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Abstract Genome sequencing and gene expression analyses of prostate 

tumours have highlighted the potential importance of genetic and epigenetic 

changes observed in WNT signalling pathway components in prostate tumours, 

particularly in the development of castration-resistant prostate cancer. WNT 

signalling is also important in the prostate tumour microenvironment, where 

WNT proteins secreted by the tumour stroma promote therapy resistance, and 

in prostate cancer stem or progenitor cells, where WNT-b-catenin signals 

promote self-renewal or expansion. Preclinical studies have demonstrated the 

potential of inhibitors that target WNT-receptor complexes at the membrane or 

that block the interaction of b-catenin with LEF1 and the androgen receptor, in 

preventing prostate cancer progression. Some Wnt signalling inhibitors are in 

Phase I trials, but they have yet to be tested in patients with prostate cancer. 

 
Prostate cancer was the most commonly diagnosed cancer and second leading 

cause of cancer death in men in the USA in 20161. Androgen deprivation 

therapy (ADT) is the standard of care for men with prostate cancer, owing to 

the essential role of the androgen receptor (AR) in the normal growth and 

development of the prostate gland, as well as in prostate carcinogenesis2,3,4. 

Unfortunately, most tumours progress to an aggressive state, known as 

castration-resistant prostate cancer (CRPC), despite ADT5–7. Several 

mechanisms, most of which are AR-dependent, are involved in the 

development of resistance. These mechanisms include the amplification and/or 

mutation of AR, expression of AR splice variants, increased production of 

androgens, and changes in the activity or expression of AR coactivators and 

corepressors7–9. However, other, often AR-independent, signals have been 

implicated in the acquisition of resistance, among them are those triggered by  

WNT family proteins10. 

	This Review focuses on new findings since our last review of the topic in 

201211. These data demonstrate that the field of WNT signalling research has 

progressed both at the level of basic research, in which noncanonical WNT 
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signalling is now recognized as an important contributor to prostate cancer 

progression and new regulators of canonical WNT signalling at the plasma 

membrane have been identified, and at the clinical level, where WNT signalling 

might soon receive approval for clinical use, as WNT signalling inhibitors are 

now in early stage clinical trials12–34 (Table 2). 
 

[H1] An overview of WNT signalling 

 The WNT family comprises 19 cysteine-rich, secreted lipoglycoproteins that 

have fundamental roles during embryonic and organ development by regulating 

stem cell self-renewal and cell proliferation, migration, and differentiation35–37. 

WNTs bind to transmembrane frizzled (FZD) receptors and a variety of 

coreceptors, including low-density lipoprotein receptor (LRP)4 to LRP6, 

tyrosine-protein kinase transmembrane receptor ROR1 and ROR2, and 

tyrosine-protein kinase RYK (RYK)38 to activate canonical (β-catenin-

dependent) and noncanonical (β-catenin-independent) signals (Fig. 1). 
 A hallmark of canonical WNT signalling is the stabilization and nuclear 

translocation of the protein β-catenin. In the absence of WNT ligands, β-catenin 

is recruited and degraded by the destruction complex, whose components 

include axin, glycogen synthase kinase-3 (GSK-3), casein kinase 1 (CK1) and 

adenomatous polyposis coli protein (APC). WNT binding to FZD receptors and 

LRP5 and LRP6 coreceptors results in the phosphorylation of the latter by CK1 

and GSK-3 and recruitment of axin and dishevelled (DVL) to the plasma 

membrane, thereby disrupting the destruction complex. This disruption results 

in the stabilization of β-catenin, which accumulates in the cytoplasm and enters 

the nucleus, binding to T-cell factor/lymphoid enhancer-binding factor 1 

(TCF/LEF) family transcription factors and coactivators, such as the CREB-

binding protein (CBP)–histone acetyltransferase p300 (p300 HAT) family and 

B-cell lymphoma 9 protein (BCL9) and B-cell lymphoma 9-like protein (BCL9L), 

and regulating the expression of WNT target genes39 (Fig. 1). 

A novel branch of WNT signalling, WNT-dependent stabilization of proteins 

(WNT–STOP)40, was described in 2014. In this signalling cascade, the signal 

is initiated by WNT binding to LRP6 but the effects are transcription-

independent, involving cyclin-Y, rather than b-catenin40. WNT–STOP signals 
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promote protein stabilization at mitosis. The targets are involved cell-cycle 

progression, endolysosomal biogenesis, DNA remodelling and the 

cytoskeleton, so WNT-STOP signals could be important in cancer initiation and 

progression41	(Fig. 1). 

 Noncanonical WNT signals are less well defined than canonical signals. 

Noncanonical signals are traditionally subdivided into planar cell polarity (PCP) 

and WNT–Ca2+	pathways39, although additional b-catenin- and TCF-

independent signals also exist42. Noncanonical WNT signals are activated upon 

WNT binding to FZD receptors and tyrosine-kinase-like coreceptors, resulting 

in the recruitment and activation of DVL. The PCP pathway has two parallel 

branches involving small GTPases: Rho, which activates Rho-associated 

kinase (ROCK) and Rac, which is linked to c-Jun-N-terminal kinase (JNK), and 

signalling by activator protein 1 (AP-1) family transcription factors. Cytoskeletal 

and transcriptional changes associated with these small GTPases regulate cell 

adhesion and migration39,42–44. Activation of the WNT–Ca2+	pathway stimulates 

Ca2+	release from the endoplasmic reticulum, promoting activation of G-

proteins, protein kinase C (PKC)	and Ca2+/calmodulin-dependent kinase type II 

(CaMKII). These events can also result in the activation of transcription factors, 

such as nuclear factor of activated T-cells (NFAT), which promotes cell growth, 

survival, invasion, and angiogenesis42,43,45,46 (Fig. 1). 

 In 2010, novel associations were identified between WNT and Hippo signalling, 

which regulates organ size, tissue homeostasis, and patterning47. Hippo signals 

are transduced by yes-associated protein	 (YAP), transcriptional coactivator 

with PDZ-binding motif	 (TAZ), and TEA domain family transcription factors	
(TEADs)48. YAP-TAZ signals antagonize canonical WNT signalling by binding 

to components of the destruction complex, such as axin49, and regulating 

nuclear translocation of b-catenin (Fig.1). In addition, a noncanonical WNT–

YAP-TAZ signalling axis has been described, in which WNT binding to FZD and 

ROR activates Ga12, Ga13, Rho, and large tumour suppressor homolog (LATS)1 

and LATS2 to induce YAP-TAZ signals and TEAD-dependent transcription50. 

The importance of this alternative WNT signalling pathway in prostate cancer 

is yet to be examined. 
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 The specific mechanisms by which WNT proteins stimulate these different 

responses are not fully elucidated, but are anticipated to involve the binding 

and activation of distinct WNT receptors51,52. FZD family receptors have a role 

in most WNT signalling pathways. These seven-pass transmembrane proteins 

have an extracellular, cysteine-rich domain (CRD) that is essential and 

sufficient for WNT binding53–55. The crystal structure of the mouse Fzd8 CRD 

bound to Xenopus Wnt-8 shows the ligand resembling a hand with the thumb 

and index finger grasping the receptor. The thumb´s palmitoleic acid group 

projects into a deep groove in the CRD (Site 1) while the finger interacts with a 

small depression in the CRD (Site 2)56 (Fig.2). The lipid thumb domain of Wnt-

8 interacts with residues conserved among FZD family members, accounting 

for the promiscuity of WNT-FZD interactions. On the other hand, some Site 2 

residues are not conserved, Met149, for example, is present in 5 of 10 

mammalian FZD proteins56, suggesting that Site 2 interactions are responsible 

for binding specificity56. The structure also suggested a potential binding site 

for WNT coreceptors: a conserved solvent-exposed patch of 10 residues on the 

opposite side of Wnt-8 to	the FZD-binding site56,38 (Fig.2). Additional insight into 

WNT-FZD interactions comes from two independent structural studies of FZD 

CRDs in complex with fatty acids, which show that the acyl group promotes 

FZD CRD dimerization and support a 1:2 stoichiometry model for WNT-FZD 

complexes57,58. Moreover, palmitoylated WNT-5A and WNT-8A stabilize the 

FZD4-CRD-CRD interaction, suggesting that FZD receptors form signalosomes 

(multiprotein complexes containing membrane-localized Wnt receptors and 

cytosolic protein complexes containing AXIN and DVL capable of transmitting 

the WNT signal) upon WNT binding and that the WNT palmitoleoyl group is 

crucial for this interaction57. Additional studies will be required to determine how 

these interactions orchestrate WNT signalosome assembly. 

 Apart from FZD receptors, the single-pass transmembrane WNT receptors 

LRP5 and LRP6 are best known for transducing b-catenin-dependent signals. 

These receptors form a trimeric complex with WNT and FZD that is essential 

for activation of the canonical pathway38,55. By contrast, ROR1 and ROR2 have 

CRDs related to the FZD CRD and activate noncanonical signals38,42,59. In 

addition, RYK binds WNT proteins via a WNT inhibitory factor (WIF) domain 
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and is implicated in canonical and noncanonical signalling38,59, and protein-

tyrosine kinase 7 (PTK7); also known as colon carcinoma kinase 4 (CCK4), 

which is involved in the PCP pathway and has a less well-defined WNT binding 

site than RYK, ROR1 and ROR260. ROR1, ROR2, RYK, and PTK7 have 

intracellular tyrosine-kinase-like domains but they are most likely 

pseudokinases because these domains lack key residues found at the catalytic 

site of active kinases and they are devoid of detectable kinase activity in in vitro 

assays. Although it remains possible that the conditions for their catalytic 

activation have not been found, it is more likely that they function in association 

with FZDs, other WNT receptors and allosteric activation of intracellular and 

other receptor tyrosine kinases59,61,62. By contrast, the ROR-related kinase, 

muscle, skeletal receptor tyrosine-protein kinase (MuSK), which also binds 

WNTs via a CRD, is catalytically active38, as is CAM-1, the Caenorhabditis 

elegans ROR homolog, suggesting that the signalling mechanisms of this 

family of kinases have diverged. 	
 Regulation of WNT signalling by secreted WNT antagonists is more complex 

than that of the receptors. These antagonists can be divided into two classes: 

those that bind WNT proteins, such as secreted frizzled-related proteins 

(sFRPs), WIF-1 and Cerberus, and those that associate with the WNT 

coreceptors LRP5 and LRP6, namely Dickkopf-related protein (DKK)-1, DKK-

2, and DKK-463–65. DKK-3 is a unique member of this family that does not bind 

LRP5 or LRP6, but can affect WNT signalling indirectly65. Adding further 

complexity, sFRPs can also bind to FZD receptors and activate or inhibit WNT 

signalling63,66. 

 Results of studies published between 2013 and 2016 have revealed additional 

mechanisms of regulation of WNT signalling at the cell membrane64,65,67. The 

transmembrane E3 ubiquitin ligases ZNRF3 and RNF43 inhibit WNT signalling 

by targeting FZD receptors for ubiquitination and degradation. ZNRF3 and 

RNF43, in turn, are regulated by R-spondins (RSPO1–RSPO4), which are 

secreted proteins that enhance WNT signalling by simultaneously binding 

ZNRF3 and RNF43 and leucine-rich repeat-containing G protein-coupled 

receptors (LGR4–LGR6) to promote ubiquitination and membrane clearance of 

ZNRF3 and RNF43, facilitating FZD receptor stabilization67,68 (Fig. 3).	
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[H1] WNT signalling pathway alterations 

 Dysregulation of the WNT signalling pathway has been observed in several 

types of cancer, and some major alterations have been found in prostate cancer 

in the past 5 years (Table 1)10,11,35,69. 

[H2] Canonical effectors 

  b-catenin is the key effector of the canonical WNT pathway. The stability of  b-

catenin is tightly regulated by a destruction complex of associated proteins, 

including axin and APC, which promotes its phosphorylation, ubiquitination, and 

degradation; the presence of cytoplasmic and/or nuclear b-catenin provides an 

indication of dysregulation. By contrast, the pool of b-catenin at the plasma 

membrane is protected from degradation by its interaction with cadherins. A 

considerable proportion of prostate tumours have increased levels of b-catenin 

in the cytoplasm and/or nucleus either as a result of gene mutations, or, more 

frequently, nongenomic changes in the expression of inhibitors and activators 

of WNT signalling11. 

 Activating mutations in the gene encoding b-catenin (CTNNB1) and 

inactivating mutations in the genes that encode proteins in the destruction 

complex (APC and AXIN1) increase WNT–b-catenin signalling in many types 

of cancer, particularly colorectal cancer, but are infrequent in prostate 

cancer10,11. However, genetic and epigenetic changes have been discovered 

that activate WNT–b-catenin signalling and could, therefore, contribute to 

prostate cancer progression. Genetic changes that activate  WNT–b-catenin 

signalling are more frequently observed in castration-resistant prostate cancer 

(CRPC) than in treatment-naive prostate cancer. Recurrent alterations in 

CTNNB1 were observed in 12% of CRPC samples70. Comparison of CRPC and 

high-grade, untreated, localized prostate tumours uncovered alterations in APC 

in 22% of lethal, castration-resistant tumours and in none of the untreated 

tumours71, and a multi-institutional study of 150 metastatic CRPC tumours 

revealed genomic alterations affecting APC and CTNNB1 in 18% of samples72. 

In addition, analysis of single nucleotide polymorphisms (SNPs) in WNT 

pathway genes identified links between gene variants of APC and reduced 

PSA-free survival73 and prostate cancer progression74. 

 A variety of cell systems and mouse models have been used to determine the 
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outcome of b-catenin stabilization in non-malignant prostate cells and prostate 

cancer cells10,11. Studies in mice show that genetic activation of WNT–b-catenin 

signalling by a stabilized form of b-catenin or by Apc deletion results in high-

grade prostate intraepithelial neoplasia (PIN). However, progression to invasive 

carcinoma requires a second event, for example, overexpression of serine 

protease hepsin75 or deletion of phosphatase and tensin homolog (PTEN)76. 

 Association of b-catenin with binding partners in the nucleus, such as TCF/LEF 

family transcription factors, protects b-catenin from the destruction complex by 

competing with APC and axin for binding to the b-catenin armadillo repeat 

domain, as is the case at the plasma membrane. All four TCF/LEF family 

members are expressed to varying extents in the prostate and in prostate 

tumours, but LEF1 has been the focus of most studies, as it is upregulated in 

androgen-independent tumours77. LEF1 is a WNT-b-catenin target gene and 

also a target gene of transcriptional regulator ERG (ERG), which is upregulated 

in ~50% of prostate tumours 78. A 2016 study comparing b-catenin and LEF1 

levels in prostate tumour microarray samples (TMAs) showed increases in the 

proportion of cells coexpressing b-catenin and LEF1 in localized prostate 

cancer and in tumour metastases, which suggests a role for β-catenin–LEF1-

mediated transcription in both malignant transformation and metastasis of 

prostate cancer79.  

 TCF/LEF family members are the key mediators of b-catenin-dependent 

transcription, other transcription factors interact with b-catenin in specific cell 

types and tissues. The AR is a crucial partner for b-catenin in prostate cancer. 

Given the influence of AR in prostate cancer, the importance and 

consequences of this interaction have been studied in detail11,80,81. 

Coexpression of AR and cytoplasmic b-catenin in patient tumour samples 

correlates with high primary Gleason grade (4-5), disease progression, and 

PSA levels in patients82, and AR and WNT signalling pathways are enriched in 

patients with early-onset (diagnosed at < 50 years of age) prostate cancer83. 

 In mice, the overexpression of AR and stabilized b-catenin in prostate epithelial 

cells accelerates tumour development and invasion and reduces survival, 

suggesting that increased AR signalling enhances b-catenin-mediated prostate 

tumour initiation84. Castration of these mice resulted in tumour regression, 
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implying that AR signalling is also required for tumour maintenance84. If and 

how AR signalling and b-catenin-dependent signalling work together is not well 

understood. In this mouse study, both AR and b-catenin were recruited to 

regions of the myc proto-oncogene protein (c-Myc) locus containing TCF/LEF 

family transcription factor binding sites84. In addition, gene expression 

microarray analysis showed that AR overexpression potentiated expression of 

some genes induced by stabilized b-catenin, including Myc, Spp1, and Egr1, 

which promote metastasis. However, it also reduced expression of the direct b-

catenin gene targets Lef1 and Axin284, consistent with previous studies in 

human cells showing competition between TCF/LEF family transcription factors 

and AR for binding to b-catenin10,11. The interactions among AR, b-catenin, and 

TCF/LEF family transcription factors can be affected by the activation state of 

AR, with hormone deprivation or treatment with the antiandrogen enzalutamide 

redirecting b-catenin from AR to TCF-4, leading to activation of WNT–β-catenin 

signalling85. These observations highlight the pathophysiological relevance and 

the complexity of the link between AR and WNT–b-catenin signalling in prostate 

cancer and suggest that a combination of antiandrogens and WNT inhibitors 

could improve the effectiveness of current treatments targeting the AR85. Other 

nuclear proteins might also activate WNT–β-catenin signalling in hormone-

deprived cells, such as the nuclear form of the tyrosine-protein kinase MET, 

nMET86, and transcription factor SOX (SOX)-487,88. 

	
[H1] WNT ligands and their receptors 
 The low frequency of WNT signalling pathway gene mutations in the majority 

of prostate tumours has encouraged the study of upstream components of the 

pathway. Novel molecular mechanisms have been discovered that stabilize 

WNT receptors at the membrane to sustain WNT signals. However, these 

receptors still require the presence of WNT ligands, the study of which has been 

hampered by their low expression and/or the lack of specific antibodies. For 

example, gene expression analysis indicates that WNT1 mRNA is low or 

undetectable in prostate cancer cell lines 78,89,90, lower in organ confined (pT2) 

and non-organ confined (pT3/4) tumours than in benign prostatic hyperplasia, 

and highly expressed in advanced prostate cancer90, whereas 
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immunohistochemical analysis dectected high expression of WNT-1 to be 

highly expressed in prostate cancer cell lines, primary tumours and 

metastases91. 

 An emerging theme is the activation of noncanonical WNT signalling in 

advanced prostate cancer and/or in CRPC. WNT-5a is upregulated in prostate 

cancer and can promote prostate tumour cell invasion through FZD2 and 

ROR292. Moreover, Wnt-5a haploinsufficiency in a mouse model of prostate 

cancer prevents the early onset and early lethality of prostate tumours93. 

However, some reports contradict the protumorigenic effect of WNT-5A, 

correlating high WNT-5A expression with improved outcomes in localized, low-

grade prostate cancer 94–96. In other cancers such as liver, breast and lung, the 

WNT-5A-FZD2 complex has been reported to associate with the protein 

tyrosine kinase FYN and signal transducer and activator of transcription 3 

(STAT3) to promote the epithelial–mesenchymal transition (EMT) and cell 

migration97. One possible explanation for the discrepancy is that the tumour-

suppressing role of WNT-5A results from inhibition of canonical signalling and 

its tumour-promoting role from activation of noncanonical signalling, consistent 

with association of increased expression of WNT5A and FZD2 with metastasis 

and biochemical recurrence98. Evidence exists that supports a role for WNT-5A 

in the development of resistance to ADT: WNT5A mRNA is found in circulating 

tumour cells (CTCs) from patients with CRPC 99 and from patients with prostate 

cancer whose disease progressed whilst they were undergoing treatment with 

the AR inhibitor enzalutamide100. WNT-7B, which had been previously 

observed to be upregulated in prostate cancer101, was shown to be an AR target 

gene in CRPC100. WNT-7B activates a noncanonical signal involving PKC and 

can induce an osteoblastic response in bone102. WNT-11 is also upregulated in 

prostate cancer, but, in contrast to WNT-7B, its expression is repressed by 

androgens103. WNT11 mRNA expression is elevated in tumours from patients 

receiving ADT104 and cell studies show that this WNT is required for prostate 

cancer cell invasion and neuroendocrine-like differentiation105. Many WNTs are 

observed to be upregulated in certain settings: mRNA expression of WNT5B, 

WNT6, WNT10A, and WNT16 is increased in tumours from patients after 

ADT106, and WNT2, WNT3A, and WNT11 mRNAs are induced by ERG78, an 

oncogene expressed in prostate cancer exhibiting TMPRSS2–ERG gene 
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fusion107,108.  

 ERG also induces expression of FZD3, FZD5, FZD7, and FZD8 mRNAs109, 

and also FZD4, which has a role in EMT110. Independent studies reported 

increased expression of FZD8111 and its closest relative, FZD5, in advanced 

prostate cancer90. In addition, SOX9, a critical effector of ERG, is required for 

increased expression of FZD7112, which is also upregulated in patients after 

ADT106. Evidence for increased expression of WNT coreceptors in prostate 

cancer is not as readily available as the evidence for that of the FZD family. 

However, ROR1 protein was shown to be expressed in 19 of 21 prostate 

tumours, as well as in many other types of cancer, such as lung, ovarian and 

colorectal, in which it is linked to increased AKT and CREB phosphorylation 

and increased proliferation113. Together, these studies highlight a limited 

number of WNTs and WNT receptors as potential therapeutic targets, 

particularly in the setting of CRPC. 

 

[H1] WNT signalling regulators 
 A common theme in prostate cancer is the loss of expression of genes that 

encode secreted factors that inhibit WNT signalling, usually through promoter 

methylation. These include genes that encode WNT binding proteins, such as 

WIF-1 (for which restoration of expression reduces tumour cell motility and 

reverses EMT114) and sFRP110,11 (expression of which inversely correlates with 

β-catenin expression and is a favourable predictive and prognostic biomarker 

in prostate cancer115). Another study showed reduced mRNA expression of 

SFRP1 and SFRP5 in prostate cancer but an increase in SFRP4116. SFRP2 

gene expression is also downregulated in prostate cancer by promoter 

methylation117,118. sFRPs do not always inhibit WNT signalling; for example,	
sFRP2 potentiates WNT-16B signalling to promote PC3 prostate cancer cell 

resistance to mitoxantrone, a genotoxic agent frequently administered to 

prostate cancer patients as a second-line therapy119. 

 Dickkopf proteins can be protumorigenic in some settings, despite their 

function as WNT inhibitors and the observation that they are frequently silenced 

in cancer by gene promoter methylation. In prostate cancer, high levels of DKK-

1 in serum are associated with poor patient prognosis120. Furthermore, 
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overexpression of DKK-1 promotes prostate tumour growth and the incidence 

of bone metastases121, and induces osteolytic lesions122. Some of the effects 

of DKK-1 have been interpreted in the context of its ability to inhibit canonical 

signalling, resulting in activation of noncanonical signalling. However, the 

discovery in 2016 of an unrelated receptor for DKK-1, cytoskeleton-associated 

protein 4 (CKAP4), indicates that DKK-1 can also enhance cell proliferation 

independently of its effects on WNT signalling123. 

 Among the other proteins that regulate WNT signalling at the cell surface, 

mutations in the ubiquitin ligases RNF43 and ZNRF3 and gene fusions that 

increase expression of RSPO2 were detected at an overall frequency of 6% in 

a panel of 150 metastatic CRPC tumours72, suggesting novel therapeutic 

options might be a possibility for some patients with prostate cancer. 

 

[H1] WNT and the tumour microenvironment 
	The development and progression of cancer involves several signals that rely 

on the intrinsic properties of the tumour cells. However the interaction of cancer 

cells with other cell types in the tumour microenvironment, both in the primary 

tumour and at sites of metastasis, is also important124.   

 Prostate stromal cells secrete several WNT family members that can influence 

tumorigenesis and disease progression (Fig. 4). This secretion is exemplified 

by studies in mice showing that stromal Wnt-3a activates canonical Wnt 

signalling in the epithelium, facilitating progression of PIN lesions to 

adenocarcinoma and resistance to androgen deprivation125. Stromal 

overexpression of high mobility group protein HMGI-C in mice was observed to 

promote development of multifocal PIN lesions that were accompanied by 

increased expression of Wnt2, Wnt4, and Wnt9a, and could be suppressed by 

overexpression of sFRP1 and Dkk1126. WNT10B is among the genes 

upregulated in human prostate cancer stroma, and silencing it reduces the 

protumorigenic effects of stromal cells on LNCaP tumour growth in xenograft 

assays127. WNT signals from the tumour microenvironment are also involved in 

the development of resistance to therapy. Therapy-induced DNA damage 

increases the expression of WNT-16B in prostate fibroblasts128, in which it acts 

in a paracrine manner to activate canonical WNT signalling in tumour cells and 
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promotes therapy resistance and disease progression128. Further studies are 

required to determine the importance of stromal-derived  WNT-16B and of other 

WNT family members, such as WNT-5A129, at different stages of prostate 

cancer. 

 

[H1] WNT signalling and cancer stem cells 
 In prostate and other cancers, such as breast, pancreas, colon, lung and brain, 

the cancer stem (or progenitor) cell (CSC) population shares many 

characteristics with somatic stem cells, such as immortality and self-renewal, 

and is believed to be a source of tumour-initiating cells and also responsible for 

tumour recurrence, metastasis, and chemoresistance130,131. WNT–b-catenin 

signalling was shown to promote prostate CSC renewal and expansion in 

2009132. In 2015, one study showed that shRNA-mediated silencing of the 

tumour suppressor gene DAB2IP (disabled homolog 2-interacting protein) in 

human prostate epithelial cells generated CSC with activated WNT–b-catenin 

signalling133. In this model, WNT–b-catenin signals directly induced expression 

of the stem cell marker gene CD44, and inhibitors of WNT secretion synergized 

with docetaxel to inhibit tumour growth in vivo133. In addition, the mRNA and 

protein expression of ALDH1A, another CSC marker that is also a direct target 

of WNT–b-catenin signalling, is elevated in radioresistant prostate cancer 

cells134. Inhibition of WNT–b-catenin signalling using the tankyrase inhibitor 

XAV939 or siRNA-mediated knockdown of β-catenin	reduced ALDH1A mRNA 

and protein levels, reduced the population of ALDH-positive CSCs and 

increased cancer cell sensitivity to irradiation134. These results provide rationale 

for using inhibitors of WNT–b-catenin signalling to target prostate CSCs and 

thereby reduce the development of tumour resistance to therapy 135. 

 
[H1] Targeting WNT signalling 
 The variety of changes observed in WNT pathway components has the 

potential to provide therapeutic opportunities, particularly in advanced prostate 

cancer. Several drugs that target WNT signalling are in development (Fig. 5), 
but very few of them are being tested for the treatment of prostate cancer136. 

This omission might reflect a general impression that WNT signalling has a 
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minor role in prostate cancer, based on the low frequency of WNT pathway 

mutations in primary tumours. The higher frequency of APC mutations, 

identification of novel mutations in CRPC, and the increasing evidence that 

noncanonical WNT signals are active in prostate cancer, are expected to 

stimulate further interest in this area of drug development. 

 Specific inhibitors of WNT signalling have been investigated and several FDA-

approved drugs in current use affect WNT–b-catenin signalling137, and at least 

one of these — aspirin — is associated with reduced prostate cancer risk138. 

Specific WNT pathway inhibitors can be classified into functional groups: 

inhibition of WNT secretion, regulation of antagonists and agonists,	targeting 

WNT receptor interactions, preventing DVL activation, stabilizing the 

destruction complex and	targeting nuclear b-catenin partners. 

[H2] Inhibition of WNT secretion 

Porcupine, a membrane-bound O-acetyltransferase, is uniquely responsible for 

WNT palmitoylation of WNT proteins, which is essential for their secretion139. 

Targeting porcupine has been used extensively to inhibit WNT signalling in 

different cancer types. The first reported porcupine inhibitors, Inhibitors of WNT 

Production	 (IWPs, the best known of which is IWP-2), were identified in a 

synthetic chemical screen140. Several other porcupine inhibitors have since 

been reported. These inhibitors include WNT-C59, which inhibits growth of 

WNT-1-expressing mammary tumours in mice141; LGK974142, an orally 

bioavailable inhibitor that reduces tumour growth in rodent models of breast 

cancer, head and neck cancer142, and of xenografts of pancreatic tumours with 

RNF43 mutations143; and ETC-159, another orally bioavailable molecule, which 

inhibits growth of	patient-derived xenografts of colorectal cancers with RSPO 

fusions144. WNT974 (previously known as LGK974) entered a phase I trial in 

2011 (still ongoing), for patients with tumours that have mutations in RNF43 

and ZNRF3 or RSPO gene fusions12. Preliminary clinical data suggested 

WNT974 has a manageable safety profile and potential for anti-tumour 

activity145. An ongoing phase I/II trial is using WNT974 in combination with the 

RAF inhibitor LGX818 and the EGFR inhibitor Cetuximab  in patients with 

BRAFV600-mutant KRAS wild-type metastatic colorectal cancer harboring 

RNF43 mutations or RSPO fusions13. ETC-159 (longer name ETC-1922159) 
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has also entered a phase I trial in patients with advanced solid tumours14 and 

preliminary data indicate that it is safe and well-tolerated and dose escalation 

is ongoing146 (Table 2). The identification of RNF43 and ZNRF3 mutations and 

RSPO2 gene fusions in CRPC72 in 2015 provides hope that porcupine inhibitors 

might also be assessed in patients with advanced prostate cancer. 

[H2] Regulation of antagonists and agonists 

 Many secreted WNT antagonists are epigenetically silenced in cancer, and 

drugs that target the epigenetic machinery can restore their expression. For 

example, treatment of renal cancer cells or breast cancer cells with	combined 

therapy of the histone deacetylase (HDAC) inhibitor romidepsin and the DNA 

methyltransferase (DNMT) inhibitor decitabine reactivates SFRP1 expression 

to inhibit growth and induce apoptosis in an sFRP1-dependent manner147. 

Application of recombinant sFRP1 proteins could also be a therapeutic 

option148, as is the case for DKK-3, which preclinical studies have shown is an 

effective treatment for prostate cancer and other cancers, including breast 

cancer, gastric carcinoma and malignant mesothelioma149. A phase I/II clinical 

trial started in 2013 using an adenoviral vector expressing DKK-3 in patients 

with localized prostate cancer15 have reported promising results, showing 

reduced metastatic tumour growth in a case study of a patient with treatment-

resistant disease and anti-tumour activity and reduced biochemical recurrence-

free survival in patients with high-risk localised prostate cancer150,151 (Table 2).. 

Another approach to targeting tumours that contain RSPO fusions is to use 

function-blocking antibodies; as has been done for RSPO3 in colorectal 

cancer152. RSPO3 antibodies (OMP131R10) are now in phase I clinical trials 

for advanced solid tumours and metastatic colorectal cancer with results 

expected in 201816 (Table 2). 

[H2] Targeting WNT receptor interactions 
 WNT ligands and their receptors are attractive targets for therapy because they 

are accessible to monoclonal antibodies and small molecules153. WNT-5A has 

been targeted using antibodies and a WNT-5A-derived peptide called Foxy-5. 

The WNT-5A antibodies reduce metastasis of gastric tumour cells154 but have 

not been tested for their effects on prostate cancer metastasis. These 

antibodies do not block WNT receptor binding, but they inhibit WNT-5A-induced 

internalization of FZD2 and ROR2155. Foxy-5 is a formylated hexapeptide that 
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inhibits breast cancer metastasis156,157. The first phase I trial failed to reach a 

maximum tolerated dose17, so a second trial is recruiting patients with 

metastatic breast, colon, or prostate cancer18 (Table 2). Given that the 

antibodies inhibit WNT-5A signalling and Foxy-5 activates it, and in light of the 

contrasting reports on the prognosis of high WNT-5A expression in prostate 

cancer, stratifying patients before using treatments that target WNT-5A will be 

important. 

 Antibodies are not the only tool for targeting WNT proteins: a recombinant 

fusion of the ligand-binding domain of FZD8 and the crystallisable fragment 

domain of a human IgG1 (FZD8-Fc, also known as OMP-54F28 and Ipafricept) 

is a decoy WNT receptor that inhibits the proliferation of CSCs and induces 

tumour differentation158. In a phase Ia clinical trial, this drug was well tolerated 

and demonstrated evidence of Wnt pathway modulation and potential early 

single-agent activity manifested by prolonged stable disease19,159. It is now 

being trialled in combination with other drugs in ovarian 20,160, liver21 and 

pancreatic cancer22 (Table 2). 

 The success of porcupine inhibitors in blocking all WNTs and the possibility of 

redundancy among members of the WNT family in cancer has led to increased 

efforts to target WNT receptors, rather than WNT proteins. FZD7 is one of most 

frequently upregulated WNT receptors in many cancers, including intestinal 

cancer, hepatocellular carcinoma, gastric cancer and breast cancer, and it has 

been targeted using both decoy receptor and antibody approaches161. 

Vantictumab (OMP-18R5) targets FZD1, FZD2, FZD5, FZD7, and FZD8. In 

preclinical models, it reduces CSC frequency and induces differentiation of 

tumorigenic cells to cell types that are less tumorigenic and/or more susceptible 

to conventional chemotherapy. It exhibits strong anti-tumour activity in 

combination with other approved therapies in patient-derived xenograft (PDX) 

models, including cancers of the pancreas, breast, lung, liver, ovary and 

colon162. Phase Ib clinical trials of vantictumab in combination with standard-of-

care chemotherapy have been carried out in HER2-negative breast cancer and 

advanced pancreatic cancer23–26 (Table 2). In 2017, vantictumab and ipafricept 

were shown to potentiate the effects of taxanes in PDX models. This involved 

sensitization of cancer cells to taxanes and required treatment with WNT 

inhibition prior to mitotic blockade with paclitaxel163. This combination strategy 
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has been incorporated into ongoing clinical trials of ipafricept and vantictumab 

with other chemotherapeutic agents20,22,25,26. 

 Other FZD antibodies are patented for the treatment of cancer, for example 

there were plans to test OTSA101, a radiolabelled antibody against FZD10164, 

in phase I trials for synovial sarcoma was found to be feasible and safe but the 

number of patients accrued was too small to continue the study27,165 (Table 2). 

In 2016, phage display was used to generate antibodies that recognise FZD5 

and FZD8 that inhibit the growth of RNF43-mutant pancreatic tumour cells in 

vivo166. 

 Among the non-FZD family receptors being targeted for therapy, LRP6 and 

ROR1 might be relevant to prostate cancer. The antihelminthic drug 

niclosamide has been reported to induce apoptosis in prostate cancer by 

targeting LRP6167. However, this therapy was also shown to downregulate 

oncogenic variants of AR and overcome enzalutamide resistance in 

CRPC168,169, so whether its effects relate to LRP6 or AR, or both, is unclear. 

Other agents that target LRP6 exist and can affect prostate cancer cells, 

including salinomycin, which induces LRP6 degradation170, and Mesd, which 

acts as a chaperone for LRP5 and LRP6 and inhibits prostate tumour xenograft 

growth171. ROR1 expression is increased in a number of cancers, including 

prostate cancer 113,172. Given the importance of ROR1 in chronic lymphocytic 

leukaemia, a variety of approaches have been used to target it, including 

antibodies, chimeric antigen receptor T cells, and antibody–drug conjugates173. 

Among the antibodies, UC-961 (cirmtuzumab) is recruiting patients for phase I 

clinical studies for chronic lymphocytic leukaemia28–30 and breast cancer31 

(Table 2). 

[H2] Preventing DVL activation 

 The DVL PDZ domain binds to the carboxyl terminal region of FZD receptors 

and is essential for signal transduction. Among the three DVL family members, 

DVL2 is upregulated in prostate tumours and silencing it inhibits prostate 

cancer cell proliferation and migration174. A number of DVL inhibitors have been 

reported, one of which has been shown to inhibit proliferation of the prostate 

cancer cell line PC-3175. 

[H2] Stabilizing the destruction complex 
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 Tankyrases 1 and 2 are poly (ADP-ribose) transferases (PARPs) that target 

axin1 and axin2 for proteasomal degradation. Their inhibitors are widely used 

to promote b-catenin degradation, thereby inhibit canonical WNT signalling176. 

Several structurally distinct tankyrase inhibitors are now being developed for 

possible clinical use. Structure-based optimization of one of these, XAV939, 

resulted in the development of a more selective and orally bioavailable inhibitor, 

NVP-TNKS656, which inhibited WNT signalling in mouse mammary tumour 

virus (MMTV)–WNT-1 tumour-bearing mice177. Evidence exists that chronic 

WNT stimulation, which increases expression of the b-catenin partners LEF1 

and B-cell CLL/lymphoma 9-like protein (BCL9L), renders tumour cells resistant 

to tankyrase inhibition because they shield b-catenin from axin178. This 

shielding might occur in prostate tumours that express high levels of LEF179. 

Finally, it should be noted that tankyrase inhibitors might have effects not 

directly related to WNT signalling, as tankyrases bind and regulate several 

other proteins, including PTEN and angiomotin (AMOT) family 

proteins176,179,180.  

[H2] Targeting nuclear b-catenin partners 

 Transcriptional activation by b-catenin requires interaction both with TCF/LEF 

family transcription factors and other coactivators, such as CBP or p300, which 

associate with the carboxyl terminal transactivation domain in b-catenin. Thus, 

the disruption of these interactions might provide new therapies. Small 

molecule inhibitors of β-catenin-responsive transcription have been identified 

that disrupt the β-catenin–TCF4 interaction, including the inhibitors of catenin 

responsive transcription (iCRTs)181, BC21, which was identified by virtual 

docking studies using a compound library and the crystal structures of β-catenin 

alone and in complexes with TCF3 and TCF4182, and LF3, a 4-thioureido-

benzenesulfonamide derivative identified in a high-throughput screen of 16,000 

compounds183. In 2004 , ICG-001, a first-in-class modulator of WNT signalling, 

was observed to inhibit binding of β-catenin to CBP184, and a derivative, PRI-

724, is in phase I clinical trials in different solid tumors32 and has been reported 

to have an acceptable toxicity profile185. Results are anticipated from completed 

phase I trials in patients with pancreatic cancer33 and leukemia34 (Table 2). In 

addition, a compound named Windorphen has been identified that prevents 
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p300 binding to β-catenin and reduces the viability of PC3 and DU145 cells in 

vitro186. Both CBP and p300 have many other partners, so these compounds 

also have WNT-independent effects that can lead to induction of caspase-3 

dependent apoptosis and cell-cycle arrest187. Two further inhibitors that affect 

b-catenin-dependent transcription are triptonide, a small molecule identified 

from the traditional Chinese medicine	Tripterygium wilfordii that targets the C-

terminal domain of β-catenin188, and an	orally bioavailable WNT inhibitor that 

acts at or downstream of TCF, identified in a cell-based screen189. The former 

has been shown to promote apoptosis of cancer cells, including PC3 and 

DU145 prostate cancer cells188 and the later inhibited tumour growth in a colon 

cancer xenografts189, suggesting they have therapeutic potential. 

 Given the number of studies on the interaction between b-catenin with AR, the 

fact that no drug screens targeting this complex have been performed is 

surprising. However, a group of investigators used the overlap of the interaction 

domains of AR and TCF-4 on β-catenin and observed that iCRT3181 inhibited 

both AR and WNT–b-catenin signalling and reduced prostate tumour growth in 

vivo190. The effect of iCRT3 on AR binding to target genes was accompanied 

by a reduction in binding of coactivator-associated arginine methyltransferase 

1 (CARM1 also known as PRMT4), a cofactor for AR and β-catenin and another 

therapeutic target190. 

 

[H1] Conclusions 
 WNT signalling has fundamental roles in prostate carcinogenesis. Both 

autocrine signalling in tumour cells and paracrine signalling from the tumour 

microenvironment are involved in prostate tumorigenesis, metastasis, and 

therapy resistance. Given the possibility that drugs that specifically target  WNT 

signalling components will reach the clinic, the question that arises is whether 

canonical or noncanonical WNT signals are more critical in prostate cancer. 

The answer might be tumour stage-dependent and context dependent. 

Canonical WNT signals could be more important to support prostate cancer 

stem (or progenitor) cell proliferation and/or survival, than noncanonical signals, 

particularly under conditions of androgen deprivation, whereas noncanonical 

WNT signals, by endowing tumour cells with migratory and/or invasive 
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properties, might be more important at early stages of tumour spread. Both 

could be critical in metastatic CRPC, in which both activating mutations in 

canonical WNT signalling and activated noncanonical WNT signalling have 

been observed. Several agents that target WNT signalling at different levels of 

the pathway have been developed, and some of these have reached clinical 

trials (Table 2). However, not many of them have been tested as possible 

therapies for prostate cancer. Mutations in CTNNB1 and APC are relatively 

infrequent in primary tumours, but they are more prevalent than originally 

thought in advanced tumours and CRPC, and are accompanied by increased 

noncanonical WNT signalling. In addition, novel WNT pathway mutations have 

been discovered in CRPC. Together, these new discoveries provide hope for a 

subset of patients who might benefit from drugs currently in clinical trials that 

inhibit WNT signalling, particularly those affecting WNT secretion and/or WNT 

receptor binding, as well as those preventing b-catenin interaction with key 

transcription factors, such as LEF1 and AR.  
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Figure 1 |	 WNT signalling pathways. In the absence of WNT ligands (WNT 

OFF), b-catenin is recruited and degraded by the destruction complex 
(adenomatous polyposis coli protein (APC), axin, glycogen synthase kinase-3 
(GSK-3) and casein kinase 1 (CK1)) and yes-associated protein (YAP) and 
transcriptional coactivator with PDZ-binding motif (TAZ)), which have been 
linked to WNT signalling, and WNT target genes are repressed. Binding of 
WNT ligands to frizzled (FZD) and either LRP5 or LRP6 to activate canonical 
signalling or ROR1, ROR2, RYK, PTK7 or MuSK to activate and noncanonical 
signalling (WNT ON). Canonical signals disrupt the destruction complex, 
stabilizing b-catenin, which enters the nucleus and binds T-cell factor/lymphoid 
enhancer-binding factor 1 (TCF/LEF) family transcription factors to activate 
gene expression. The WNT–STOP pathway is a transcription-independent 
pathway involving low-density lipoprotein receptor (LRP) and cyclin Y. 
Noncanonical signals activate small GTPases and various kinases, mobilize 
Ca2+ and activate activator protein 1 (AP-1) family and nuclear factor of 
activated T-cells (NFAT) transcription factors. New noncanonical signals 
involve activation of YAP and TAZ, the SRC family tyrosine protein kinase 
FYN and signal transducer and activator of transcription (STAT) family 
members. 
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Figure 2 Crystal structure of Wnt8-FZD8 CRD complex  
Representative image of Xenopus wnt8 (purple) bound to FZD8-CRD (blue). The 
interaction is mediated through the lipid thumb (“Site 1”) and the index finger (“Site 2”) 
of wnt8. Sites 1 and 2 are involved in Wnt-FZD promiscuity or specificity, respectively. 
Patch residues are involved in wnt binding to coreceptors leading to ternary 
complexes. Figure adapted from Reference 38. 
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Figure 3 | WNT signalling regulation by RNF43, ZNRF3 and RSPO. RNF43 
and ZNRF3 ubiquitin ligases inhibit WNT signalling by ubiquitinating frizzled (FZD) 
receptors, promoting their degradation. R-spondin (RSPO) binds	 RNF43 and/or 
ZNRF3 and leucine-rich repeat-containing G protein-coupled receptors (LGR5), 
resulting in membrane clearance of RNF43 and ZNRF3 and increased FZD stability. 
Mutations in RNF43 and ZNRF3 or overexpression of RSPO as a result of a RSPO 
gene fusion activate WNT signalling. 
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Figure 4 | Paracrine  WNT signals from the tumour microenvironment. 
Paracrine WNT signals from the tumour microenvironment can contribute to tumour 
progression (WNT-10B100) and therapy resistance (SFRP291 and WNT-16B101 or  
WNT-5A and bone morphogenetic protein (BMP) 6 102). 
	
	 	



Fig 4 Normal prostate

Prostate cancer initiation

Tumour progression

Invasive tumour

Therapy resistance

Resistant tumour

BMP6

WNT-10B
(canonical)

Radiation

WNT-5A
(noncanonical)

Nature Reviews | Urology

WNT-16B
(canonical)

SFRP2

Nature Reviews | Urology

Manuscript number NRU-16-204 Kypta Review 04|08|17



	 40	

Figure 5 | Drugs that target WNT signalling. May drugs have been developed 
that act on different targets at different levels in the WNT signalling pathway. The 
therapeutics are inhibitors of WNT secretion (red), regulators of WNT antagonist and 
antagonist function (blue), drugs that target WNT receptor interactions (green), drugs 
that prevent dishevelled (DVL) activation (pink), drugs that stabilize the destruction 
complex (grey), and drugs that target b-catenin partners in the nucleus (purple). NPs, 
nanoparticles.  
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Table 1 | Key changes in  WNT signalling pathway components in 
prostate cancer  
 

 WNT 
pathway 
compon
ent 

Altera
tion 

Disease stage Effect on WNT signalling, and/or on 
prostate cancer cells, and on patients if 
known 

b-
catenin 
(CTNNB
1) 

Activat
ing 
mutati
ons 

CRPC44,46 Disease progression (mice) 

APC Inactiv
ating 
mutati
ons 
SNPs 

CRPC45, 46 
Advanced prostate 
cancer48 

Disease progression (mice) 
Decreased PSA-free survival 47, 48 

Ligands    
 WNT5A Upreg

ulation 
CTCs from CRPC72 
and ADT73 patients 
with tumours66,74 and 
metastases74 

Localized cancer 

Noncanonical: increased CRPC growth, bone 
metastasis; metastasis and recurrence71 

Increased survival, improved outcome 68-70 

 WNT7B Upreg
ulation 

Tumours74 

CTCs from patients 
receiving ADT73  

Noncanonical; induces osteoblastic response 
in bone 

 WNT11 Upreg
ulation 
in 

ADT77, metastases78 Noncanonical; promotes invasion and 
neuroendocrine-like differentiation78 

 
WNT16B 

Upreg
ulation 

Tumour stroma101 Canonical; therapy resistance101 

Recepto
rs 

   

FZD2 Upreg
ulation 

CRPC Recurrence71 

FZD4 Upreg
ulation 

ERG positive 
tumours110 

Canonical and noncanonical; EMT110 

FZD5 Upreg
ulation 

Tumours90 Noncanonical 

FZD8 Upreg
ulation 

Tumours111 Canonical and noncanonical 

ROR1 Upreg
ulation 

Tumours86 Noncanonical; not known 

Regulat
ors 

   

SFRP1 Downr
egulati
on 

Tumours 88, 89 Reduced survival88 

SFRP2 Upreg
ulation 

Tumour stroma92 Potentiation of  WNT-16B; therapy 
resistance92 

DKK1 Upreg
ulation 

Serum93, tumours64  Increased tumour growth, bone metastases94 
and osteolytic lesions95 in mice; poor 
prognosis in patients93 

DKK3 Downr
egulati
on 

Tumours  
Inhibits tumour growth and metastasis123, 124 
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ZNRF3 
or 
RNF43 

Inactiv
ating 
mutati
ons 

CRPC46 Potentiation of  WNT signals 

RSPO2 Upreg
ulation 
(gene 
fusion) 

CRPC46 Potentiation of  WNT signals 

APC, adenomatous polyposis coli protein; CRPC, castration-resistant prostate cancer; DKK, 
Dickkopf-related protein; FZD, frizzled; ROR, tyrosine-protein kinase transmembrane 
receptor; RSPO, R-spondin; SFRP, secreted frizzled-related protein 
	
Table 2 |  WNT pathway inhibitors in clinical trials 
 
 
Inhibitor Target Clinical trial Phase Ref 
Inhibition of Wnt secretion         
LGK974 (also known as WNT974) Porcupine NCT01351103 I 12,145 
    NCT02278133 I/II 13 
ETC-159 (also known as ETC-1922159) Porcupine NCT02521844 I 14,146 
Regulation of antagonists and agonists         
Adenovirus expressing DKK3 (also known as REIC)  not defined NCT01931046 I/II 15 
OMP131R10 RSPO3 NCT02482441 I 16 
Targeting WNT receptor interactions         
FOXY-5 WNT5A receptors  NCT02020291 I 17 
   NCT02655952 I 18 
OMP-54F28 (Ipafricept) WNT family NCT01608867 I 19,159 
    NCT02092363 I 20,160 
    NCT02069145 I 21 
    NCT02050178 I 22 
OMP-18R5 (Vantictumab) FZD1,2,5,7,8 NCT01345201 I 23 
   NCT01957007 I 24 
   NCT01973309 I 25 
   NCT02005315 I 26 
OTSA101 FZD10 NCT01469975 I 27,165 
UC-961 (Cirmtuzumab) ROR1 NCT02222688 I 28 
    NCT02860676 I 29 
    NCT03088878 I/II 30 
    NCT02776917 I 31 
Targeting nuclear b-catenin partners         
PRI-724 CBP NCT01302405 I 32,185 
    NCT01764477 I 33 
    NCT01606579 I/II 34 

CBP, CREB-binding protein; DKK, Dickkopf-related protein; FZD, frizzled; ROR, tyrosine 
protein kinase transmembrane receptor; RSPO, R-spondin; SFRP, secreted frizzled-related 
protein 
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