 Metadata 

The final step in the CGLS LC100 discrete map generation is the injection of metadata attributes 

compliant with version 1.6 of the Climate & Forecast conventions (CF V1.6) and the color bars 

translating the discrete class code into the legend. Furthermore, the water occurrence layer, 

showing where and how long surface water appeared over the reference year, is generated out of 

the WetProducts statistic layer (see section 3.6.4). Also the tGAPmask (see section 3.5.2.5) is 

extracted and provided as a quality layer showing pixel locations with a higher uncertainty in the 

data quality/classification accuracy due to errors during the data fusion process. 

Overall four layers are provided as the CGLS LC100 discrete product: 

1. LC100-LCCS 

2. LC100-LCCS-PROB 

3. LC100-LCCS-QFLAG 

4. LC100-OCCUR-WB 
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Figure 44 shows the legend for the CGLS LC100 discrete map with 18 classes together with the 

colour codes and assigned byte values for each LC class, where Figure 45 shows an overview of 

the product on continental scale. 

 

 

Figure 44: Legend for the 18 discrete classes of the CGLS LC100 discrete map for Africa 2015. Note: 

the number in brackets represents the numerical code for a land cover class.   
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Figure 45: The CGLS LC100 discrete map for Africa 2015 with 18 discrete classes (shown at 

continental scale). 
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4 LIMITATIONS 

Although minimization of omission and commission errors is achieved by the usage of ancillary 

dataset, they are sometimes inevitably. An overview of reasons for omission and commission 

errors is: 

 Artefacts at boundaries of ecozones can appear due to the used ecozone vector layer as 

well as the ecozone-specific generated hyper-parameter for the Random Forest classifier 

and regressor. 

 Remaining shadowed pixels in the time series not filtered out during the data cleaning 

process can lead to misclassifications. 

 Fires (burned areas) were not yet taken into account and therefore could lead to 

misclassifications. 

 Artefacts in the phenological cycle detection can lead to misclassifications. 

 Highly fragmented landscapes, in particular mixed areas with very small cropland fields 

(less < 0.5 ha), are very difficult to map because of the resolution of 100m (i.e. Nigeria, 

Ghana). This could lead to overestimate the croplands. 

 Areas with low cropland fragmentation (very sparse cropland fields of a very small size) are 

difficult to map because of the resolution of 100m. This could lead to underestimate the 

croplands. 

 Very small African villages are difficult to map, especially when not detected by the GUF+ 

layer at 12 m resolution, which could lead to an underestimate of urban. 

 Some limitations are due to the legend or class definition: 

o In the southern part of Africa, there are huge areas with kind of tundra type of 

vegetation, NDVI values are very low in these areas and can confuse the classifier 

to misclassify between grassland or bare land. 

o In Africa, there are a lot of riparian forests, which are evergreen. A lot of pixels 

where noticed with mixed deciduous trees and riparian evergreen forest which can 

confuse the classifier to misclassify the forest type. 

 Since the water body detection algorithm was adapted from Bertels et al. (2016), the 

limitations of this algorithm also have to be taken into account. Misclassifications of water 

bodies can happen in: 

o Dark areas caused by anthropogenic activity, e.g. heavy industry; 

o Dark areas caused by shadow, e.g. high buildings in large cities; 

o Anthropogenic structures with spectral signatures equal to WBs, e.g. some 

agricultural fields, build-up areas;  

o Natural surfaces with spectral signatures very close to WBs, e.g. salt lakes; 

o Areas were the spectral properties of WB fall outside the defined thresholds. 
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5 RISK OF FAILURE AND MITIGATION MEASURES 

In case the quality of the PROBA-V sensor degrades, the spectral response correction needs to be 

adapted and the defined thresholds for PROBA-V 100m Water Body detection algorithm need to 

be updated if necessary. Moreover, the algorithm has to be adapted in cases for a reference year 

the stated input data (PROBA-V 100m EO sensor data or ancillary data sets) is not available (see 

section 3.2) and has to be replaced by EO data from other sensors such as Landsat, Sentinel-2, 

etc.. In such cases, the metric extraction procedure and also the expert rules have to be adapted to 

the new input data. 
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