
1 
 

EFFECT OF PAIR COALESCENCE OF CIRCULAR PORES ON THE OVERALL 

ELASTIC PROPERTIES.  

L. Lanzoni1, E. Radi2, I. Sevostianov*3 
 
1 Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vivarelli, 10- 41125 

Modena, Italy.  
2 Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, Via Amendola, 2 - 

42122 Reggio Emilia, Italy.  
3 Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88001, 

USA.  

* Author for correspondence: igor@nmsu.edu 
 

 

 

Abstract. 

The paper focuses on the effect of the pair coalescence of circular pores on the overall elastic 

properties. An analytic solution for the stress and displacement fields in an infinite elastic 

medium, containing cylindrical pore with the cross-section formed by two circles, and subjected 

to remotely applied uniform stresses is obtained. The displacement field on the surface of the 

pore is then determined as a function of the geometrical parameters. This result is used to 

calculate compliance contribution tensor for the pore and to evaluate effective elastic properties 

of a material containing multiple pores of such a shape. 
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1. Introduction. 

In the present paper we focus on the effect of the pair coalescence of circular pores on the overall 

elastic properties. The research is motivated mostly be needs to predict properties of porous 

materials obtained by Gasar technology – process consisting of a melting metal in a gas 

atmosphere to saturate it with hydrogen and directional solidification (Shapovalov, 1994; 
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Shapovalov and Boyko, 2004). The pores have cylindrical shape and are nucleated 

heterogeneously. The process is accompanied by pores coalescence. Shapovlov (1998) showed 

that the pore coalescence becomes prominent for Gasar metals with high porosity. The modeling 

of the evolution process of pore coalescence has been proposed by Liu et al (2018). Figure 1 

illustrates the process of the pores coalescence and the resulting shapes of the pores’ cross-

sections in Gasar metals. 

We consider this material in the framework of plane-strain problem and assume that it 

contains aligned cylindrical inhomogeneities of certain cross-sectional shape. Analytical 

modeling of materials with inhomogeneities of non-elliptical cross-section is not well developed 

though many two-dimensional problems have been solved. The main approaches to this problem 

are:  

 Complex variables technique involving conformal mapping of the cross-sectional shape onto 

a unit circle (Kachanov et al., 1994). For many non-elliptical shapes, the transformation  
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that maps conformally the exterior of the inhomogeneity in the complex z-plane into the interior 

of a unit circle in the  -plane, is used, with parameters R, N and na  corresponding to various 

shapes; for the elliptical hole, for example, 1N ,   2baR   and    babaa 1 . For 

“irregular” shapes, a numerical mapping technique can be used (see Tsukrov and Novak, 2004); 

 Finite element method, that is more universal, applies to inhomogeneities of arbitrary elastic 

properties, including anisotropic ones, but has lower accuracy than the numerical conformal 

mapping technique. Comparison of the two methods was given by Tsukrov and Novak 

(2002). 

Compressibility of non-elliptical holes has been first analyzed by Zimmerman (1986) on the 

example of super-circular holes (convex and concave), by Givoli and Elishakoff (1992) and 

Ekneligoda and Zimmerman (2008a) who considered holes with “corrugated” boundaries and by 

Ekneligoda and Zimmerman (2006, 2008b) who considered shapes having n-fold symmetry 

axes. Results for the entire compliance contribution tensor of a non-elliptical hole have been 
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obtained by Kachanov et al (1994) and Jasiuk (1995) for various polygons (convex and concave) 

and Tsukrov and Novak (2002, 2004) for several “irregular” shapes.  

The present paper continues authors’ work (Lanzoni et al, 2018) on the shapes that may be 

obtained by union of two circles of generally different diameters (Figure 2). We consider 

isotropic elastic plane containing two circular holes of radii 1r  and 2r  (that may overlap). Thus, 

the pore shapes may be non-convex and even not simply connected. Instead of the conformal 

mapping technique (that may be a problem in this case) we use an analytic approach based on 

Fourier series representation or Fourier transform in bipolar coordinates (Jeffery, 1921),   ,  

(Figure 3),  related to the Cartesian coordinates  21 , xx  by  
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Note, that  -coordinate is multi-valued with a discontinuity of 2 across the segment 

connecting the foci. Hereinafter, we assume   . The two poles of the bipolar 

coordinates are located on the x1 axis at distance a , with 0a  (the circles in Figure 2 a refers 

to 01   and 02   whereas Fig. 2b shows two overlapping circles with 01   and 02  ).  

First, we consider a single inhomogeneity and solve Neumann boundary value problem in 

two-steps: (1) assessment of the fundamental displacement field related to a remotely applied 

uniform stress in a homogeneous body and (2) fulfillment of the boundary conditions by adding 

an extra-term to the fundamental field. This solution is used to construct the compliance 

contribution tensor of a pore of interest by calculating proper contour integrals. The compliance 

contribution tensor can be used to calculate overall elastic properties of a material containing 

parallel cylindrical holes with the cross-sections shown in Figure 2. 
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2. Two separate circular holes. 

In this Section we briefly summarize the known results about elastic fields in an infinite plate 

containing two separate circular holes of radii 1r  and 2r  in an infinite plane separated by the 

ligament  between them. For the case of two holes of the same radius the problem was solved 

by Ling (1947, 1948a) for remotely applied normal loadings and by Karunes (1953) for remotely 

applied shear loading. Radi (2011) generalized their solutions for two holes of different radii.  

 The geometry of the problem is completely determined by two independent geometrical 

parameters: for example, ratio of the radii 1 2r r   and relative length of the ligament 1r    

(Figure 4): 

    1 1 1 1 21 0.5cx r r r r           ;   1 1 1arccosh cx r  ;   1 1sinha r  ;  

  2 2arcsinh a r   ;  2 2 2coshcx r   .                (2.1)  

The plane is subjected to the action of remotely applied stresses 11
 , 22

 , and 12
 .  

The traction free boundary conditions  

 0      for 1 2,                        (2.2) 

have to be satisfied at the holes.  

The stress field, corresponding to the biharmonic Airy stress function  is given by Jeffery 

(1921): 
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where  

  cosh cos h
a


    .             (2.5) 

The Airy function  can be represented as the sum of a fundamental stress function  0 , which 
gives the uniform stresses applied at infinity but does not yield vanishing tractions on the circular 
boundaries, and an auxiliary stress function  1 required to satisfy the boundary conditions 
(2.2), which gives zero stresses at infinity. Correspondingly,  
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    0 1h h h     ,              (2.6) 
where 
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Functions ( )n   and ( )n   are given by 

( ) cosh( 1) cosh( 1) sinh( 1) sinh( 1) ;
( ) cosh( 1) cosh( 1) sinh( 1) sinh( 1) .

n n n n n
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.      (2.9) 

The integration constants B, K, An, Bn, Cn, Dn, an, bn, cn, dn are given in the Appendix A-1.  

The components of the corresponding displacement vector are given by Jeffery (1921) 
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where  = 3 – 4  or  = (3 –  for plane strain or plane stress state, respectively, and  
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Figures 5-7 show distribution of the dimensionless stress fields in a plate subjected to a remote 

stresses 11
 , 22

  and 12
 , respectively. Figure 8 illustrates distribution of the dimensionless 

hoop stress along the contours of the pores for some values of 2 1r r  , 11  r . Figure 9 

provides the same information for different values of   and 2  .  
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3. Two overlapped circular holes. 

The modeling of two overlapping circles differs considerably from the case discussed in Section 

2: the circular contours represent two curves of constant   (0  1 <   2 < 0) for 

  ,  (Figure 8) In this case, Fourier transforms have to be applied instead of the Fourier 

series (see, for example, Ling, 1947, 1948b and Dutt, 1960).  The geometry of the problem is 

completely defined by three independent parameters, e.g. coordinates yc1, yc2 of the centres of 

two circles and the focal distance a.  Then, arctan a/yc1, arctan a/yc2, r1 = a/sin |r2 = 

a/sin | and the area included in the contour reads A = r1
2 ( – 1) + r2

2 ( + 2) + a2 (cot 1 – 

cot2). In contrast to the case of 2 separate holes, here the ligament turns out to be a negative 

quantity defined as  = yc1  r1  yc2  r2 

The form of the fundamental stress function is the same as in (2.7), whereas the auxiliary stress 

functions are taken as follows: 

 (1)

0
( , )cos ( , )sinh F s s +G s s  ds,
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,                       (3.1) 

where 

 ( , ) ( )sin sinh ( )cos cosh ( )sin cosh ( ) cos sinhF F F FF s f s s k s s g s s h s s          ; 

 ( , ) ( )sin cosh ( ) cos sinh ( )sin sinh ( )cos coshG G G GG s f s s k s s g s s h s s          .(3.2) 

Note also that a symmetric layout is retrieved if 2 = 1: In such a case one has gF(s) = gG(s) = 

hF(s) = hG(s) = 0 (see Ling (1948b) for a plate with symmetric overlapped holes subjected to 

normal loadings and Karunes (1953) for the shear loading). For remotely applied shear loading it 

is h  

The fundamental stress function (2.7) can be rewritten, after some algebra, in the following 

form:  
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where  = 11
 22). 

The traction-free boundary conditions at the hole are 
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  = 0,    = 0,       for  ;

 h h    for                 (3.4)

The first two conditions can be reformulated for the auxiliary stress functions hand 

has 
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The last of the conditions (3.4) yields 
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 .                  (3.7) 

Taking the derivative of expression (3.6) with respect to  and using (3.5) one can write 

 
2

21 0h
  
    

,    for ,           (3.8) 

and in turn, integration of  (3.8) with respect to  gives 
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21 0,ih C

 
    

 for  = i  (i = 1, 2).          (3.9) 

Expressions (3.5) and (3.9) can now be used to find unknown functions fF(s), fG(s), kF(s), kG(s), 

gF(s) and hF (s). Constant K follows from condition (3.7) for normal loading. 

Condition (3.6) gives (for           

 

030

2

12 30

(1 cos cosh )sin sinh( , ) sin sinh
(cosh cos )

sin 2 sinh 2 ;
(cosh cos ) (cosh cos )

(3 4 cos cosh cos 2 cosh 2 )( , ) cos ,
2 (cosh cos )

F' s s  ds = B

  K

s G' s s  ds =
 

 

 

    
     

  
 


     

     
  

  





                           (3.10) 

where the apex denotes derivative with respect to coordinate  whereas from condition (3.9) one 
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has 
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Eqns (3.11)1,2 for    yield 

 22 0 122 cos , sin ,i iC K B       C          
             for  = i  (i = 1, 2).  (3.12) 

Thus, from eqns (3.10), (3.11), taking into account results (3.12) one has for  = i  (i = 1, 2) 
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Note that, through the results reported in Appendix A-2, all the Fourier transforms involved in 

the equations (3.13)-(3.14) can be evaluated in closed form, thus allowing to find the analytic 

expressions of functions F(s, ), G(s,) and their derivatives: 
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System (3.15) imposed for  = i  (i = 1, 2) allows assessing functions fF(s), fG(s), kF(s), kG(s), 

gF(s), gG(s), hF(s) and hG(s) and, in turn, the stress and displacement fields according to eqns 

(2.4) and (2.10), respectively. For the case of two equal overlapping holes  the 

expressions of fF(s), kF(s) reported in Ling (1948b) for normal loadings and fG(s), kG(s) reported 

in Karunes (1953) for shear loadings are exactly retrieved (actually, a misprint occurred in 

expression (16)1 of Fn reported in Karunes (1954), in which the square in “n2” must be removed). 

Figures 10-12 illustrate distribution of the dimensionless stress fields in a plate subjected to a 

remote stresses 11
 , 22

  and 12
 , respectively. 

 

4. Evaluation of the compliance contribution tensor. 

Compliance contribution tensors have been first introduced by Horii and Nemat-Nasser (1983) 

for pores of ellipsoidal shape (explicit formulas connecting compliance contribution tensor and 

Eshelby tensor for an ellipsoidal pore are given in the appendix of the mentioned paper). 

Components of this tensor for various two-dimensional pores were given by Kachanov et al 

(1994) and for ellipsoidal inhomogeneities – by Sevostianov and Kachanov (1999). This tensor 

connects the extra strain due to the presence of the inhomogeneity under given remotely applied 

stresses. Indeed, if we consider a representative volume element V  containing an isolated 

inhomogeneity of volume 1V , the average, over representative volume V  strain can be 

represented as a sum  
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 εσSε  00 :                     (4.1) 

where 0S  is the compliance tensor of the matrix and 0σ  represents the uniform boundary 

conditions (tractions on V  have the form nσt 
0

V  where 0σ  is a constant tensor); 0σ  can 

be viewed as far-field (“remotely applied”) stress. The material is assumed to be linear elastic; 

hence the extra strain due to the inhomogeneity ε  is a linear function of 0σ :  

 01 σHε :
V
V                      (4.2) 

where H  is a fourth-rank compliance contribution tensor of the inhomogeneity. If the 

inhomogeneity is a pore, the extra overall strain due its presence is given by the well-known 

expression in terms of an integral over the pore boundary (Hill, 1963):  

  1=
2 V

dS
V 

 ε un nu            (4.3) 

Thus, Neumann boundary value problem has to be solved in order to find the compliance 

contribution tensor of a pore.  

 

4.1. Two separate circular inhomogeneities (symmetric with respect to x1 axis) 

The components of the unit vector and the infinitesimal arc length on the contour of the two 

circles with const  are: 
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where   isthe polar angle measured from 1x  axis as shown in Figure 13a. In the Cartesian 

coordinate system (x1, x2), the components of the unit vector, the displacement field and the 

infinitesimal arc length on the contour of the two separate circles with  = const  are 

 u1 =  ucosusinu2 =  usin ucos    (4.5)

with  

 cosh cos 1cos sign( );
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    sign( )
cosh cos

i
i

i

a ds rd d
   

  
,         (4.6) 

and 

for  = 1 > 0: n1 = cosn2 = sin 

for  = 2 < 0: n1 = cosn2 = sin       (4.7) 

Now, using results of the Section 2 and formulas (4.3) compliance contribution tensor can be 

calculated for two separate pores (the integral has to be evaluated numerically).  

 

4.2. Overlapped circles symmetric with respect to x2 axis. 

The component of the unit vector and the infinitesimal arc length on the contour at const  are 
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For the overlapping holes (Fig. 13 b), one finds 

 u1 = usinucosu2 =  ucos usin     (4.9) 

 for  = 1 > 0: n1 = cosn2 = sin       (4.10) 

 for  = 2 < 0:    n1 = cosn2 = sin  
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       (4.11) 

Taking into account that the area of the pore cross-section   22sin 1
2   iii rA , one can 

use results of Section 3 and formula (4.3) to evaluate the compliance contribution tensor.  

 Figure 14 illustrates the dimensionless components of the compliance contribution tensor in 

dependence on 1r  for different values of 2 1r r .  

 

5. Concluding remarks. 

In this paper, we calculated compliance contribution tensor of two separate or intersecting 

circular pores. For this goal, we first considered two holes and solved Neumann boundary value 
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problem in two-steps: (1) assessment of the fundamental displacement field related to a remotely 

applied uniform stress in a homogeneous body and (2) fulfillment of the boundary conditions in 

the problem with pores by adding an extra-term to the fundamental field. This solution was used 

to construct the compliance contribution tensor of the combination of two circular pores by 

calculating proper contour integrals. The case /r1 = 2 and r/r1 = 1 corresponds to an isolated 

circular inhomogeneity. In this case, the well known result for the compliance contribution 

tensor of a circular hole (see Horii and Nemat-Nasser, 1983) is covered. The compliance 

contribution tensor can be used to calculate overall elastic properties of a material containing 

parallel cylindrical holes with the cross-sections shown in Figure 2 (see Kachanov and 

Sevostianov, 2018) 
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Appendices 

A-1. Integration constants used in Section 2.  
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2 cosh ( ) [ ( ) ( )]tanh ( ) ( ) ( )B f f g g
D
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where: 

 f() = 2K e sinh  ( 22 
11 ) e2 sign , 

 g() = 
2
K  cosh 2 e( 11 cosh  + 22 sinh ),     (A1.5) 
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2

1
2

21   (A1.6) 

 a1 = 12 )(2sinh
2cosh2cosh

21

1
||2

2
||2 21


  ee ,  (A1.7) 

 c1 = 12 )(2sinh
2sinh2sinh

21

1
||2

2
||2 21


  ee .  (A1.8) 

 
 1 2 1 2 1 2

1 2 1 2 1 2

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n nn
n

n n n n

A P  P  

Q
H

 Q

        

      



  
  (A1.9)  

 




1 2 1 2 1 2

1 2 1 2 1 2

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n n

n n n

n
n

n

B  
H

P P  

Q  Q

 

 

        

      



  
 (A1.10) 

 




1 2 1 2 1 2

1 2 2 1 1 2 1 2

1 ( ) ( ) ( ) ( )

[ ( ) ( ( ) )] ( ) ( ) ( )

, ,

, 2 1 * , *

n n n n

n n n

n

n

n

U U

V cosh 

C

n
H

n V

        

        



  



  
 (A1.10) 



16 
 

  




1 2 1 2 1 2

1 2 1 2 1 2

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n

n

n
n

n n n

nD  
H

U U

V  V

 

 

        

      



  
 (A1.11) 

 




11 2 1 2

1 2

2

1 221

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n
n

n

n n n n

na
H

P  P

Q  Q

  



     

        
 (A1.12) 

 




21 2 1 2

1 2

1

2 11 2

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n

n

n
n

n n n

nb  
H

P P

Q  Q

 

 

        

     



  
 (A1.13) 

 


  

1 2 1 2

1 2 2 1 1

2 1

2 1 2

1 ( ) ( ) ( ) ( )

( ) ( ( ) ) ( ) ( ) ( )

, ,

, 2 1 * , *

n n n n

n

n

n

n

n n

c U  U

V cosh n n  V

H
        

          

 

  
 (A1.14) 

 




21 2 1 2

1 2

1

2 11 2

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, * , *

n n n

n

n
n

n n n

nd  
H

U U

V  V

 

 

        

     



  
 (A1.15) 

for n ≥ 2, where  
 

 Pn(, ) = 
1

1
n

[sinh(+ n) sinh n( ) + n sinh(+ n) sinh()], (A1.16) 

 Qn(, ) = cosh(+ n) sinh n()  n cosh(+ n) sinh(), (A1.17) 

 Un(, ) = 
1

1
n

cosh(+ n) sinh n( ) + n cosh(+ n) sinh()], (A1.18) 

 Vn(, ) = sinh(+ n) sinh n()  n sinh(+ n) sinh(), (A1.19) 
 Hn = 2n {sinh2[n(12)]  n2 sinh2 (12)}.  (A1.20) 
 n*() = 2K ensinh  ( 22 

11 ) n gn() sign , (A1.21) 
 n() =  en[2 K (cosh   n sinh ) ( 22 

11 ) n (n2 1) sinh ] (A1.22) 
 n*() 2 12  n gn() (A1.23) 
 n() = 2 12  n (n2 1) ensinh . (A1.24) 
Finally, the constant K follows from the condition  

 





1

)(
n

nn BA = 0.   (A1.25) 

after the introduction of the constants An and Bn, for n ≥ 1. 
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A-2. Useful Fourier transforms 

The following definite integrals have been used to find expressions (3.13-3.14): 

30

(1 cos cosh )sinh ( cosh ( | |) sinh ( | |) cot | |)sin
(cosh cos ) 2 sinh

s s ss  ds = s
s

           


    ; (A2.1) 

20

sinh | cos sinh sinh ( | |) sin | |sinh 2 2 2sin 2
(cosh cos )(cosh cos ) sinh sin 2 | |

ss s |   s
s  ds =

s  


 
     

 
        ;    (A2.2) 

0

sinh ( | |)cos =
(cosh cos ) sinh sin | |

i

i i

s   s  d  
s  

   
 

     ;        (A2.3) 
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i

i i
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2 20
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i i i

i i
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0

sinh | |
cosh cos 2log( )cos =
cosh cos cosh

2

i
i

i

s   
s  d  

s s



          
    

 
 

 ;      (A2.6) 

2 20
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2 2

3 30
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2

20

cosh ( |) cot | | csc sinh ( |)cosh cos( )
(cosh cos ) sinh sin | |

i i i i

i i

s s  |  s  |  s  d  = 
s  

       
  

     .            (A2.14) 

 

 



 
 
Figure 1. (a) Pores structure in Gasar Ni-15%Al, intermetallic compound (shape of pores is almost 
cylindrical, from Drenchev and Sobczak, 2009); (b) and (c) evolution of two pores coalescence in 

Gasar copper (from Liu et al, 2018). 



 

 
 

Figure 2. (a) two separate circular holes, (b) cross-section formed by two coalesced circular pores of 
generally different radii. 

 
 



 

 
 

Figure 3. Sketch of the bipolar coordinate system. 
 
 
 
 



 

 
Figure 4. Sketch of an infinite plate with a) two separate holes and b) two merging holes subjected 

to remote normal 11, 22 and shear 12 stress fields along the principal directions x1, x2. 
 
 
 
 
 



 
 

       

  
Figure 5. Distribution of the dimensionless stress fields a) 11; b) 11 ; c) 11 in a 

plate subjected to a remote stress in the x1 direction for = 3/5,  = 1.
 
 

a) b) 

c) 



 

            

  
Figure 6. Distribution of the dimensionless stress fields a) 22; b) 22 ; c) 22 in a 

plate subjected to a remote stress in the x2 direction for = 3/5,  = 1.
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c) 



 

      

  
 

Figure 7. Distribution of the dimensionless stress fields a) 12; b) 12 ; c) 12 in a 
plate subjected to a remote shear stress in the x1x2 plane for = 3/5,  = 1.
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c) 



     

    

   
Figure 8. Dimensionless hoop stress  along the contour of the hole a) with  = 1 and b) with  

= 2 for some values of  and  = 1. 
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Figure 9. Dimensionless hoop stress  along the contour of the hole a) with  = 1 and b) with  
= 2 for some values of  and  = 2. 
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Figure 10. Distribution of the dimensionless stress fields a) 11; b) 11 ; c) 11 in a 

plate subjected to a remote stress in the x1 direction for = 1/2 and = 1. 
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Figure 11. Distribution of the dimensionless stress fields a) 22; b) 22 ; c) 22 in a 
plate subjected to a remote stress in the x2 direction for = 1/2 and = 1. 
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Figure 12. Distribution of the dimensionless stress fields a) 12; b) 12 ; c) 12 in a 

plate subjected to a remote shear stress in the x1x2 plane for = 1/2 and = 1. 
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Figure 13: Sketch of the polar coordinate systems used to perform the circular integrals involved in 

expression (4.2) for the components of the extra overall strain. 



 

  

    
Figure 14. Normalized components of the cavity compliance tensor a) H1111  b) H1122; c) 

H2222 d) H1212 for some values of r/r1 Reference is made to plane strain condition. 
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