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Consider the holonomically constrained damped mass-spring system [1] shown in Fig. 1.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u1

Figure 1: A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring and a damper
with constants ki and di, respectively, and also to the ground by a spring and a damper with
constants κi and δi, respectively. Additionally, the first mass is connected to the last one
by a rigid bar and it is controlled. The vibration of this system is described by a descriptor
system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT

λ(t) + B2u(t),
0 = G p(t),

y(t) = C1p(t),

(1)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vector, λ(t) ∈ R
2 is the

Lagrange multiplier, M = diag(m1, . . . , mg) is the mass matrix,

D =




δ1 + d1 −d1 0

−d1 d1 + δ2 + d2

. . .
. . .

. . .
. . .

−ds−2 ds−1 + δs−1 + dk−1 −ds−1

0 −ds−1 ds−1 + δs




the damping matrix,

K =




κ1 + k1 −k1 0

−k1 k1 + κ2 + k2

. . .
. . .

. . .
. . .

−ks−2 ks−1 + κs−1 + kk−1 −ks−1

0 −ks−1 ks−1 + κs




the stiffness matrix, G = [ 1, 0, . . . , 0, −1 ] ∈ R
1,g is the constraint matrix, B2 = e1 and

C1 = [ e1, e2, eg−1 ]T . Here ei denotes the ith column of the identity matrix Ig.
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Figure 2: Convergence history for the nor-
malized residuals η(Rk) = η(E, A, PlB; Rk)
and η(Lk) = η(ET , AT , P T

r CT ; Lk).
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Figure 3: Approximate proper Hankel singu-
lar values for the damped mass-spring sys-
tem.

The descriptor system (1) is of index 3 and the projections Pl and Pr can be computed as

Pl =




Π1 0 −Π1M
−1DG1

−ΠT
1 D(I − Π1) ΠT

1 −ΠT
1 (K + DΠ1M

−1D)G1

0 0 0


 ,

Pr =




Π1 0 0
−Π1M

−1D(I − Π1) Π1 0
GT

1 (KΠ1 − DΠ1M
−1D(I − Π1)) GT

1 DΠ1 0


 ,

where G1 = M−1GT (GM−1GT )−1 and Π1 = I − G1G is a projection onto Ker (G) along
Im (M−1GT ), see [2].

In our experiments we take m1 = . . . = mg = 100 and

k1 = . . . = kg−1 = κ2 = . . . = κg−1 = 2, κ1 = κg = 4,

d1 = . . . = dg−1 = δ2 = . . . = δg−1 = 5, δ1 = δg = 10.

For g = 6000, we obtain the descriptor system of order n = 12001 with m = 1 input and
p = 3 outputs. The dimensions of the deflating subspaces of the pencil corresponding to the
finite and infinite eigenvalues are nf = 11998 and n∞ = 3, respectively.

Figure 2 shows the normalized residual norms for the low rank Cholesky factors Rk and Lk

of the proper Gramians computed by the generalized ADI method with 20 shift parameters.
The approximate dominant proper Hankel singular values presented in Fig. 3 have been
determined from the singular value decomposition of the matrix LT

33ER31 with L33 ∈ R
n,99

and R31 ∈ R
n,31. All improper Hankel singular values are zero. This implies that the transfer

function G(s) of (1) is proper. We approximate the descriptor system (1) by a standard state
space system of order ℓ = ℓf = 10 computed by the approximate GSR method. In Fig. 4 we
display the magnitude and phase plots of the (3, 1) components of the frequency responses
G(iω) and G̃(iω). Note that there is no visible difference between the magnitude plots for the
full order and reduced-order systems. Similar results have been observed for other components
of the frequency response. Figure 6 show the absolute error ‖G(iω)−G̃(iω)‖2 for a frequency
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Figure 4: Magnitude and phase plots of G31(iω) for the damped mass-spring system.
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Figure 5: The spectral norms of the fre-
quency responses G(iω) and G̃(iω).
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Figure 6: Absolute error plot and error
bound for the damped mass-spring system.
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rang ω ∈ [ 10−4, 104 ] and the approximate error bound computed as twice the sum of the
truncated approximate proper Hankel singular values. We see that the reduced-order system
approximates the original system satisfactorily.
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