Earliest compositional bifurcation of planetary building blocks

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

Rocky planet diversity shaped during accretion

Volatile inventory altered during accretion

²⁶Al-heated icy planetesimals forming planets

Two primordial reservoirs, thermally processed

Dominant growth mode

Planetesimal swarm compositional evolution and match with meteorite record

Rapid accretion in midplane-quiescent disks

But protracted growth for the inner planets?

Rudge+ 10; Dauphas & Pourmand 11

Kruijer+17

- Hard to form a 20 M_{Earth} planet in ≈ 1 Myr
 - Streaming instability (SI) requires favourable local conditions ≈ 10⁵-10⁶ yrs
 - ► SI-generated size-frequency distribution $(R_{\text{max}} \approx 250 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- ➡ Early-formed Jupiter scatters >> M_{ast.-belt} into inner Solar System (need Grand Tack)

- Hard to form a 20 M_{Earth} planet in ≈ 1 Myr
 - ► Streaming instability (SI) requires favourable local conditions ≈ 10⁵-10⁶ yrs
 - ► SI-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- ➡ Early-formed Jupiter scatters >> M_{ast.-belt} into inner Solar System (need Grand Tack)

Brügger+ 18, Bitsch+ 19, McNally+ 19

- Hard to form a 20 M_{Earth} planet in ≈ 1 Myr
 - ► Streaming instability (SI) requires favourable local conditions ≈ 10⁵-10⁶ yrs
 - ► SI-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- ➡ Early-formed Jupiter scatters >> M_{ast.-belt} into inner Solar System (need Grand Tack)

Grain size threshold to be blocked by Jupiter

- Hard to form a 20 M_{Earth} planet in ≈ 1 Myr
 - Streaming instability (SI) requires favourable local conditions ≈ 10⁵-10⁶ yrs
 - ► SI-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- ⇒ Early-formed Jupiter scatters >> M_{ast.-belt} into inner Solar System (need Grand Tack)

- Hard to form a 20 M_{Earth} planet in ≈ 1 Myr
 - ► Streaming instability (SI) requires favourable local conditions ≈ 10⁵-10⁶ yrs
 - ► SI-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- → Early-formed Jupiter scatters >> M_{ast.-belt} into inner Solar System (need Grand Tack)

Grand Tack

No secondary dynamics necessary

Cause for reservoir separation?

Trinquier+ 07, 09; Warren 11
Kruijer+17