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Abstract—The increased deployment of mobile robots in indus-
try poses higher risks for safety issues and damage of production
material caused by abnormal robot behavior. Abnormal behavior
can be caused by issues such as operational errors or security
weaknesses. Security weaknesses entail attacks that might cause
serious harm for humans and production material. One possibil-
ity to mitigate such attacks is action authorization. In this paper,
we propose an authorization mechanism for actuator actions
on mobile robots to prevent adversaries from executing false
commands on a robot. The mechanism uses a ticketing system
and relies on sensor data as well as plausibility checks. The tickets
are issued to specific actuators to authorize the requested action.
The sensor data adds to the understanding of the current context
and the plausibility checks are used to check that specific actions
are allowed to be performed in a given order. Security is further
supported by secure elements that protect confidential data from
being revealed.

Index Terms—Authorization, Plausibility Checks, Ticketing,
Mobile Robot.

I. INTRODUCTION

In recent years, the trend towards increased automation
entailed an increased application of mobile robots in industry.
Strategies such as Industry4.0 [1] and its centerpiece Smart
Factories [2] will promote mobile robots in industry even
more. Typical tasks for mobile robots in factories will include
interaction with machines, other robots, production material
or some server such as fetching or delivering production
material, providing data or manipulating production material.
As a research testbed for smart factories, the RoboCup Logistic
League [3] was invented. In this testbed, a mobile robot ba-
sically consists of a central computing unit, a communication
unit such as a router, one or more sensors such as a laser
scanner or camera, and one or more actuators such as a
gripper or motor. Furthermore, the communication partner of
the mobile robot is a backend system. The basic structure of a
mobile robot is shown in Fig. 1. The purposes of the different
components are:

• Actuators: Actuators enables the robot to interact with
the physical world. In case of the represented robot, the
gripper is used to grab production material, and the motor
is necessary to move the robot’s wheels.

• Central computing unit (CCU): The central computing
unit triggers and coordinates all components on the robot.
It uses the sensor measurements to calculate paths and
trajectories as well as receiving processes commands
from a central server.

• Sensors: Sensors are used to detect the robot’s environ-
ment. The laser scanner, for example, is necessary to
detect obstacles or measure distances. The camera is used
when detecting specific objects or structures in the robot’s
operating range.

• Communication Unit: The communication unit, mostly
a router, is used to communicate with other robots,
factory equipment, or a central server. The unit can be
equipped with different communication technologies for
short and long-range communication such as Industrial
WiFi, Near Field Communication, Bluethooth, or Zigbee.
Furthermore, it acts as a router to distribute the data
between the robot’s components.

• Backend: The backend is the central planning unit that
provides commands to the mobile robot. It decides which
task a robot should execute to achieve maximum perfor-
mance. The backend sends a command and signature of
the command to the robot.

As all components on the robot are connected to the router
via Ethernet, it would be easy for an adversary to access
sensors and actuators. The adversary is not forced to hijack the
CCU when trying to manipulate a sensor or actuator. The pos-
sibility of this kind of manipulations could cause safety issues
for human workforce and might cause damage to production
material. The damage could range from total destruction of
workpieces or harm for humans to inaccuracies that would
lower the product quality. To prevent such scenarios, security
mechanisms need to be introduced [4], [5].

One step towards security is the authorization [6] of actions.
Authorization is used to prevent adversaries from injecting
malicious commands or changing any settings on sensors and
actuators. In this paper, a two-staged authorization mechanism
for industrial mobile robots will be presented. In the first
stage, the mechanism performs a context-aware plausibility
check on the incoming command. In the second stage, the
sensor data of the robot is used to check the correct location
and distance from a machine or workpiece, and an expiring
authorization ticket is generated in case of a correct position.
The authorization ticket can be validated by the actuator to
check the source and correctness of the issued command. To
protect the ticket generation and validation as well as the
necessary secret keys, the mechanism uses secure elements
(SE). Due to the fact, that those secure elements are much
slower than traditional CPUs, significant overhead is caused
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Fig. 1: This blockdiagram shows the basic structure of a
mobile robot and how the components are connected. The
components are connected by traditional Ethernet cables. The
image further shows that the gripper, central computing unit
and motor are equipped with secure elements (SE). The central
planning unit is not in the picture since it is simply a remote
server.

when each action needs to be validated by the actuator.
To overcome this issue, a plausibility check is performed
in the first stage of the authorization process. The check
indicates whether the received command is realistic in the
given context. In case of a realistic command, the CCU might
not check the command’s signature for its validity to reduce
the overhead caused by the validity checks as the verification
of the signature is rather expensive on a secure element.

To summarize, the contribution of this paper is a two-
staged authorization mechanism for industrial robots, relying
on context-aware plausibility checks and expiring authoriza-
tion tickets. The mechanism is supported by secure elements
to protect the ticket generation and validation, and the key
material of the authorization tickets.

The remainder of this paper is structured as follows. In Sec-
tion II, the background information and related work regarding
the proposed approach are covered. Section III describes the
authorization approach, as well as the ticket generation and
validation, and the plausibility checks in detail.In Section IV,
the threat analysis is discussed to show that the mechanism
overcomes critical security issues. Finally, the paper is con-
cluded in Section V.

II. RELATED WORK AND BACKGROUND

A. Secure Element (SE)

An SE is a tamper-resistant device capable of performing
cryptographic operations such as signature generation and
storing confidential data such as key material in a secured
environment. Tamper resistance means that the devices are
protected against physical attacks such as side-channel attacks
that try to reveal the confidential data. Side channel attacks
are a typical problem for general purpose microcontrollers
or CPUs as it can be possible to spy on calculation times
depending on the input or try to manipulate calculations. SEs,
in contrast, are built to withstand such attacks and are therefore
used for security critical applications such as bank cards or
Trusted Platform Modules [7].

B. One-Time Passwords (OTP)

The concept of One-Time Passwords (OTPs) was introduced
by Lamport [8] in 1981. OTPs are passwords that become
invalid after its first use. The motivation included attacks on
plain text passwords such as interception of the password
and later, replay attacks where the user’s login credentials are
captured and later used to access a system [9]. OTPs rely on
non-invertible hash functions to create passwords and also to
verify them. Therefore, both, client and the host have to use
the same non-invertible hash function for OTP generation and
verification.

As OTPs are a very basic concept, M’Raihi et al. [10]
proposed HOTP (HMAC-based OTP). HOTP extends OTPs
with Hashed Message Authentication Codes (HMAC). To
extend the concept, a counter is introduced that is combined
with the secret key or password to enable the use of the same
secret key. The counter and secret key are forwarded to the
hash function to generate an OTP. To enable a verification,
client and server need to know the correct counter as well
as the secret key. The counter is synchronized with a trusted
entity such as a server. Each time an OTP is generated,
the counter is incremented by a specific amount known by
the client and server. When validating an OTP, the receiver
increases its counter and then verifies the OTP. The server
detects if the counter values diverge. To synchronize the
counter, the server calculates several OTPs with increasing
counter values and matches them to the received client OTP.
If one of the calculated OTPs matches the client’s OTP, the
server sets his counter to the corresponding value; otherwise,
the client cannot authenticate on the server anymore.

C. Authorization

The notion authorization was defined by Fraser in 1997 [6]
as granting privileges to processes or users. This term is
widely used in any operating system, company network or
production system. Research in the area of authorization
mostly includes access rights, access policies or group autho-
rization concepts [11], [12]. Currently, research topics focus,
amongst other things, on authorization and access rights in the
cloud [13] or Internet of Things (IoT) systems [14].



A very basic authorization concept was shown by Gonçalves
et al. [15]. The proposed approach uses a realistic sensor
and actuator model for wheeled mobile robot simulations. In
the simulation, a register whose value was checked before
executing an action on a robotic arm is included. The register
simply contained ’1’ if the movement was allowed to be
executed, otherwise ’0’. This solution does not contain any
security concepts to protect the register from misuse.

The only more advanced approach known to the authors
that includes authorization related to robotics and other mobile
devices was proposed by Popovici et al. in 2003 [16]. The
authors proposed a middleware platform for mobile devices in
which the environment is enabled to adopt an executed appli-
cation rather than performing self-adaptation of the application
depending on the environment. The included authorization
mechanism prevents unauthorized clients such as users or ap-
plications from executing actions on, e.g., a robotic arm. This
mechanism checks clients privileges to ensure that they are
authorized to execute actions in a physical system but does not
include any current environmental information. Furthermore,
this paper states that authorized clients must be defined by a
trusted party before the middleware is started. The authorized
clients and their privileges are fixed during runtime to prevent
modifications by adversaries.

D. Execution Monitoring

In the field of robotics, plausibility checks are not consid-
ered as research topic yet; however, execution monitoring is
related to it. In traditional execution monitoring, the model-
based state of the execution and the real world state computed
from sensing data are compared and checked for discrepancies.
Plausibility checks aim at checking that the execution of an
action is valid in the given context before it is executed.
Plausibility checks are related to security which is important
but not widely covered yet in robotic research, and therefore
no such concepts exist yet. Plausibility checks are necessary to
prevent adversaries from executing actions or injecting false
commands in a mobile robot. Furthermore, they reduce the
impact of hardware secure elements on the timing behavior of
the mobile robot as the secure element is not necessarily used
to check each incoming command or action.

The fact, that plausibility checks are not relevant can be seen
in the paper by Norelis et al. [17]. The authors show a possible
architecture for plan execution monitoring and control for
mobile robots. They divide the architecture into three levels,
the functional level, the control system level and the planning
level. In the functional level, they describe the parts of the
robot responsible for sensing, effecting and basic processing
functions. The control system level is responsible for executing
plans, organizing the functional level’s behavior and reporting
of failures. The planning level uses abstract world models to
generate plans and passes them to the control system level that
executes the plans and reacts to environmental changes. This
concept never checks where the input for the planning level
comes from or if it is allowed to be executed.

Another approach by Bouguerra et al. [18] for execution
monitoring that is based on semantic knowledge also monitors
the execution of actions and gathers data from the environment
to improve the monitoring but never checks where the com-
mand is coming from or if the execution is valid at this point
in time.

III. ACTION AUTHORIZATION

Unauthorized action executions is a serious issue for mobile
robots as the robots might harm themselves, humans or
production material. To overcome this issue, the approach
presented in this paper provides a two-staged authorization
mechanism that protects mobile robots from such unauthorized
executions by using a ticketing system supported by secure
elements. The first stage is necessary to check if incoming
commands are allowed to be executed. These commands can
consist of several actuator actions. Due to the structure of the
mobile robot, it is possible that malicious commands are sent
by adversaries. The plausibility checks prevent the execution
of such malicious actions. The second stage is necessary
as due to the mobile robot’s structure it might be possible
to send commands directly to the actuator. An adversary
could, therefore, execute actions without the permission of
the plausibility checker. To mitigate this problem, the second
stage uses authorization tickets to check if the requested action
is permitted. To perform action authorization, the following
preconditions need to be fulfilled:

• Backend, CCU, and actuators are equipped with an SE
to store key material and other secret information, and
supports secured computation and verification of OTPs.

• The CCU’s and actuator’s SEs share a secret key.
• The CCU’s and backend’s SEs hold each other’s public

key.
• The CCU’s and actuator’s SEs share a counter value.

The CCU’s SE holds individual counter values for each
actuator. The CCU’s counter value is increased by a
specific amount every time a ticket is generated. The
actuator’s counter value increases by the same value
every time a received ticket was valid. In the case, that
the actuator does not check the ticket, it commands
the SE to increase the counter to preserve the counter
synchronization even when the ticket is not checked after
generation.

A. Plausibility Checks

The context-aware plausibility check is the first of the two
stages in the authorization mechanism to check if the incoming
command is allowed to be executed. In principle, the list of
possible commands is stored in the CCU’s SE, and the SE
simply confirms or denies the execution of a command based
on the list. Each entry in the list consists of the command
and several preconditions that need to be met. For example, a
very simple precondition for delivering a product is that the
product was picked before. The preconditions might, of course,
be much more complex and highly dependent on the context
and executed actions. For the RoboCup Logistics League [3],



TABLE I: Examples for commands executed by mobile robots
in the RoboCup Logistics League. Each command needs
to fulfill a number of preconditions to be authorized for
execution.

Command Pre-conditions

Pickup Product

− Gripper empty
− Laser scanner detected correct distance

from machine
− Camera detected product on machine
− Robot is not driving
− Addressed machine matches production

steps

Drop off product

− Gripper filled
− Laser scanner detected correct distance

from machine
− Camera detected drop off space
− Robot is not driving
− Addressed machine matches production

steps

Drive to machine
− Machine necessary for current product
− Global path plan complete
− Obstacle avoidance active

the list of executable actions is rather limited. In TABLE I,
an example of commands with preconditions based on the
RoboCup Logistics League setting is given. The preconditions
are derived from the robot state and also from the incoming
commands.

The plausibility check simply returns ’True’ if the command
is plausible in this context, otherwise ’False’. In case of a
’False’, the CCU’s SE can validate the command’s signature
by using the backend’s public key, the command, and signature
as input. If the signature is valid, the command can still be
executed; otherwise, an alert is sent to a server to log the
failure. The validation of a signature in an SE is a rather
expensive process. If the plausibility check returns ’True’ the
CCU decides randomly if the signature is still checked in
order to detect small modifications. The plausibility check
is a simple comparison and less expensive. This mechanism
reduces the overhead compared to a signature check for each
incoming command significantly and is still able to identify
wrong or malicious commands if they do not fit the context.

B. Authorization Mechanism

The authorization mechanism uses internal states and the
sensor data to check if the robot is in the correct context
and generates an authorization ticket that can be used by the
actuator to approve the execution. In detail, the authorization
mechanism consists of the following eight steps:

1 If the plausibility check returns a positive result or
the validity of the incoming command’s signature was
confirmed, the CCU requests the sensor data from one
or more sensors.

2 The sensor(s) compute a signature over their values and
return the sensor value and signature to the CCU.

3 The CCU verifies the signatures to check if the sensor
values were not modified during transmission. If the
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Fig. 2: The data flow when authorizing an action is shown in
this figure. The CCU, senor and actuator are connected via
Ethernet to a router that distributes the messages accordingly.
The router is not depicted in this figure to simplify the
illustration.

signatures are valid, the CCU sends the command to the
SE and instructs it to compute an authorization ticket.

4 The SE computes the authorization ticket from the
command, secret key, and counter value. The generated
ticket is returned to the CCU.

5 The authorization ticket and command are sent to the
corresponding actuator’s microcontroller for execution.

6 The authorization ticket and command are sent to the
actuator’s SE for verification.

7 If the ticket is valid for the given command, the SE
returns a success message to the microcontroller.

8 In case of a success message from the SE, the micro-
controller executes the requested action. In case of an
error message from the SE, the micro controller logs this
incident and sends an encrypted alert message directly
to a specific server. It also informs the CCU about the
failed verification.



TABLE II: Generation and validation of authorization tickets

CCU’s SE Actuator’s µC Actuator’s SE

1 : otpg ← HKDF(KS , cntg, cmd, pl)

2 : cntg ← cntg + 1

3 : otpg, cmd, pl

4 : if pl = True

5 : random = rand(0, 1)

6 : if random > limit

7 : otpg, cmd, pl

8 : else otpv ← HKDF(KS , cntv, cmd, pl)

9 : executeAction(cmd) if otpv = otpg

cntv ← cntv + 1

return success
10 : return failure

C. Authorization Ticket Generation and Validation

The generation and validation of authorization tickets are
simple but efficient. TABLE II shows the steps from the
generation of the OTP to the validation. The value for limit
is configurable and can be changed depending on the user’s
requirements. In step (1), the SE generates the password
optg by using a hashed key-derivation function(HKDF) from
the command cmd, a secret key KS , the counter cntg and
plausibility value pl. Afterward, the count cntg is incremented
(2). The generated OTP, the command and plausibility value
provided by the plausibility check is sent to the actuator’s mi-
crocontroller (3). In step (4), the plausibility value is checked.
If the value is True, a random number is generated (5).
This number indicates if the generated OTP is checked even
though the command was plausible. If the random number was
smaller or equal than the given limit, the command is directly
executed. In case of a random number larger than the limit,
the OTP otpg , command cmd and plausibility value pl are
sent to the actuator’s SE (7). In step (8), the verification OTP
is generated by the actuator’s SE with the secret key kS , the
command cmd, the counter cntv and the plausibility value pl.
If the OTPs otpg and otpv match (9), a success message is
returned to the actuator’s microcontroller and the command
is executed. Otherwise, an error message is returned, and the
command execution is not permitted by the microcontroller.

IV. THREAT ANALYSIS

A threat analysis [19] will be performed as an evaluation and
to highlight the security features of the proposed mechanism.
The threat analysis describes the most important scenarios
that constitute a threat and also discusses how the proposed
mechanism solves the resulting threats.

The threat analysis lists all Entities (E), Assets (A) worth
protecting, possible Threats (T), Assumptions (As) as well as

Countermeasures (C) to mitigate threats and Residual Risks
(R) that cannot be solved by the proposed mechanism.

The entities involved in this authorization mechanism and
assumptions regarding their trustworthiness are:

(E1) Robot: (As1) trustworthy, but curious
(E2) Secure Element (SE): (As2) trustworthy
(E3) Adversary: (As3) not trustworthy

Before discussing the assets and threats, necessary assump-
tions need to be stated:

(As4) The shared secret key between the CCU’s and actuator’s
SE are already stored on the SEs.

(As5) The counter values between CCU’s and actuator’s SE are
synchronized.

(As6) The backend’s public key is known to the CCU’s SE.
The assets worth protecting can be derived from the entities,

assumptions and mechanism steps:
(A1) Secret key: Loss of key would enable the generation of

valid tickets by an adversary.
(A2) Counter: Loss of counter value might ease attacks that

aim to reveal the secret key.
(A3) Actuator: Unauthorized action executions must be pre-

vented to protect staff and production material from
damage.

After listing the entities, assumptions and assets, the threats
can be discussed:

(T1) Intentional or unintentional backdoors in the SE could
ease attacks by adversaries.
Entities: (E1), (E2), Assets: (A1), (A2)

(C1) SEs are certified for specific security levels. The certifi-
cation, e.g. by Common Criteria, proves that there are no
backdoors.

(T2) Wrongly implemented or weak cryptographic algorithms
on SE.
Entities: (E1), (E2), Assets: (A1), (A2)



(C2) Certification proves that strong and correct cryptographic
algorithms are implemented on the SE.

(T3) Side-channel attacks or other physical attacks to reveal
confidential data such as secret key or plausibility list.
Entities: (E1), (E2),(E3) Assets: (A1), (A2)

(C3) SE is tamper-resistant and designed to make attacks
infeasible.

(T4) Manipulations of command or injection of false command
transmitted to the robot.
Entities: (E1),(E2),(E3) Assets: (A3)

(C4) Plausibility check would reveal false command or manip-
ulated commands as they do not fit the conditions.

(T5) Manipulations of authorization command or injection of
false authorization commands sent to actuator.
Entities: (E1), (E2),(E3) Assets: (A3)

(C5) Actuator’s SE would detect false or manipulated autho-
rization command as verification of the OTP fails.

(T6) Replay attacks on commands to the robot or authorization
commands to the actuator.
Entities: (E1), (E2),(E3) Assets: (A3)

(C6) Replay attacks capture previously sent traffic and sent
them again later. The used counter value prevents such
replay attacks as the counter changes the OTP for every
computation even if all other parameters stay the same.

(T7) Denial-of-Service attacks on router.
Entities: (E1), (E2),(E3) Assets: (A3)

(R7) These attacks would prevent the robot or actuator from
performing any data exchange or operation. These attacks
cannot be mitigated by any security measure as they
simply try to shut a service down.

(T8) Manipulation of data from sensor or injection of false
data.
Entities: (E1), (E2),(E3) Assets: (A3)

(C8) Sensors compute signatures that protect the integrity of
the sent data.

The threat analysis lists the most crucial threats identified
by the authors, and is not exhaustive.

V. CONCLUSION AND FUTURE WORK

This paper presented a two-staged authorization mechanism
for actions on industrial mobile robots. The first stage is a
plausibility check that ensures the correctness of incoming
commands depending on the current context. The second
stages authorizes the action execution by using authoriza-
tion tickets. The whole process is supported by hardware
security to support the protection of confidential data and
cryptographic computations. The approach aims to reduce
the overhead caused by the used hardware security but still
prevent unauthorized action from execution. The conducted
threat analysis highlights the security features and shows that
only one residual risk in eight threats remains. A possibility for
future work would be a more advanced plausibility algorithm
that uses machine learning instead of the static list proposed
in this paper. For our approach, we assume the sensors to be
trustworthy. However, malicious modifications could disrupt

the authorization process. Securing the sensors is out of scope
for this paper, therefore, it is postponed to future work.
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