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Summary 

The development of safe and effective nanomaterials (NMs) is highly important for both industry and 

regulatory agencies, especially considering their continuously growing economic potential, and their 

wide range of industrial, consumer, medical, and diagnostic NM applications. The basic methodology 

for performing risk assessment (RA) for NMs is similar to the philosophy used for conventional 

chemicals RA, i.e. compare the level of exposure with the hazard assessment. However, exposure and 

hazard assessments for NMs are more challenging than for conventional chemicals, because of the 

complex NM structures, which are dynamic as many of their properties are context-dependent 

(extrinsic), and can be modified or evolve during their life-cycle.  

In this deliverable (D6.1) we describe a number of computationally oriented tools and methodologies 

that can be used for exposure modelling, hazard prediction and eventually for RA. Additionally, we 

present checklists and best practices for the most efficient use of the tools and workflows, as well as 

optimal combinations of these tools for performing RA for NMs. We report here on the current status 

of development and integration of existing RA tools into the NanoCommons knowledge infrastructure, 

and outline the strategy that will be used in the subsequent months of the project for further 

development, for supporting case studies to demonstrate the utility of the RA tools, and Transnational 

Access (TA) activities.  

In particular, this deliverable presents the following modelling components that can either be used 

separately for particular tasks or in combination for the creation of complete RA workflows: 

i)   The web-based GUIDENano guidance tool, part of the NanoCommons framework, which allows 

users to apply the most appropriate RA and risk mitigation strategy for NM-enabled products 

throughout their life cycle. 

ii)    Available tools and strategies for deriving points of departure (PODs) from dose-response data, i.e. 

levels of exposure that have low effect or no effect on humans or in the environment. 

iii)   The strategy for the development of novel grouping/read across approaches, which combined with 

the repository of nanoQSAR models described in deliverable report D5.4 offers a variety of NM 

hazard prediction tools. 

iv)   The tools that have been developed so far for the integration of biokinetics models and especially 

Physiologically-Based PharmacoKinetics (PBPK) models, which are excellent tools for estimating 

internal exposure of organisms to NMs. 

v)   Bayesian modelling approaches, which can combine both hazard and exposure information and build 

complete RA workflows with the additional advantages that they can 1) provide predictions even 

in cases of missing data (which is typical for NMs) and 2) reveal information about mechanisms of 

actions. Bayesian models are perfectly combined with the emerging concept of Adverse Outcome 

Pathways (AOPs). 

Integration of these models and RA tools early in the NanoCommons project lifetime facilitates their 

utilisation in the development of demonstration case studies to showcase the power and utility of the 

NanoCommons e-infrastructure for nanoinformatics to researchers, and more importantly, to industry 

and regulatory stakeholders, via the case study and stakeholder workshop activities of WP9.    
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1. Introduction 

Nanotechnology is among the fastest growing technologies over the past few years, due to a wide range 

of applications of engineered NMs. However, the scientific community, the regulatory agencies and the 

industrial sector that designs and produces NMs are highly concerned about the potential adverse 

effects of NMs on human health and on the environment, which may be different to those arising from 

conventional chemicals or from micrometric particles (with bigger sizes). Due to their size in the 

nanoscale, NMs have a greater surface area, which enhances their chemical reactivity and may result 

in higher production of reactive oxygen species (ROS), and eventually lead to toxicity. The size and 

shape of NMs also allows them to move through the body and reach various organs and tissues. The 

distinct features of NMs and their effect on safety have attracted the interest of many researchers and 

practitioners in the nanotechnology area and drove the development of various RA frameworks, 

specific to NMs. 

Oomen at al. [1] published a comprehensive and detailed review, addressing the aim, regulatory 

readiness, advantages, and disadvantages of 14 different RA frameworks and their applicability for 

NMs. All frameworks assessed followed the risk assessment paradigm, consisting of hazard 

identification, exposure assessment and risk characterisation, but differed in their aims, applicability 

domains, basic assumptions and alignment to one or more regulations. It is stated in this review paper 

that due to NM complexity it is not possible to construct an adequate RA framework to suit all routes 

of exposure for mammalian and ecological receptors.  

In another review paper [2] the inclusion of in silico methods and approaches in RA frameworks is 

highlighted. Towards this direction, OECD has recently published a framework for Integrated 

Approaches to Testing and Assessment (IATA) [3], based on the concept of AOPs, which is based to a 

large extent on in silico modelling. The proposed framework combines nicely three different modelling 

methodologies to form a RA strategy. An exposure model predicts the external concentration, a 

toxicokinetics model determines the concentration of a substance in the various organs of the species 

of interest and the likelihood that a chemical reaches the target organs and a nanoQSAR or a 

grouping/read-across approach predicts if an AOP will be triggered.   

Although the number of tools and models for NMs RA is growing, their use by industrial organisations 

and regulation agencies is not mainstream yet. Lack of sufficient data to support all steps required for 

RA is certainly one reason. We believe that one additional missing element is sufficiently described RA 

best practices and integrated user-friendly workflows that can guide users through the RA tools and 

provide navigational support on how to combine and link the different tools and approaches in order 

to arrive at reliable and well-validated RA and decisions. The NanoCommons project aims to develop 

pipelines and workflows that will fill this gap, and indeed to automate the whole process of RA, 

including provision of access to high quality data to run the models via the NanoCommons Knowledge 

Base.  

At the heart of the NanoCommons RA infrastructure is the GUIDEnano tool, which is an extensive risk 

assessment tool, first developed during the EU FP7 project GUIDEnano. Since then, the GUIDEnano tool 

is continuously being extended and improved, through participation in various EU-funded projects. In 

addition, NanoCommons partners are developing and integrating several other modelling components 

that can be used either alone or in combination, to construct risk assessment pipelines. More 

specifically, NanoCommons partners are designing novel grouping/read-across approaches based on 

http://www.guidenano.eu/
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mathematical programming, which automate and optimise the Read Across Assessment Framework 

(RAAF) proposed by ECHA and has been particularly tailored to the specific requirements of NMs [4]. 

Partners are also developing tools for creating and integrating biokinetics models in the Jaqpot 

modelling platform, which is also a major part of the NanoCommons e-infrastructure. Through Jaqpot, 

we are also integrating the PROAST software developed by RIVM is also being integrated into the 

NanoCommons RA workflow. PROAST offers an implementation of the BenchMark Dose (BMD) 

approach, which is the most preferred dose-response assessment method for calculating Derived No-

Effect Levels (DNELs) based on dose-response data. Work has also started on developing services for 

creating and hosting Bayesian causal models, which is an alternative approach to construct RA 

frameworks combining into the same network exposure and hazard information and RA.  

As highlighted above, in this deliverable the aforementioned tools are described, their current status 

of implementation and integration documented, and workflows that can combine these tools in the 

most efficient way in order to arrive at reliable and validated decisions are presented. The task and 

WP6 partners are also in the process of describing the next development steps (to be implemented in 

the second period of the NanoCommons project) and how the different tools can serve the TA needs 

and WP9 requirements, via collaboration with WP9 partners to develop and implement demonstration 

case studies for NMs RA informatics approaches.     

  

http://app.jaqpot.org/
http://app.jaqpot.org/
https://www.rivm.nl/en/proast
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2. General Workflow 

General concept 
NanoCommons will provide a unified, structured, end-to-end approach for NMs RA by linking together 

strategies for exposure assessment, hazard identification and quantification and risk analysis. The goal 

of the NanoCommons e-infrastructure platform is to offer a variety of nanoinformatics-based solutions 

for RA depending on the desired level of detail and the availability of relevant reference information 

(in-house from the user, or accessed via the NanoCommons Knowledge Base, see also Deliverable 

Report D4.4 on the first implementation of the NanoCommons Knowledge Base). The NanoCommons 

approach integrates state-of-the-art tools and methodologies in a hierarchical way as a means to 

perform the risk calculation in an evidence-based manner, following the standard REACH and ECHA 

guidance frameworks. 

 

Course of action 
NanoCommons partners opted to focus on quantitative RA throughout the NM life cycle using a 

process-specific basis, calculating initial exposure estimates, hazard reference points and the respective 

Risk Characterization Ratios (RCR), yet allowing for the assessment of the effect of a range of mitigation 

measures (Figure 1) to reduce the overall final risk. The various methodologies involved in Figure 1 are 

described next. More detailed information on the NanoCommons tools that are used to implement the 

various stages in this workflow, such as GUIDENano and predictive models hosted on Jaqpot platform, 

are reported in Sections 3-7 of this deliverable. 

 

 

Figure 1:  Overview of the NanoCommons nanoinformatics based RA framework.  A key aspect of the workflow is 

integrating the different aspects, and automating the process to enable the RA to be run end-to-end.  
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Exposure estimation 
At the core of this approach is GUIDENano, a web-based guidance tool developed through the  EU FP7 

project GUIDEnano, that performs in-depth RA of NMs and nano-enabled products throughout their 

life-cycle, i.e. from production to waste management.  For this purpose, it requires basic information 

about the NM, such as the physicochemical properties, composition, size and quantity, to be provided 

as input by the user.  In order to determine the exposure and hazard, the GUIDEnano tool offers an 

activity list (i.e. all processes involved during the NMs life cycle such as pouring, abrasion,...) spanning 

more than 200 processes to choose from, and includes a collection of state-of-the-art exposure models 

that take into account the NM’s fate and the changes that NMs undergo in different environments.  

The GUIDEnano tool currently performs very detailed external exposure simulations that enable 

prediction of environmental concentrations (Predicted Environmental Concentration, PEC) or human 

exposure (for example ingested, dermally applied or inhaled dose of NMs following the release of NMs 

in a working facility or in the environment).   

 

When it comes to human risk assessment, the internal exposure is the main driver of the risk.  

Therefore, for the most accurate determination of the health risks of NMs and to perform a robust 

human RA, it is essential to estimate the internal exposure [5].  Internal exposure is the mass or 

concentration of the NMs that reaches the systemic circulation, the organs and tissues of an individual, 

following the injection, ingestion or inhalation of the NM. In order to perform internal exposure 

estimations, information on the toxicokinetics of the NMs (the absorption, distribution, metabolism 

and excretion processes) is needed.  Excellent modelling tools for such simulations already exist, 

including compartmental models and more specifically the Physiologically-Based Pharmacokinetic 

(PBPK) models. PBPK models allow RA to be performed on an individual basis, by adapting the 

physiological parameters to the personal characteristics of each individual (sex, age, weight). They can 

also fully integrated and combined with the concept of AOPs, as they provide concentration-time 

profiles for all important organs of the individual and thus for the organs where AOPs are initiated. 

Within the NanoCommons project, and in particular through the Jaqpot computational platform, we 

infrastructure for developing, storing and sharing PBPK models has been developed, which is being 

integrated into the overall RA framework, as illustrated schematically in Figure 1. 

 

Hazard assessment 
Hazard assessment is concerned with the determination of threshold limits that define safe use and 

exposure levels for NMs. According to REACH, the following occupational and environmental threshold 

limits (Final Safety Limit Values (FSLVs)) represent the reference values for assessing whether risks from 

NMs (or indeed other chemicals) are controlled: 

● Predicted no effect Concentration (PNEC): Concentration of the substance below which 

adverse effects in the environmental sphere of concern are not expected to occur;  PNECs can 

be derived for long term or short term exposure).  

● Derived No-Effect Level (DNEL): Level of exposure to a substance above which humans should 

not be exposed; DNELs need to be derived for each relevant exposure pattern (population, 

route, and duration of exposure) and each relevant health effect (local and systemic effects). 

● Occupational Exposure Limit (OEL): maximum admissible concentration at workplace, averaged 

over a specific period of time. 

 

http://www.guidenano.eu/
http://app.jaqpot.org/
file:///C:/Users/LynchI/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/TCAXMP3A/(https:/www.chemsafetypro.com/Topics/CRA/How_to_Calculate_Predicted_No-Effect_Concentration_(PNEC).html
https://www.chemsafetypro.com/Topics/CRA/How_to_Derive_Derived_No-Effect_Level_(DNEL).html
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In some cases, these limits are available in material safety data sheets (MSDS), and/or the registration 

dossiers for REACH. However, in most cases, due to the absence of formal limits, and the lack of 

available epidemiological data, the FSLV should be estimated from any available information. In 

NanoCommons three alternative but complementary methodologies for hazard quantification are 

considered and integrated: 

 

1. Dose response modelling: On the condition that toxicological dose-response data for the NMs are 

available, Dose-response modelling and specifically the BenchMark Dose (BMD) approach can 

provide the dose corresponding to a predefined BenchMark Response (BMR), which is the 

concentration (typically a percentage, eg. 5%) where adverse effects start to emerge, evaluating 

the parameters that contribute to it at the same time. The BMD is derived from the estimated 

dose-response curve, taking into account the respective statistical uncertainty in the estimate and 

considering all models that are compatible with the data. In practise, the lower confidence limit, 

namely the BMDL, is provided to the user to be further employed as a reference point (RP, also 

called the point-of-departure (PoD)), to derive a health-based guidance value. For this purpose, 

we have integrated the gold standard PROAST tool, available from RIVM, on the Jaqpot platform, 

offering a complete BMD workflow.’ 

2. Predictive modelling: There are two methodologies for developing models for predicting adverse 

effects of NMs: nano-Quantitative-Structure-Activity-Relationship (nanoQSAR) models and read-

across methods. The nanoQSAR modelling method is discussed and the relevant tools offered by 

NanoCommons partners were described in detail in deliverable report D.5.4. Read-across non-

testing strategies are employed for the prediction of NM toxicity, in cases where sufficiently large 

datasets are not available for the development of reliable nanoQSAR models. This approach is 

grounded on the empirical knowledge that similar materials may exhibit comparable properties 

and thus, the estimation of the hazardous effects of non-tested NMs can be achieved using data 

within a group of comparable NMs (ECHA, refers to similar NMs of the same composition as 

nanoforms, and currently only supports read-across within a single NM core composition). There 

are two main read-across approaches; the grouping and the analogue approach. In the grouping 

approach, the NM samples are organized into groups of similar compounds. Groups are formed 

considering structural similarities between samples, and it is assumed that due to these 

similarities, the biological or toxic activity of the NMs within a group follows a regular pattern. In 

the analogue approach the prediction is limited to a small area of the data space; one source NM 

can be used for the endpoint estimation for a single or more target NMs, or two or more source 

NMs can be used to make predictions for a single or several target NMs. In this approach, the 

endpoint prediction can be achieved either by applying QSAR methods locally or by implementing 

a (k nearest neighbours) kNN-like algorithm to experimental observations of only a few 

neighbours to the query NM, in order to compute the endpoint prediction. In NanoCommons, we 

are currently developing a novel methodology based on mathematical programming, which keeps 

only the most informative NM descriptors coupled with the optimal definition of the 

“neighbourhood” around the NMs that are considered to be similar to the target NM. We are also 

offering a read-across methodology which is based on kNN clustering. Additional methodologies 

are being developed by project partners and will be presented in detail in the subsequent 

deliverable report D6.2. 

3. Similarity assessment rules: Another strategy for hazard assessment is the approximation of FSLVs 

by employing a set of similarity assessment rules for human and environmental hazard from 
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relevant literature. The GUIDENano platform offers a sophisticated workflow for the assessment 

of the quality, relevance and similarity between the NMs for the candidate toxicity studies that 

are to be used as FSLV resources. The result is a ranked list of the acceptable resources and the 

respective reference values. The corresponding tool submodule also provides further refinement 

of the surrogate FSLVs by taking into account the uncertainty introduced by the source of the 

respective information. This is achieved through the quantification of the dissimilarity between 

the studies and the exposure relevant material by deriving an uncertainty factor, used 

subsequently for deriving a “corrected” FSLV. 

 

Risk assessment 
Finally, a risk score, i.e. a risk characterization ratio (RCR), is calculated for each exposure scenario, by 

comparing the measured or estimated exposure levels and the PNECs for the environment and DNELs 

for human health [6], according to Equation 1: 

 

𝑅𝐶𝑅 ℎ𝑢𝑚𝑎𝑛/𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐷𝑁𝐸𝐿 𝑜𝑟 𝑂𝐸𝐿
   (1) 

𝑅𝐶𝑅 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 =  
𝑃𝐸𝐶

𝑃𝑁𝐸𝐶
 

 

The risk to humans can be considered to be controlled/acceptable if the estimated exposure levels do 

not exceed the appropriate DNEL (i.e, exposure estimate/DNEL<1). Similarly, the risk to the 

environment can be considered to be acceptable if the PEC values do not exceed the PNEC (i.e, 

PEC/PNEC<1). 

 

The GUIDENano tools offers many options for such calculations. For example, to assess a worker’s 

exposure, GUIDENano calculates different short- and long-term exposure estimates and RCRs for the 

different exposure routes, eg. inhalation. The user can also choose from a range of exposure modifiers 

that establish the realistic operational conditions and assess their effect, in the final exposure scenario, 

using the GUIDENano tool. For environmental exposure assessment, a separate risk score for each 

environmental compartment is calculated. When the risk analysis is completed, a highly informative 

graphic is generated by GUIDENano where the risk scale is represented by a chromatic band where the 

green colour corresponds to an RCR value <1, that means that no risk is present under the selected 

conditions whereas the red colour indicates an RCR value >1 that corresponds to the presence of risk 

for human health or the environment.  In the latter case, guidance on risk mitigation measures are 

provided based on the specific NM, product and exposure scenario. 

 

 

 

Workflow description 
The complete workflow for RA, from the user point of view, is depicted in Figure 2. The workflow guides 

the user throughout the process of collecting the relevant information efficiently, allowing for the 

creation of multiple elaborate exposure scenarios (see Appendix 2 - Checklist R1-R8). Data on the NM 

physicochemical properties, exposure conditions, toxicokinetics, fate and hazard related to the given 

NM(s) are incorporated into each scenario.  
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If both the exposure level and the hazard reference point are available then the RCR is calculated in 

one simple step. Apart from the measured exposure level, the user may themselves define an exposure 

value in a way that various hypothetical scenarios can be also evaluated (see Appendix 2 - Checklist R9, 

R12). 

 

However, since the availability of the required information is usually limited, in most cases the user 

needs to calculate an estimate for the exposure level and thus is prompted to enter the collected 

information into the GUIDENano platform. A collection of sophisticated exposure models, hosted in 

GUIDENano, produces accurate estimates of the external exposure level, taking into account the given 

exposure conditions (see Appendix 2 -Checklist R7). These outputs include the NM release activity, the 

NM life cycle, the relevance to the NM source, the exposure route and any exposure modifying 

parameters (see Appendix 2 - Checklist R2-R6 for further details).  

 

In case the internal exposure levels to specific organs or systems needs to be estimated, the relevant 

information is used to run the appropriate PBPK model, integrated in the Jaqpot platform, depending 

on the exposed organism, the exposure route and the organ/system of interest (see Appendix 2 - 

Checklist R8).  

 

To overcome the limitation of low availability of hazard RPs, the NanoCommons workflow integrates 

multiple hazard quantification information sources in a hierarchical manner depending on their 

relevance, quality and accuracy. Thus, the user can choose between the BMD approach (Appendix 2 - 

Checklist R10) offered through Jaqpot, the Read-across models (Appendix 2 - Checklist R11.2-R11.3) 

also hosted on the Jaqpot server, or/and the GUIDENano similarity module (Appendix 2 - Checklist 

R11.4). The comprehensive description of the aforementioned methodologies, models and tools is 

encompassed in the following sections of this deliverable report.  

 

The final output is a list of FLSVs according to the confidence level corresponding to each particular 

resource. The user can choose to use any value available in the list for the RCR computation, either the 

minimum one, representing the worst-case scenario, or the most relevant to the purpose of the RA 

(Appendix 2 - Checklist R13).  Eventually, the user may select available protective controls or exposure 

modification factors to evaluate their effect on the RCR for each assessed exposure scenario (Appendix 

2 - Checklist R14).  
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Figure 2: Flowchart of the NanoCommons nanoinformatics-based RA workflow. 
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3. GUIDEnano tools 

GUIDEnano is an interactive web-based Guidance Tool that aims to guide NM producers and NM-

enabled product manufacturers towards the safe and sustainable design of their NM-enabled products 

[7]. GUIDEnano combines a range of predictive models, multi-level decision trees, and databases to 

derive critical information along the RA and risk mitigation processes. In this deliverable we provide an 

overview of the GUIDEnano conceptual framework and the different modules of the GUIDEnano Tool 

(see Figure 3). The GUIDEnano Tool is still under development, the most relevant ongoing activities are 

connection with existing databases (NanoCommon), the generation of new tailored databases to cover 

existing information gaps (NanoCommons and caLIBRAte EU projects), and additional developments to 

facilitate the usability of the Tool and the incorporation of new research findings to refine the risk 

assessment process (Gracious EU project).  

 

 

Figure 3:  General overview of GUIDEnano conceptual framework. 

 

Application module 

The application module is server based and allows multiple users to access the application and work 

together on a single case in real time. After login, the user can create a case study, work on previous 

case studies, and share the case study with other users. 
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Life cycle activity module 

The life cycle activity module allows a user to define all relevant activities within all stages of the life 

cycle of the NM and nano enabled product/article1. An activity can be defined as every process/action 

occurring during the NMs life cycle, as shown schematically in Figure 4. 

 

  

Figure 4: Exposure along the NMs life cycle, where each step / process is considered to be an activity that may generate a 

release of / exposure to the NM in some form. 

 

The scope of the RA may vary from a single activity up to all activities within the entire product life 

cycle.  An ‘activity’ within the tool is an intentional, man induced and controlled process, such as: 

‘mixing’, ‘drilling’, ‘grinding’, ‘knitting’, ‘wearing’, ‘washing’, ‘spraying’, ‘painting’ etc. An activity is not 

necessarily associated with a release of NMs but can be just a description of an action, for example, 

transport of paint containing NMs from the factory to the users’ house. Also, another vision is that the 

activity can describe a modification of the state/form of the NMs during a process. For example, an 

activity can describe the pouring of nano-TiO2 into a paint matrix and may describe the associated 

release of nano-TiO2 to the air as well as indicate that the NM is now in another state as a 

substance/mixture2. An important output from the activity in terms of RA is that the activity describes 

the NM mass balance with an input, an output and a (potential) release, as shown in Figure 5. 

 

 
1 An article under the EU’s REACH regulation is defined as ‘…an object which during production is given a special 

shape, surface or design which determines its function to a greater degree than does its chemical composition’ 
(Article 3(3)). 
2 A substance under REACH means ‘a chemical element and its compounds in the natural state or obtained by 

any manufacturing process, including any additive necessary to preserve its stability and any impurity deriving 
from the process used, but excluding any solvent which may be separated without affecting the stability of the 
substance or changing its composition’ while a mixture in this case is an intentionally prepared blending of two 
or more constituents  (also called a ‘preparation’).  See also: 
http://www.refac.eu/usefulinformation/definitions.aspx 

http://www.refac.eu/usefulinformation/definitions.aspx
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Figure 5: Example of activity input parameters for TiO2 NMs synthesis and results showing the calculated release into 

compartments (workplace) and consequent exposure to the worker. 
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It should be noted that an activity is described as a function of its scale, the energy involved, life cycle 

stage, several parameters to characterize its duration and frequency, redundancy, and materials 

release rate. The number of activities is not limited and can describe complex processes such as 

weathering of an outdoor painted wall during a use time of 20 years as well as simple process like paint 

drying. The Activity framework is directly correlated to the (nano)materials and compartment 

frameworks, described below. 

 

 (Nano)material module 

The (nano)material module allows a user to define all relevant materials: substances, nano-objects, 

mixtures, and nano enabled products (or articles) present during the NMs life cycle. User defined 

materials can be structured/mixed and reused as a constituent of another material using the ‘proxy’ 

concept. All defined materials need to be described including the under-lying components, chemicals 

and their role. Physical, chemical and toxicological parameters can be included for each material (e.g. 

shape and size, physical and surface properties, functions, chemical info, reactivity info, classification 

and labelling, toxicity studies). The user can add characterization data for any input (nano)material 

involved in the activity, for example the nano-TiO2 incorporated into paint and the paint matrix, but 

also characterization data for the materials generated during an activity, for example, the release of 

nano-TiO2 embedded in residual weathered paint matrix. The parameters used to describe the 

materials are different if it is an article, substance, mixture, nano-object, nano-structured aggregate or 

nano-structured agglomerate. On the basis of the material constituents, information entered by the 

user, the tool generates a series of graphical schemes to illustrate the NM composition and 

arrangement (e.g.  core, shell, wall or coating) including a 2D schematic view of the described materials 

(Figure 6). GUIDEnano also provides a quality criterion (0 to 100%) that informs the user on the quality 

of data entry for each material described. The quality score reflects only the level of characterization 

of the materials and is only informative for the user. A good quality score is not a requirement to pursue 

the RA.  The materials defined are used in the other modules.  
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Figure 6: Example of 2D representation of materials.  

 

Compartment module 

The compartment module allows the user to define all compartments and zones involved during the 

NMs life cycle, from the factory, toward the house or the landfill. There are two groups of 

‘compartment-classes’ to consider: ‘system’ and ‘environmental’. The ‘system’ compartment-classes 

are manmade like: ‘sewage system’, ‘wastewater treatment plant’, ‘indoor air (room)’ and ‘landfill site’. 

The group of ‘environmental’ compartment-classes currently in the tool are: ‘fresh water’, ‘estuarine’, 

‘marine’, ‘fresh water sediment’, ‘salt water sediment’, ‘outdoor air’ and ‘soil’. The user can create as 

many compartments as relevant for the scope of their case study. To help the users, the compartments 

are already prefilled with standard values (size, composition, properties), however the user can modify 

the compartment characteristics to fit is own simulation. The user can also specify some ‘zone’ which 

is a logic area/region within a ‘compartment’ (Figure 7). 
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Figure 7: Factory compartment and zone description. 

 

The user can describe the position/size of the zone in the compartments and create connections 

between the zones and between the compartments to assess any exchange. in Figure 7, the 

compartment factory hall is described with the zone of the floor, the near field zone (NF), and the far 

field zone (FF zone, representing the remaining of the factory room) and outside the factory hall. In 

addition, in the Two-Box Nano-specific model developed to model the aerosol behaviour (exposure 

module), we located a box around the source and call this the local control influencing zone (LCIZ) to 

differentiate from the workers-NF zone and the remainder of the room (FF). 

 

Exposure and Hazard module 

From the information input into the activity, materials and compartment module, GUIDEnano 

determines the predicted environmental concentration (PEC) in all compartments and zones described. 

The exposure module enables the user to define multiple ‘exposure scenarios’ for both ‘human 

populations’ and ‘eco-populations’ throughout the entire product life cycle. For each compartment the 

tool automatically introduces a new ‘eco-population’ for it. A PEC is derived for all defined zones in 

each compartment (Figure 8). To obtain the PEC, the user can use the internal model implemented in 

GUIDEnano or enter data obtained from different methods or experimental data. For occupational 

settings, GUIDEnano implemented the Two-Box Nano-specific model (see further description below) 

to estimate the evolution of particle concentration in air with time. The choice of the models to 

estimate the PEC can be different for each exposure path.   
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Two-Box Nano-specific model 

The model is based on the Near-Field (NF) Far-Field (FF) source receptor model developed by Cherrie 

[8, 9] and the algorithms developed by Maynard and Zimmer [10] for estimating the time evolution 

of the particle size distribution (PSD) of NMs. In a two-box (or source-receptor) model the room is 

typically split into two boxes, one is placed either around the worker or NF source, while the other is 

the remainder of the room (FF). We located a box around the source and call this the local control 

influencing zone (LCIZ) to differentiate from the workers-NF zone and the remainder of the room 

(FF), which is referred to as in the original model by Cherrie (Figure 8). 

Since the worker moves around the room, the concentration in the worker NF zone can be estimated 

from the concentrations in the LCIZ and FF zones and the time the worker spends in each zone. The 

concentration in either zone is then a function of agglomeration, diffusion, dispersion, dilution and 

emission, with each size bin in each zone (LCIZ or FF) being described using the following equations: 

 

where LCIZ is a virtual zone that represents the area of influence of any exposure control around the 

source, QLCIZ is the volume air flow between the LCIZ and FF (m3/sec), QFF represents the ventilation 

(m3/sec), and represent the mass emission rate into the LCIZ and FF, respectively in particles/sec, LC 

represents the local control adjustment factor and ɳ represents the size-specific factors (coagulation, 

diffusion and dispersion).  
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Figure 8: Exposure of NMs in the factory compartment using the two-box nano-specific model. 

 

For human exposure, the GUIDEnano exposure scenario is characterized by the type of exposure (i.e. 

indirect or direct), the route of exposure (i.e. inhalation, dermal or oral) as well as the materials 

involved (see materials module). For each defined exposure path, the tools estimate(s) the PEC, which 

is calculated over time and the tools calculate the concentration peak (maximum) and the long-term 

concentration by averaging values over all timepoints. The user can include personal protective 

equipment (mask, gloves, etc.) within the exposure module and/or general exposure controls (e.g. local 

exhaust ventilation) within the activity module and quantify their effect on exposure. Details about the 

connection and between Materials, activity, compartment and exposure modules are presented in 

Figure 9. 
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Figure 9: Workflow to obtain the predicted concentration value from the exposure module. 

 

Hazard assessment is presented as a tiered approach to obtain a Final safety limit value (FSLV) (Figure 

10). In its current version, Step 2 and Step 3 are interchanged, and step 3 in Figure 10 is presented as 

Step 2. This will be modified in the future, to align the system to this figure and to improve usability of 

the tool. The description below refers to the currently implemented structure for hazard assessment. 
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Figure 10: Decision tree developed in GUIDEnano to obtain a FSLV value as the output from the RA. 

 

In STEP 1, the user is asked if an existing hazard threshold value (i.e., DNEL or OEL-like, for example 

from a regulatory body or research publication) for the exposure relevant material already exists. If so, 

the user can add this existing safety limit value to be used as the FSLV, otherwise STEP 2 is activated. 

In the case the user used a worst case DNEL value in step 1 and 2 and a risk is considered, the user can 

refine the DNEL value to a more relevant one by going to STEP 3.  

In STEP 2: The user is asked if there exist relevant ‘toxicity studies’ for the ‘exposure relevant’ or a 

‘similar’ material. If this is the case, the user is offered a list of relevant toxicity study templates to 

choose from to enter the toxicity study information and results. Relevance, quality and similarity are 

used to conclude on the acceptability of a toxicological study for a given hazard endpoint. Only 

‘accepted’ studies are used to derive the FSLV. By similarity, the tool refers to the similarity of the 

exposure relevant material versus the material used in the toxicology studies [11, 12]. In the similarity 

tool, the ‘context’ determines which material characteristics to compare. For example, two particles 

may behave the same as aerosol but completely different once dispersed in water. Therefore, a list of 

different contexts is proposed. For instance, “inhalation toxicity”, “aquatic fate” etc. An ‘index’ is a 

matching condition related to a single or group of related properties. Think of “melting point”, “shape 

and aspect ratio”, “size distribution, size type and method”. Other contexts include shape, crystallinity, 

size distribution, physical state, chemical composition. Each ‘index’ implements its own ‘matches’ 

function. This ‘matches’ function contains the expert rules/algorithm on how to compare two materials 

for that specific ‘index’, regardless of the context. Comparing the same ‘index’ of two materials must 

lead to a context independent score between 0 and 1. The final similarity score will be derived from 

the combined and weighted index scores (see details below). In the RAt module this tool will be used 

in case no toxicity data is available in the literature for the same NMs. When several studies are 

accepted for a hazard endpoint, the study with the lowest DNEL is selected as the FSLV. 
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Similarity score 

The final similarity score will be derived from the combined and weighted index scores. In the current 

version, the weights are all 1 and the final score is equal to the lowest scoring condition. 

 

Constituent matching 

A complicating factor are the differences in material compositions and structures to compare. If two 

materials have a different number of constituents and concentrations, matching the constituents to 

compare is a real challenge. Three constituent properties: ‘concentration’, ‘role’ (of the constituents) 

and ‘surface ordering’ might be used to determine which constituents to compare. 

 

Identifying chemical compound(s) 

The first step is determining the ‘identifying chemical compound(s)’ of a material. This might seem 

trivial as people often talk about a material implicitly referring to just one of its constituents. For 

example, we talk about silver NMs because the silver gives the NM it’s specific function and not the 

‘coating’ or impurities. This identification process needs to be formalized into a set of explicit rules. 

The first rules implemented for now are: 

The identifying chemical compound(s) of a primary nano-object are those chemical constituents with 

their roles: ‘core’ or ‘wall’. In the case of ‘agglomerates’ or ‘aggregates’, the identifying chemical 

compound(s) are derived from the aggregated/agglomerated particles. 

 

Comparing ‘chemical composition’ 

The chemical composition of two materials (m1, m2) is compared by comparing the ‘identifying 

chemical compound(s)’ of both materials. The current version only supports comparison of two 

materials with one ‘identifying chemical compound’ each. We assume chem1 and chem2 to be the 

‘identifying chemical compound(s)’ to compare. The first step is comparing CAS number(s), EC 

number(s) and/or chemical formulas. If they match the difference in their respective ‘mass 

percentages’ is used to calculate the score. Otherwise the score = 0. 

 

Comparing ‘physical state’ 

Five different ‘physical states’ are defined within the tool: ‘ions’, ‘solid’, ‘liquid’, ‘gas’ and ‘mixture’. 

For now, comparing the ‘physical state’ of two different materials is implemented in a 

straightforward manner whereby only materials in the same state are considered similar at the 

moment. Also, the ionic form is currently considered equal to a ‘solid’, ‘liquid’ or ‘gas’ state. 

 

Comparing ‘crystallinity’ 

In the case of two solid materials the structure of both materials is matched. If both are 

(poly)crystalline each of the ‘crystallinity forms’ and ‘space group’ are compared based on their 

percentages. 

 

Comparing ‘Size distributions’ 

A ‘size distribution’ similarity algorithm has been developed based on comparing the cumulative size 

distributions. The difference between the two size distributions is related to the surface area 

between the two cumulative graphs. A bigger surface area indicates a lower similarity, and vice versa. 
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If none of the available studies is acceptable STEP 3 is activated, which is based on worst case default 

hazard thresholds for generic groups of NMs. For STEP 4 the quantitative ‘final safety limit value’ or the 

qualitative ‘outcome’ is passed to the risk assessment module.  

 

Risk assessment module 

The risk assessment module combines the exposure and hazard module entry and output information, 

providing a RA for all defined materials in each compartment as shown in Figure 11.  

 

 

Figure 11: Tiered approach used in GUIDEnano to obtain the most relevant FSLV value. 

 

In step 4, the tool generates a matrix overview of all assessed hazard endpoints for all different exposed 

populations in the life cycle considered. For each endpoint used for the hazard assessment, GUIDEnano 

combine the exposure and hazard data to obtain an RA analysis.  A red balance indicates that the 

probability of risk is considered “high”, an orange one “medium”, a green one “low” and black indicates 

“not determined yet” (Figure 11). By clicking the balance-icon you can open a dialog with a more 

detailed RA description (Figure 12): 
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Figure 12. Overview of all assessed hazard endpoints for all different exposed populations involved in the simulation. 

 

As part of the ‘risk management strategy’ the tool can be used to see the effects of certain strategies 

of risk mitigation on the risk outcome. As an example, the effect of wearing gloves on the risk is shown 

in Figure 13. 

 

 

Figure 13: Effect of wearing gloves on occupational health risk associated with a given activity. 

 

After clicking the “red-balance” in the overview, a dialog is shown presenting the estimated exposure 

value and the derived final safety limit value. A “risk ratio” is calculated dividing the “exposure value” 

with the “final safety limit value” indicated by the “red triangle” in case of a ratio > 1. The “blue triangle” 

is an indication of the risk ratio without adding potentially reducible uncertainty. This is an indicator for 

the user that it might be worthwhile to further reduce uncertainty. How to reduce uncertainty in the 

hazard assessment outcome depends on the uncertainty factors applied at the hazard and/or exposure 

assessment. Each applied uncertainty factor contains its “magnitude”, “source” and an “advice text”. 

The user can use this information to decide, if and what actions to take. An example of an action aiming 

to reduce uncertainty that one can think of is finding more relevant toxicological data (e.g., more similar 
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test material), or using higher tier exposure models or conducting actual concentration measurements. 

Actions to reduce the risk as such can also be considered (and are the only option if the blue triangle 

still indicates a high probability of risk). The user can choose to implement release mitigating measures 

or advise the use of personal protective equipment to mitigate the probability of risk (Figure 13). 

GUIDEnano thus provides a complete risk assessment report including the data input and output of all 

modules.  Integration into NanoCommons, and with the wide range of hazard and exposure models 

and datasets being made available via the KnowledgeBase, will further enhance the utility, accessibility 

and stakeholder acceptance and utilisation of the GUIDEnano tool, and is also an important step 

towards ensuring maximum return on EU-investment in nanosafety research. 

 

GUIDEnano future development 

GUIDEnano is still under development and continual work is performed to make the tools more user 

friendly according to the feedback of users. Nowadays, GUIDEnano work in the H2020 GRACIOUS 

project will lead to the incorporation of the GRACIOUS grouping and read across framework into the 

GUIDEnano framework. Another current development pathway, more specifically linked to the 

NanoCommons project, is to connect GUIDEnano to relevant exposure and hazard databases. A release 

activity database is already implemented in GUIDEnano and will be further populated to describe more 

activity especially during the use phase and the end of life of the NEP. Secondly, the connection with 

(eco)toxicological, NMs and PEP database (eNanomapper and NIST for NM data and PPEs building on 

existing databases, such as ECEL) is planned. However, some important technical aspects have to be 

figured out to perform this task, which will be discussed with Biomax and EwC to determine the optimal 

solutions. 

Tools present in the NanoCommons framework and complementary to GUIDEnano will be added as a 

link in GUIDEnano. The user will have the possibility to use the full range of available tools, and in 

collaboration with the Training WP (WP9) of NanoCommons, some guidance on which tool to select for 

which specific NMs / organisms / exposure scenarios / compartments will be developed.  
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4. Dose-Response Modelling  

Risk Assessment and Dose-Response Relationships 

Dose-response modelling is a key step in the RA workflow, and its main aim is to characterize the 

relationship between the exposures and the observed adverse outcome [13] and eventually estimate 

human health guidance values, such as the DNEL value. In order to understand and model this 

relationship concerning toxic NMs as well as environmental factors, toxicology studies that involve 

multiple species, including humans and animals, are designed to investigate multiple exposure routes 

and media. Usually multiple dose-response curves are fitted, using in vitro and in vivo models, focusing 

on the dose response of the most sensitive organ, i.e. the target organ, of the species of interest for 

the exposure to the NM of interest. This gives information about the relationship between the actual 

dose that is delivered to the target tissue(s) and the biological effect(s) it causes deviating from the 

normal functions of the organism.  

Traditionally, this analysis has been carried out differently for cancer and non-cancer endpoints on the 

grounds that cancer risks are assumed to be linear in the low-dose range that might be expected to 

occur in the human population [14] and can arise from exposure to any concentration of pollutant, 

whereas non-cancer effects are considered to exhibit threshold characteristics such that exposure 

below a certain concentration is associated with no appreciable risk of an adverse outcome. However, 

this distinction has become less pronounced, since our understanding of the respective health related 

processes has increased over time, giving rise to a more unified approach by combining the methods 

for cancer and noncancer health effects [15, 16, 17]. 

 

The NOAEL/NOEL approach 

Quantitative methods, used to analyse cancer risks, involve fitting mathematical models to the 

observed tumour incidence data and extrapolating risk in a linear fashion to lower dose levels [14, 18]. 

On the other hand, quantitative risk assessment for noncancer effects was commonly based on 

determination of a No Observed Adverse Effect Level (NOAEL) from a controlled study in animals as an 

estimate of the threshold. In this context, the NOAEL is defined as the highest experimental dose that 

does not produce a statistically or biologically significant increase in adverse effects over those of 

controls.  An “acceptably safe” daily dose for humans is then derived by dividing the NOAEL by a safety 

factor, usually 10 to 1,000, to account for sensitive subgroups of the population, data insufficiency, and 

extrapolation from animals to humans (see, for example, [19]). Alternatively, a Lowest Observed 

Adverse Effect Level (LOAEL) is used, which is defined as the lowest dose at which a significant adverse 

effect is detected. The NOAEL, or LOAEL in the absence of a NOAEL, serve as the point of departure 

(POD, also known as Reference Point (RP)) for the calculation of the Reference dose (RfD) through the 

application of uncertainty factors (UFs) designed to account for uncertainty in the data (e.g., lack of 

information about the differences in toxicokinetics and toxicodynamics between the test species and 

humans, differences in the calculation of the RfD among human individuals, or lack of knowledge in the 

database about other potential hazards for a particular chemical). The RfD term is used by the U.S. 

Environmental Protection Agency (EPA), while the Food and Drug Administration (FDA) uses the term 

allowable daily intake (ADI) and the Agency for Toxic Substances and Disease Registry (ATSDR) uses 
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minimum risk level (MRL). After application of the UFs, the RfD is presumed to represent a daily dose 

over a lifetime with no appreciable risk of adverse non-cancer health outcomes. 

 

The BenchMark Dose (BMD) approach 

Due to inherent limitations of the NOAEL/LOAEL approach, the European Food Safety Authority (EFSA) 

[21, 22] and the Joint FAO/WHO Expert Committee on Food Additives [23] have proposed the use of 

the Benchmark Dose (BMD) approach for deriving the RP used to calculate the margins of exposure 

(MOE) for substances that are both genotoxic and carcinogenic. For a more detailed explanation please 

see the EFSA report by Hardy et al. [24] (whose main concept is depicted in Figure 14). In the simplest 

case an experiment is conducted by exposing a predefined number of animals to different drug 

concentrations (including 0 for the so-called control unit) of the substance of interest in a predefined 

matrix (e.g. in air or water). After a predefined time, in vivo tests are conducted and selected indicators 

of effect are evaluated (e.g. number of deaths or weight of kidney). The resulting experimental dose-

response results are fitted by two families of nested models of increased complexity, namely the 

exponential and the Hill families (Table 1).  In order to select the best model within a family of models, 

more complex models must be compared to the corresponding simpler models in order to determine 

whether the addition of extra parameters significantly improves the model fit. This is done in a step-

wise fashion until the most “optimal” (parsimonious) model has been selected. The selected model 

defines a concentration where a predefined value relative to the control group level of response is 

reached, which defines the start of an effect (e.g. 5% of death rate or 20% kidney weight increase).  

The empirical probability distribution of BMD values associated to the selected BMR is calculated using 

bootstrapping; a large number of artificial data sets are generated, obtained by random sampling from 

a lognormal distribution with geometric mean (=median) defined by the fitted regression model, and 

geometric standard-deviations (GSDs) equal to the residual GDSs associated with the fitted model. Each 

artificial (bootstrap) data set is based on the original experimental design, i.e. the same dose groups 

and number of subjects within groups. 
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Table 1: continuous response models for the Exponential family and Hill family models.  

 

 

 

Figure 14: Key concepts for the BMD approach, illustrated using hypothetical continuous data. The triangles represent the 

observed mean responses, and are plotted together with their confidence intervals. The solid curve is a fitted dose–

response model, which determines the point estimate of the BMD, defined as a dose that corresponds to a low but 

measurable change in response, denoted the benchmark response (BMR). The dashed curves represent, respectively, the 

upper and lower 95% confidence bounds (one sided) for the effect size as a function of dose. Their intersections with the 

horizontal line are at the lower and upper bounds of the BMD, denoted BMDL and BMDU, respectively. It should be noted 

that the BMR is not defined as a change with regard to the observed mean background response, but with regard to the 

background response predicted by the fitted model. In the Figure, the BMD corresponds to a 5% change in response relative 

to background (BMR = 5%) (Figure and legend slightly modified from [24]). 
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Comparison between the NOAEL and the BMD approaches 

A direct comparison between the NOAEL and the BMD approach is provided in references [15, 20] and 

is summarised in Table 2 [20]. The NOAEL/LOAEL approach for the determination of PODs has been 

associated with well documented limitations. Most importantly, NOAEL is based upon the study design, 

sample sizes, dose spacing, background levels, the power of the design (and statistical test) and on a 

hypothesis testing approach in that failure to reject the null hypothesis is taken as evidence of no 

difference. The latter differs from the conventional view of the interpretation of the failure to reject 

the null hypothesis. As a result, the smaller the experiment or the more variable the endpoint the less 

chance of detecting a real effect exists. Also, the NOAELs tend to be higher for measures with a high 

control/background level because it is more difficult to demonstrate a statistically significant difference 

in standard designs than for measures with low control/background levels. Essentially, NOAEL is a single 

dose level and takes no account of the dose-response relationship in the data and since it is not an 

estimate of a dose, it cannot be presented with a measure of precision such as a confidence interval 

(CI). As it is a single experimental dose level, it is not necessarily representative of the true “threshold”. 

Thus, NOAEL cannot be considered a risk or response-free exposure level and is not necessarily a dose 

where there is no effect (i.e. below a threshold) [17].  

On the other hand, the main limitation of the BMD approach is that it is a more complicated process, 

is time consuming, and requires a large number of data points covering a wide range of dose quantities.  

The number of samples available affects the calculated BMDL and NOAEL values. For a small sample, 

the calculated BMDL can be bigger or smaller than NOAEL. When test sample size (i.e. no. of tested 

animals) is very big, BMDL is higher than NOAEL.   

Despite the limitations of the BMD approach, it has become the US EPA’s preferred dose–response 

assessment method. Other authorities such as EFSA also use the BMD method for food safety RA 

[25,26].  
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Table 2: Advantages and limitations of the NOAEL and BMD approaches [20].  

 BMD NOAEL 

Advantages 

Not limited to experimental doses 

Can be used when data is not amenable for BMD 

modelling 

Less dependent on dose spacing Easy to derive 

Appropriately accounts for variability and 

uncertainty resulting from study quality 

Has been the standard method for deriving a 

POD for decades (e.g., is familiar to most risk 

assessors) 

Takes into account the shape of the dose–

response curve and other related 

information  

Corresponds to consistent response level 

and can be used to compare results across 

chemicals and studies  

Flexibility in determining biologically 

significant rates  

Limitations 

Ability to estimate BMD may be limited by 

the format of data presented Highly dependent on dose selection 

Time consuming Highly dependent on sample size 

More complicated decision-making process 

Does not account for variability and uncertainty 

in the experimental results (e.g., does not 

account for study quality appropriately) 

 

Dose–response information (e.g., shape of dose–

response curve) not taken into account 

 

Does not correspond to consistent response 

levels for comparisons across studies 

 A LOAEL cannot be used to derive a NOAEL 

 

Software implementations of the BMD approach 

The BMD approach has been implemented in two software packages, namely the Benchmark Dose 

Software (BMDS) developed by EPA in the US and the PROAST software developed by RIVM. RIVM and 

EPA aim to achieve consistency between the BMDS and PROAST software, but there are still some 

differences, including a number of default settings for statistical assumptions. Furthermore, the two 

software packages differ in functionalities [24].  Examples of useful functionalities in PROAST are the 

possibility of statistically comparing dose-responses among subgroups (covariate analysis), and the 

larger flexibility in plotting. Currently, two web applications of PROAST are available, which do not 

https://www.epa.gov/bmds
https://www.epa.gov/bmds
https://www.rivm.nl/en/proast
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include all functionalities of the R package, but only the usual dose-response analysis of toxicity data 

can be done. These web tools are provided by EFSA and the RIVM team (https://efsa.openanalytics.eu/, 

https://proastweb.rivm.nl/).   

 

IntPROAST R package and workflow 

Given the importance of the BMD approach in the RA workflow, we have integrated the PROAST 

software for continuous dose-response into the NanoCommons infrastructure through the Jaqpot 

computational platform and in particular through the  IntPROAST R package web implementation of 

the software. As a first step, the user is requested to upload the dose-response data, indicate the name 

of the dose variable, the BMR percentage value and the number of bootstrap samples generated in 

order to calculate BMD confidence intervals. For the latter two parameters there are default values 

given. The output consists of a table with log-likelihood values for all models considered from the two 

families of models, as well as associated graphs and the print out on screen, as generated by the 

PROAST package. Particularly, input data should include the following: 

1. Dose-response matrix in JSON format with compulsory column names: id, dose, 

response 

2. Indication of the name of the dose variable in the above data table 

3. BMR percentage (default 5%) 

4. Number of Bootstraps (default 10,000) 

Output data are returned as a single array in JSON format including: 

1. A table with all log-likelihood values also including the number of parameters, the 

name of the model and the model’s family name 

2. A text explaining the results as generated by the PROAST software 

3. All fitted graphs of the models saved as PNG files in the working directory and also 

encoded in base64 scheme within the JSON file. 

IntPROAST includes the following steps: 

1. Generate a PROAST-like R data environment able to store the input data 

2. Call the PROAST algorithm with the generated environment in order to: 

i. Calculate the geometric mean at each tested dose 

ii. For each family member (model) starting from the one with fewest input 

parameters 

1. Fit the model with the means  

2. Calculate the log-likelihood 

iii. For each model within the family of models compare the log-likelihood with 

the preceding model’s log-likelihood, if the difference is higher than the 

corresponding critical difference keep the current model as the family 

representative 

iv. For each selected family representative model 

1. Test the goodness of fit by comparing its log-likelihood to that of the 

full model; if the distance is higher the model is rejected. If all family 

representative models are rejected, additional data are necessary. 

https://efsa.openanalytics.eu/
https://proastweb.rivm.nl/
https://github.com/KinkyDesign/IntPROAST
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Below we present the analysis results when employing IntPROAST to determine the BMD using an 

artificial example data set uploaded to the eNanoMapper database [27]: 

https://apps.ideaconsult.net/ambit2/dataset/R545.  

The dose variable id is the following feature:  

https://apps.ideaconsult.net/ambit2/feature/22127  

and the response variable is:  

https://apps.ideaconsult.net/ambit2/feature/22137   

A screenshot of the data can be seen in Figure 15. Figure 16 shows the output of the IntPROAST R 

package within the R environment, where both input and output files are in the JSON format.  

 

Figure 15: Screenshot of the dose-response data set. 

 

https://apps.ideaconsult.net/ambit2/dataset/R545
https://apps.ideaconsult.net/ambit2/feature/22127
https://apps.ideaconsult.net/ambit2/feature/22137
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Figure 16: Screenshot of the dose-response dataset analysis using the IntPROAST package. In the R Console the log-

likelihood values of the various models are shown together with a short explanation of the output. Graphs show all model 

fits considered and also the best fit models per family.  

 

Future work: PROAST/Plumber API 

NTUA is currently developing an additional PROAST integration application as a REST API based on 

‘plumber’ R Cran library exposing just one POST endpoint [28]. Plumber library offers a simple solution 

to expose R code as a service, just by adding in the R code special annotations defining the service 

endpoint(s). This implementation uses the standard JSON format for posted input and rendered output 

since it depends on the ‘jsonlite’ R Cran package, thus enabling seamless integration with Jaqpot as 

well as any other platform. The latter is further facilitated by the containerization of the tool that 

empowers the stability of the application, the transferability regardless of the running environment, 

the elimination of application conflicts and the scalability to accommodate any kind of user needs. The 

implementation follows the same workflow as the IntPROAST R package, which has been described 

above, and the current version as well as future updates will be available at GitHub 

[https://github.com/KinkyDesign/proast.git].   

  

https://github.com/KinkyDesign/proast.git
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5. Read across methodologies 

Predictive modelling is an in-silico approach that can be used for hazard assessment of NMs, where 

there is an absence of experimental toxicology data. Predictive models can produce reliable estimations 

of toxicity related end-points much faster and with reduced cost compared to in vivo methods and 

most importantly do not involve animal testing. Over the past few years, the nanosafety community 

has encouraged the development of such alternative non-testing methods for the toxicological 

investigation of NMs. These computer-aided methods aim to contribute to the prioritization of NMs 

for safety evaluation and to support the regulatory decision-making. One successful approach [29] is 

the adaptation of the quantitative structure-activity relationship (QSAR) modelling methodologies to 

the special requirements of NMs, which arise due to their complex structures. The produced models 

are presented in the literature as nano-QSARs or QNARs (quantitative nanostructure-activity 

relationship) models. However, in order to ensure the functionality of the QNAR approaches, 

sufficiently large (more than 20 distinct NM samples) and diverse datasets should be provided [30]. 
 

The European Chemicals Agency (ECHA) through the Read-Across Assessment Framework (RAAF) has 

introduced the alternative read-across non-testing strategy [31, 32], for the prediction of NM toxicity, 

especially in the absence of sufficiently large datasets for the development of reliable QSAR models 

[30]. The read-across concept is based on the empirical knowledge that similar materials may exhibit 

comparable properties thus, the estimation of the hazardous effects of non-tested NMs can be 

achieved using data within a group of comparable NMs [30, 33, 34]. 

The entire proposed strategy consists of seven well defined steps,[35] as follows: 

1. Determination of the structural characteristics of NMs (composition, including surface 

chemistry and any impurities, size, shape etc.). 

2. Development of an initial grouping hypothesis that correlates an endpoint (e.g. a toxicity 

index), to different behaviour and reactivity properties, including solubility, zeta potential, 

dispersibility, hydrophobicity, dustiness, biological activity (redox formation, gene expression 

etc.), photoreactivity etc. [35, 36, 37]. Assignment of the samples to groups. 

3. Gathering of the above properties (depending on the grouping hypothesis) for each NM. 

4. Construction of a data matrix including properties and endpoints. 

5. Assessment of the applicability of the approach using computational techniques (e.g. Principal 

Components Analysis (PCA), hierarchical clustering [35, 36], random forests [35], linear 

discriminant analysis (LDA) [38] etc.), and data gaps filling. If no regular pattern emerges, an 

alternative grouping hypothesis must be proposed (step 2). 

6. In case that the grouping hypothesis is robust, but adequate data are not available, additional 

testing should be considered to complete the datasets. 

7. Justification of the method. 

There are two approaches regarding the read-across framework, supported by ECHA and OECD; the 

analogue and the category/grouping approach.  

In the analogue approach the prediction is limited to a small area of the data space; one source NM 

can be used for the endpoint estimation for a single or more target NMs, or two or more source NMs 

can be used to make predictions for a single or several target NMs. The read-across methodologies 

apply an interpolation strategy "locally" among similar samples which, depending on the provided data 
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-numerical or discrete-, can be quantitative or qualitative [36]. The methods for the prediction of each 

endpoint range from simple average value calculations, or simple linear interpolations to more 

complicated methods applying QSAR methods locally (e.g. k-nearest neighbours, partial least squares, 

random forests) [30, 39]. 

In the categorical approach, the NM samples are organized into groups of similar compounds. Groups 

are formed considering structural similarities between samples, and it is assumed that due to these 

similarities, the biological or toxic activity of the NMs within a group follows a regular pattern. Groups 

of NMs can be further divided into subgroups based on interdependencies in nanodescriptors and the 

formation of these subgroups can be "tuned" in order to gain satisfactory predictions [38, 40]. Other 

studies have investigated alternative grouping possibilities including PCA, LDA,[38] two-dimensional 

hierarchical clustering [36] or considering the NM mode-of-action [37]. For the estimation of the 

endpoint of a target NM in a group, the analogue approach can be applied. 

Several read-across tools and methods for the preliminary hazard assessment of NMs have been 

proposed in the literature [33]. Gajewicz et al. [30] proposed a novel quantitative read-across (QRA) 

approach for data gap filling of NMs using the one-point-slope, the two-point formula and the equation 

of a plane passing through three points. Their Nano-QRA model proved to have high predictive 

capabilities, when tested with the same dataset used by Puzyn et al. [41]. Helma et al. [39] introduced 

recently the nano-lazar framework for NM read-across predictions. The similarity levels for the 

selection of neighbours is based on Tanimoto/Jaccard index and on weighted cosine similarity. Three 

local regression algorithms are available; weighted local average, weighted partial least squares 

regression and weighted random forests. Helma et al. [39] tested the performance of their methods 

using the dataset initially presented by Walkey et al. [42] consisting of 121 gold and silver NMs that are 

characterized by physicochemical descriptors, the protein corona fingerprints (PCF) and by MP2D 

fingerprints calculated for core and coating compounds with defined chemical structures. They 

reported R2 values equal to 0.68, for the prediction of the cell association with human A549 cells, using 

only the protein corona fingerprints and the weighted random forest algorithm, in a 10-fold cross 

validation scheme. Varsou et al. [40] presented the toxFlow web application, which integrates 

physicochemical, omics and biology information data for read-across toxicity prediction of ENMs. 

Neighbor selection is based either on the cosine similarity between NMs or a distance metric 

(Euclidean, Manhattan). Using only the gold NMs of the Walkey et al. [42] study and performing 

enrichment analysis to the PCF data prior to read-across, Varsou et al. reported R2 values 0.97 in the 

toxicity prediction, by employing a weighted average algorithm and a leave-one-out validation scheme. 

Very recently, Lamon et al. [33] and Aschberger et al. [43] presented case studies applying the ECHA 

RAAF framework for the read-across prediction of hazard endpoints of nanoforms of TiO2 and of Multi-

Walled Carbon NanoTubes (MWCNTs) respectively. The first of these studies has been released as an 

official OECD document [44]. 

As described previously, the development of a read-across scheme typically assumes a hypothesis, 

which is evaluated and assessed in terms of its adequacy to fill data gaps. The read-across hypothesis 

involves both the selection of the most informative descriptors that can predict the endpoint of interest 

and the definition of the source NMs, that can be considered as neighbours to the target NM. This 

procedure is iterated in a trial-and-error fashion until a hypothesis producing successful read-across 

predictions is determined. The procedure is time-consuming and due to the complexity of the problem, 

it does not guarantee that the produced read-across model is optimal. 
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NanoCommons read-across methodologies 

Read-across method based on mathematical optimization 

In the context of the NanoCommons project, NTUA has developed a robust and reliable read-across 

method that automates the ECHA RAAF for the prediction of NM undesired properties, by focusing on 

two separate goals: First, the reduction of the available dataset, by removing the instances (variables) 

that add noise rather than useful information to the analysis. Second, the definition of the neighbour 

boundaries which indicate the source NMs that are considered similar to the target NM. These two 

different goals are achieved simultaneously through the development of a Mixed Integer NonLinear 

Programming (MINLP) problem, where the objective is to minimize the mean squared error (MSE) 

between the experimental values and the produced predictions with respect to selecting the most 

informative descriptors and defining the neighbour boundaries. 

Available data 

The methodology assumes the availability of a dataset containing the values of L descriptors and the 

end-point for N NMs. The data are first scaled using a standardization (e.g. Gaussian normalization) or 

a normalization (e.g. min-max) method, so that descriptors with substantially different numerical 

ranges contribute equally after the transformation to the overall analysis [45]. The dataset is denoted 

by {xi, yi}, i=1, ..., N, where {xi} is a vector containing the values of the L descriptors for the ith NM and 

yi is the endpoint value of the ith NM. 

Set of variables 

The main outcomes of the MINLP problem are: 

attrl: a binary variable indicating if the descriptor l is selected, l=1, …, L. 

thr: a continuous variable that defines a threshold for the selection on neighbouring NMs. If the 

Euclidean distance between two NMs is equal or less than thr, these two NMs are considered as 

neighbours. 

A number of additional variables are used for the construction of the MINLP problem: 

disti,j: a continuous variable containing the Euclidean distance between NMs i and j, i=1,…,N, j=1,…,N 

neibi,j: a binary variable taking the value of 1 if NMs i and j are neighbours and 0 if they are not, i=1,…,N, 

j=1,…,N 

predi: a binary variable taking the value of 1, if NM i has at least one neighbour and 0 if it has no 

neighbours, i=1, …, N 

ỹi: a continuous variable containing the predicted endpoint read-across value for the ith NM, i=1, …, N 

Mathematical formulation 

Set of constraints: Equation 1 computes the Euclidean distance between all pairs of NMs taking into 

account only the selected descriptors:  
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Equations 2-4 ensure that the two NMs are considered as neighbours only if their Euclidean distance is 

lower than the threshold. In this case the binary variable takes the value of 1, otherwise the value of 0 

is assigned to this variable. In Eqs. (3), (4) m is a small number (equal to 10-3):  

        

 

 

Equation 5 computes the read-across predictions as weighted averages of the endpoint values of 

neighbour NMs:  

    

For NMs without any neighbour, the prediction is obviously equal to 0 and it is not accepted. An 

additional constraint is used to guarantee that the percent of NMs with at least one neighbour for 

which an endpoint prediction is produced, is greater than or equal to a predefined percentage denoted 

by predFactor as shown in Equations 6-8:  

    

Objective function: The objective function to be minimized is the MSE between the endpoint read-

across predictions and the actual endpoint values over all the NMs with at least one neighbour 

(Equation 9). 

       

Due to the complex structure of NMs, different types of data and descriptors are often used for NM 

characterization. These may include physicochemical, biological, quantum-mechanical, image, 

biokinetics descriptors etc. In NTUA’s toxFlow application [40], the use of two similarity criteria for 

defining different thresholds was demonstrated for selecting the neighbours if different types of data 

are available. In this approach, distances can be calculated between all substances separately for the 

different types of data, and two NMs are considered as neighbours if both distances are lower than the 

corresponding thresholds. Based on this idea, the MINLP formulation described before can be extended 
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to account for multiple similarity criteria, thus increasing the confidence in the read across predictions.  

 

Read-across method based on the kNN methodology 

NovaM has developed a read-across method based on the k-nearest neighbour (kNN) machine learning 

algorithm. kNN can be considered as a read-across strategy [46], as it requires experimental 

observations of only a few neighbours (similar NMs) to the query NM, in order to compute the endpoint 

prediction. The kNN methodology is a “lazy” learning technique, that classifies an instance based on 

the majority vote of the k closest training examples (neighbours). In case that the endpoint has a 

numeric class, the prediction is the distance weighted average of the endpoint of the selected 

neighbours. An optimal k value is selected based on the calculated Euclidean distance between all 

instances and as weighting factors the inverse distances are used [47, 48]. In the case of a categorical 

endpoint each instance is assigned to the class indicated by the weighted majority vote of the k closest 

neighbours.  

Another important aspect of the analysis -apart from the simple endpoint prediction- is the possibility 

to observe the groups of k neighbours of each test NM, and therefore to specify and map the analogous 

space (Figure 17), which is a prerequisite of the read-across framework,[31] and which can be used to 

support the justification of the read-across hypothesis. 

 

Figure 17: Example of a qualitative representation of the neighbouring space of the training and the test NM set utilising a 

set of descriptors determined experimentally and computationally. Test NMs are depicted with coloured circles, whereas 

training NMs are illustrated with grey crosses. The four selected-closest neighbours for each test NM are defined via dashed 

lines.  
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Future work 

After the mathematical formulation of the two read-across methodologies, efforts are now focused on 

their validation using test data sets, their implementation as web services and their integration into the 

NanoCommons knowledge infrastructure. The methods will be offered openly to the scientific 

community via user-friendly interfaces, which will support their integration into risk assessment 

workflows and will facilitate the computer-aided design of novel NMs. To achieve this goal, the 

methods will be developed using open source platforms (e.g. KNIME platform) or programming 

languages (e.g. R). The web services will be hosted on the platforms of Jaqpot (NTUA) and Enalos Cloud 

(NovaM) and will be used within a risk assessment framework for NMs under the auspices of 

NanoCommons project. One additional new read-across approach is being developed by NTUA. This 

method is following the categorical approach and uses again mathematical programming to precisely 

partition the available training NMs into groups of similar behaviour. All read-across approaches 

developed within the NanoCommons project will be presented in full detail in Deliverable Report D6.2.       
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6. Biokinetics models 

PBPK modeling 

Biokinetics offer a methodology for predicting the internal distribution and exposure of a NM in an 

organism, which can be of particular importance in an RA workflow.  Compartmental modelling is a 

concept broadly used in pharmacokinetics for describing the biodistribution of a substance inside an 

organism. Physiologically-based pharmacokinetic (PBPK) models represent one of the two major 

approaches used in compartmental modelling, with empirical models being the second one. PBPK 

models are mechanistic; they consist of compartments representing real organs and tissues, whose 

number varies based on the target substance, species, administration route and available information.  

A common approach is to incorporate in the model the main body tissues, i.e. brain, heart, kidney, skin, 

spleen, liver, lung, gut, bone, adipose and muscle [49]. Nevertheless, the dimensionality of a PBPK 

model can be reduced using lumping methods [50, 51].  In most cases, PBPK models are utilised for 

describing the kinetics of a substance in the whole body of a species, thus such models are more 

formally called “whole body physiologically-based pharmacokinetic models” (WBPBPK). However, 

there are some models developed to describe in detail the kinetics of an organ, which is divided into 

separate sub-compartments. This modelling approach is called “partial” PBPK models [52]. 

WBPBPK can be grouped into two classes: perfusion-limited and permeability-limited models. The first 

group applies for small lipophilic molecules, where the limiting step of substance absorption is the 

transportation to the tissue via the blood flow. On the other hand, permeability-limited models assume 

that the limiting process is the membrane permeability which acts as a diffusion barrier, so it applies 

for larger and hydrophilic molecules [53], which is the case for NMs. The compartments of a WBPBPK 

model are interconnected through the arterial and venous blood pools; all organs receive blood from 

the arterial blood compartment and the outflow ends up in the venous blood compartment. The blood 

loop is closed by the lungs compartment, in which the blood flow is reversed in comparison to the rest 

of the organs [54]. Apart from the regional blood flows, the underlying physiology also defines the 

second set of substance-independent parameters, the organ volumes. Besides these physiological 

parameters, PBPK models incorporate information about the target substance as well, through the 

substance-dependent parameters, which can be obtained using data generated by in vivo, in vitro or in 

silico experiments [55]. 

PBPK models have inherent advantages due to their mechanistic nature. Firstly, they enable predictions 

of concentration/mass profiles of individual organs and not just of plasma. In addition, their relation 

with physiology and modularity facilitate the integration of literature information, making predictions 

prior to in vivo experiments possible [56]. Lastly, their biggest advantage is the ability to perform inter-

species (e.g. from rat to human) or intra-species (e.g. from adults to children) extrapolation through 

scaling methods. 

 

Nano-PBPK models 

Several PBPK models that describe the biodistribution of NMs can be found in literature and an 

extensive review of the modifications of traditional PBPK models that need to be considered in the case 

of NMs can be found in [58,59]. A list containing the most notable nano-PBPK models is presented in 

Annex 3. Note all those models are accompanied by the data used for the model development, making 
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the models reproducible.   

From these efforts, the model of Li et al. [59] stands out for introducing the concept of phagocytizing 

cells (PCs) via incorporation of a relevant sub-compartment in each organ. This compartmental 

modelling of the process of NM uptake by PCs registered satisfactory results based on the goodness-

of-fit of the models on the experimental data. Carlander et al. [60] further built on this model by 

proposing some minor modifications that generalised the model, making it suitable for analysing the 

biodistribution of non-degradable NMs intravenously injected in rats. Specifically, they demonstrated 

the ability of this modified model to adequately describe the distribution of pegylated polyacrylamide, 

uncoated polyacrylamide, gold and titanium dioxide NMs in the body of rats. 

 

Jaqpot biokinetics infrastructure 

NTUA has developed all the necessary infrastructure to develop, host and share PBPK models through 

the Jaqpot computational platform. So far, the platform has been tested for simple molecules. The 

Jaqpot functionalities will be briefly demonstrated via a PBPK model for the diazepam drug. The first 

component of the web tool is an overview of the model in Markdown language, which includes a 

detailed verbal and schematic description of the model, as well as a link to the original study. Figure 18 

presents a screenshot of the ‘Overview’ tab. 

 

 

Figure 18: Screenshot of the ‘Overview’ tab of the PBPK web tool.  

 

The second utility offered by the web tool concerns the dependent and independent features. 

Particularly, the model creator, via the data tab, can add a short description, units and ontological class 

for each of the features of the model, as illustrated in Figure 19. 
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Figure 19: Screenshot of the ‘Data’ tab of the PBPK web tool.  

 

The main functionalities of the Jaqpot PBPK web tool are provided through the ‘Predict’ tab (Figure 20). 

The user can upload a dataset containing the values of the independent features or manually enter the 

values.  More specifically, for the showcase model the user can insert the physiological parameters of 

the specific individual where the drug is administered (gender, weight), drug related information (dose, 

infusion time, initial concentration in each of the 11 compartments, i.e. at time zero from which the 

model calculates the concentration at any time-point greater than 0), and  the duration and time step 

that will be used in the simulation.  

 

 

Figure 20: Screenshot of the ‘Predict’ tab of the PBPK web tool.  
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When finished, the user can click on the start button, initiating the prediction process. Shortly after, 

the mass profiles of the diazepam in the different organs are generated and presented in a table format, 

as seen in Figure 21. 

 

 

Figure 21: Screenshot of the table-formatted mass profiles of the Diazepam model. 

 

The results can be downloaded in csv format and be further processed to make inference offline. Figure 

22 shows an example of the offline post-processing, depicting the drug mass profile in the lungs. 

 

 

Figure 22: Example of offline usage of the csv-formatted results. 
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Lastly, a ‘Discussion’ has been incorporated in the web tool, which offers the opportunity to add 

comments and ask questions about the uploaded PBPK model (Figure 23). 

 

 

Figure 23: Screenshot of the ‘Discussion’ tab of the PBPK web tool.  

 

Future work 

One important goal for further development of the Jaqpot PBPK modelling infrastructure is to provide 

means for creating and hosting practically any PBPK model. NTUA will create an R library for the 

deployment of custom PBPK models by R users. This R package will support the upload of a PBPK model 

on the Jaqpot server by providing the names of the dependent and independent features, as well as 

the differential equations and other functions, if applicable (e.g. covariate models for organ scaling). 

The Jaqpot Graphical User Interface (GUI) will be extended by providing functionalities to automatically 

produce concentration-time profiles in the Jaqpot environment. This improvement will enable 

generation of mass/concentration time profile plots on the UI, thus minimising the need for offline 

post-processing. 

NTUA will then integrate a number of nanoPBPK models in the Jaqpot system with the goal of creating 

a library of such models, similar to the nanoQSAR model repository reported in Deliverable report D5.4.  

This development will be supported by a Transnational Access (TA) project, as Prof. Dingsheng Li 

(University of Nevada), the first author of publication [59] has applied for a TA with the goal of creating 

a Jaqpot implementation of the PBPK model presented in [59], which describes the biokinetics of 

polyethylene glycol-coated polyacrylamide NMs in rats.  

While the PBPK model doesn’t currently consider the adsorption of a protein corona around NMs, and 

interesting area for further work would be to determine whether it is possible to include prediction of 

corona in blood (e.g. using partner UCD’s protein corona model described in Deliverable report D5.6 - 

First corona simulation tools integrated into NanoCommons KnowledgeBase) into the PBPK model.  

NTUA and UCD will explore this possibility.  
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7. Bayesian networks  

Bayesian networks and risk assessment for NMs 

Bayesian networks are excellent tools for applications were data integration and reasoning under 

uncertainty are needed. This is the reason why they have been utilised in estimating risk of NMs, along 

with methodologies like stochastic multicriteria acceptability analysis (SMAA), Weight-of-Evidence 

(WoE), grouping, QSAR models, as well as combinations of the aforementioned methods. Wiesner et 

al.,[61} and Marvin et al.,[62] were among the first to recognise the suitability of Bayesian networks in 

risk forecasting of NMs, highlighting their advantages. An early application of Bayesian networks was 

that of Money et al. [63], who developed a Bayesian network for modelling the risk of silver NMs 

exposure in aquatic environments. In a later publication they updated the initial model, which was then 

validated and used for sensitivity analysis [64]. Marvin et al. [62] developed a Bayesian network for 

hazard ranking of metal NMls (specifically they used data for TiO2, SiO2, Ag, CeO2, ZnO), using as nodes 

the physicochemical characteristics of a NM, the biological effects and exposure routes.  On a similar 

wavelength, Murphy et al. [65] deployed a Bayesian network using Ag, TiO2 and CNTs data and 

combined physicochemical properties and exposure potential to conclude on a RAt via a hazard node. 

A different approach of using Bayesian networks with the goal of risk assessment of NMs is the 

development and quantitative analysis of AOPs and AOP networks [66]. An AOP is a representation that 

begins with a biological perturbation caused by a molecular initiating event (MIE), which is causally 

linked via a series of key events (KE) to an adverse outcome (AO), happening at a biological level of 

organization that is related to RA [67]. To the best of our knowledge, there has been only one 

implementation of Bayesian networks on AOPs: Jeong et al. [68] developed an AOP for relating the 

reproduction failure of Caenorhabditis elegans through oxidative stress caused by Ag NMs and causal 

relationships between the building blocks of the AOP were established using Bayesian networks.   

 

Structure and properties     

Bayesian networks constitute a robust tool for investigating causal relationships between variables and 

for making predictions. One of their key features is the ability to integrate into the model different data 

sources and, if data are scarce, the model parameters can be updated when more data becomes 

available. In addition, they offer probabilistic inference given some evidence, which works in a dual 

direction: given evidence of an effect, inference can be conducted regarding the cause (“bottom-up” 

approach), and given evidence of a cause, we can infer the effect (“top-down” approach). For example, 

given evidence that a patient presents a series of symptoms, using a Bayesian network trained on 

symptom-disease data and following the “top-down” reasoning, we can estimate the probability that 

the patient suffers from a specific disease. These characteristics make Bayesian networks a powerful 

tool for RA, e.g. [69, 70]. 

Bayesian networks are part of the probabilistic graphical models family. They consist of nodes and 

edges, with nodes representing the random variables and edges the probabilistic dependencies 

between them. The edges of a Bayesian network are directed, modelling the causal relationship 

between two variables. This directionality implies a dependency relationship, making the node 

connected to the beginning of the edge the parent node, and the one at the end of the edge the child 

node. This can be further generalised by introducing the set of ancestors of a node, i.e. all nodes from 
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which the node at hand can be reached, as well as the set of descendants of a node; all nodes which 

can be reached from the node at hand. Finally, another important property of Bayesian networks is 

acyclicity, which, combined with the directionality of the edges, makes them directed acyclic graphs 

(DAGs). The lack of directional circles ensures that a node cannot belong to its set of ancestors or 

descendants [71]. 

The structure of the Bayesian network enables the computation of the joint probability distribution 

(JPD) through factorization, making both learning and inference simpler in terms of computational 

complexity. In particular, a node is independent of its non-descendants given its parents, i.e. the 

conditional probability distribution. Let G=(V,E) be a DAG, where V is the set of nodes and E the set of 

edges of the network. Then, given that X is the Bayesian network with respect to G, the JPD can be 

factorized as: 

 

where pa(v) is the set of parents of node v. 

 

Learning and inference 

The learning phase of the network comprises two components: learning of the graph topology and 

parameter estimation of the JPD, which in essence boils down to estimating the parameters of each 

conditional probability distribution (CPD), due to the factorization of the JPD. The learning process can 

be completely data-driven or include priors knowledge elicited from experts. In each of the two 

components there are two separate cases. The structure of the network can be either known or 

unknown, and the variables might fully or partially observable, which happens when they are latent 

(hidden nodes) or include missing data. All possible combinations give birth to four cases. In the first 

and easiest case, the structure is known and we have full observability, so the sole learning task is 

parameter estimation, which can be achieved through maximum likelihood estimation (MLE). Another 

case regards the scenario where the structure is known but is now combined with partial observability. 

The parameter estimates of such a problem can be calculated with iterative algorithms like expectation 

maximisation (EM) or gradient ascent, finding local MLEs of the parameters. In relation to the other 

two cases, where the structure is unknown and has to be learned through the data, the objective is to 

find the simplest DAG that explains the data, by applying the relevant parametric estimation depending 

on the observability status. More information about the learning process in Bayesian networks can be 

found in [72, 73]. Finally, the random variables of the network can be discrete, continuous or mixed, 

i.e. some variables could be discrete and others continuous. The most common and computationally 

tractable case is having discrete data, in which case the goal of the parametric learning is to estimate 

the conditional probability tables (CPT) that record the probability of the child node taking each of the 

discrete values for every value combination of its parents.   

Inference in Bayesian networks [74] involves two approaches: predictive support and diagnostic 

support. In predictive support the evidence nodes (available information) are linked to the parents of 

the desired node, while in the case of diagnostic support, information flows opposite to the causal 

connections and the evidence nodes are connected to the children of the desired node [71]. In relation 

to the algorithmic approach, exact probabilistic inference (e.g. variable elimination) is used in simpler 
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problems, while approximate inference (e.g. MCMC methods) is used in complex systems.  

  

Inference example  

An example of a Bayesian network is given in Figure 24 below. The 4 variables modelled by the 

corresponding nodes are binary and the resulting CPTs estimated in the learning phase summarise the 

underlying distribution.  

 

Figure 24: An example of trained Bayesian network. 

 

Due to the simplified network structure, the calculation of a subset of variables given some evidence 

can be realised in a straightforward manner by marginalising out the rest of the variables. For instance, 

having information about the ‘Bronchitis’ node, we can calculate the probability of observing a certain 

state for the ‘Dispnoea’ node by applying the following approach: 

 

The full joint distribution presented in the numerator can be broken down into several terms using the 

factorization implied by the network structure, making calculations simpler:  

 

The above description of Bayesian networks reveals a series of advantages. The first one is the ability 

to combine data information with expert knowledge in order to derive the network topology and to 

estimate the model parameters. In addition, latent variables and missing data can be handled during 

the training phase by making use of appropriate algorithms, but more importantly, probabilistic 

predictions can be obtained even in data-limited environments. The variability of the incoming data is 

taken into account by the training and inference algorithms, enabling probabilistic reasoning induced 
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by observing evidence. Adding to that, uncertainty propagation is a natural effect of the conditional 

probabilities.[61] Finally, an equally significant feature of Bayesian networks is the natural way with 

which parameter estimates can be updated the moment more data become available.  

 

Application of a Bayesian network for skin sensitisation 

Even if not yet applicable to NMs, we present here as a last example the Bayesian network approach 

for skin sensitisation developed by Jaworska and coworkers [75, 76]. Traditionally, skin sensitisation 

hazards are assessed using in vivo animal experiments. However, legislation is increasingly being put in 

place to encourage the replacement of such experiments with non-animal methods and skin 

sensitisation has been at the centre of concerted efforts to replace animal testing in recent years. Five 

non-animal methods addressing mechanisms under the first three KEs of the skin sensitisation AOP 

have been validated by the OECD. Nevertheless, the currently adopted methods, when used in 

isolation, are not sufficient to fulfil regulatory requirements on the skin sensitisation potential and 

potency of chemicals comparable to that provided by the regulatory animal tests [77]. Therefore, the 

OECD initiated the development of a guideline on Defined Approaches (DAs), which is tested on 

different skin sensitisation approaches including the Bayesian network model. 

To assess the regulatory relevance of integrated in vitro - in silico approaches, an important concept 

put forward by the OECD is the distinction between Integrated Approaches to Testing and Assessment 

(IATA, sometimes also called integrated testing strategies (ITS)) and DAs. A good description of the 

differences is given in Casati et al. [77]: 

“IATA are defined as pragmatic, science-based approaches for chemical hazard or risk assessment that 

rely on an integrated analysis of existing information coupled with the generation of new information 

using testing strategies. IATA follow an iterative approach to answer a defined question in a specific 

regulatory context, taking into account the acceptable level of uncertainty associated with the decision 

context [78]. The overall assessment process within IATA is based on WoE, which necessarily implies an 

expert judgment in the weighing of the different pieces of information. 

Non-animal approaches developed in the area of skin sensitisation that are based on a fixed set of 

information sources and fixed data interpretation procedures are designated as “defined approaches 

to testing and assessment” [79]. The DA designation emphasises that predictions generated by these 

approaches are rule-based and are not influenced by expert judgment. The fixed nature of DAs should 

facilitate their consideration under the OECD mutual acceptance of data (MAD), whereas IATA are 

designed to be flexible and adaptable to particular regional requirements or regulatory statutes.” 

The defined approach ITS-3 described by Jaworska et al. [75] and implemented e.g. in the SaferSkin 

application3 by EwC, is designed to replace the in vivo Local Lymph Node Assay (LLNA) assay by using a 

defined approach combining results from the OECD validated DPRA [80], KeratinoSens™ [81] and h-

CLAT [82] assays with predicted physico-chemical properties and predictions from the TIMES software4 

as input to the Bayesian network depicted in Figure 25. It makes a prediction for skin sensitisation 

potency calculated in the form of a probability distribution over 4 sensitisation classes: non-sensitizer, 

weak, moderate and strong sensitizer. The probability distribution is then transformed to a Bayes factor 

 
3 https://saferworldbydesign.com/saferskin/ 
4 http://oasis-lmc.org/products/software/times.aspx 

https://saferworldbydesign.com/saferskin/
http://oasis-lmc.org/products/software/times.aspx
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to remove prediction bias from the training set distribution and to give a quantitative measure to the 

level of uncertainty which can then be used in an objective manner to assign a confidence level to the 

predictions. SaferSkin is based on 207 chemicals for which physico-chemical data, in vitro, and in vivo 

data are available. 

 

 

Figure 25: Layout of the Bayesian network with input nodes for the experimental results from the 3 assays, the physico-

chemical properties and the TIMES result, nodes for latent variables combining related properties and the final output node 

predicting the results from LLNA (PEC3). 

 

To adapt this approach to allow the usage for predicting the skin sensitisation potency of NMs, a 

number of issues have to be addressed: 

1) It has to be shown that the DPRA, KeratinoSens™ and h-CLAT assay can also be applied to NMs 

or if this is not the case, new testing guidelines or alternative assays have to be developed. 

Driven by the European Commission and the EU NanoSafety Cluster, the ‘Malta initiative’ was 

established, which has the goal to develop such nano-specific guidelines with skin sensitisation 

being one focus. Alternative assays like Sens-IS [83] could be used to replace the current set of 

assays since they have broader applicability domains, i.e. they show better performance for 

more complex systems like mixtures, and are independent of the MIEs, which might not be 

direct protein binding in the case of NMs. 

2) In ITS-3, biokinetics aspects influencing the exposure of the compound are approximated by 

the physico-chemical properties of the compounds. Corresponding properties have to be 

identified for NMs, which can be used as input parameters for exposure models. 

3) ITS-3 predictions are depending on a QSAR model implemented in TIMES, which correlates 

structural features with the adversity. It has to be evaluated if such a complete in silico model 

can be created for NMs and if it improves the results from the experimental assays. 

To sum up, the strength of Bayesian networks lies in the ability to train and predict in data-scarce 
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environments, update their parameters whenever additional data are available, and combine various 

data sources and formats.  They can be implemented as a standalone risk analysis tool, but most 

importantly, their nature offers the ability to integrate responses from several tools into a predictive 

framework, e.g. responses from exposure and hazard models can be nodes of a Bayesian network and 

thus be part of an integrated analysis ending up in a risk estimation.  

 

Future work 

In relation to the NanoCommons project, we are currently investigating ways to integrate Bayesian 

network methodologies in NM RA, which will eventually be deployed as web services. The goal is to 

develop a new or reproduce an already existing Bayesian Network for NM RA using programming 

languages and or packages (for example R’s bnlearn package) that will facilitate the creation of web 

services and integration into the NanoCommons knowledge infrastructure.  
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8. Conclusions 

Overall, the approach for integration of modelling tools into the NanoCommons e-infrastructure that 

we presented above offers a set of favourable features. The first fulfilled aim is that our RA workflow 

provides a toolbox for full NM life cycle analysis from an occupational and environmental safety and 

health perspective. It incorporates a collection of state-of-the-art exposure models that return realistic 

external exposure estimations. These can be extended to further detailed, organism-specific internal 

exposure levels per organ/system, generated by sophisticated PBPK models, leading to a more accurate 

exposure estimation and hazard prediction. By taking into account the existing knowledge for the NM 

under investigation, as well as available data for NMs that present similar behaviour in the same 

environment, our approach grants reliable hazard identification and quantification. Special care is given 

to the minimisation of the uncertainty introduced by the reference sources used to extract Reference 

Points, providing a roadmap guiding the user to extract information from the most relevant source. In 

case multiple reference or estimated hazard values are retrieved, our workflow adopts the conservative 

“worst case scenario” approach. Nevertheless, the proposed optimized management of the relevant 

existing sources of information may facilitate the identification of cases about which more 

experimental data need to be generated so that sufficient information for assessing human health and 

environmental effects is available. Yet, by the employing dose-response models read-across algorithms 

and similarity assessment rules, it minimizes the need for conducting new experiments, and overcomes 

resource and ethical limitations. At the final step of risk characterization, but also during the previous 

steps of exposure and hazard evaluation, it outputs informative visualizations and reports that facilitate 

the outlining and communication of the results.  Last but not least, this approach builds a concrete 

framework that bridges various diverse approaches that can be further extended and linked using data-

driven methodologies, such as Bayesian Networks.  For this purpose, our workflow will be executed 

and refined in the course of WP6 (Tools Integration) and WP9 (Dissemination and Case Studies).  

 

In particular, this deliverable presented the breadth of modelling components that can either be used 

separately for particular tasks or in combination for the creation of complete RA workflows: 

i)   The web-based GUIDENano guidance tool which allows users to apply the most appropriate RA and 

risk mitigation strategy for NM-enabled products throughout their life cycle. 

ii)    Available tools and strategies for deriving points of departure (PODs) from dose-response data, i.e. 

levels of exposure that have low effect or no effect on humans or in the environment. 

iii)   Novel grouping/read across approaches, which combined with the repository of nanoQSAR models 

described in deliverable report D5.4 offers a variety of NM hazard prediction tools. 

iv)   The tools far for the integration of biokinetics models and especially Physiologically-Based 

PharmacoKinetics (PBPK) models for estimation of internal exposure of organisms to NMs. 

v)   Bayesian modelling approaches, which can combine both hazard and exposure information and build 

complete RA workflows. 

Ongoing integration of these and other models and their further optimisation for NMs risk assessment 

will continue over the next 2.5 years.         
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Annexes 

Annex 1: Data provided to a GUIDEnano case study 

For the purpose of showing the data that a user is asked to enter in GUIDEnano we use a “simple” case 

study extracted from a published paper looking at the release of nano-TiO2 during the fabrication of a 

paint. The worker is pouring a bag of nano-TiO2 powder into a liquid paint matrix in a factory hall. DOI: 

10.1039/C4EM00532EScenario. In all the following tables the data entry for the activity, 

nano(materials), compartment and Hazard exposure modules are listed. 

 

Activity 

General Info Name Pouring 25 kg RD3. 

Setting scale Large industry 

Handling 

type 

Manual 

Applied 

energy level 

Medium 

Life cycle 

phase 

Production 

Concurrent 

locations 

1 

Input, output 

and release 

Activity input TiO2 NM poured during the activity, Material: TiO2 RD3, Total 

amount: 26, Unit: kg, Ref.: yes, Rate: 26 kg/min 

Activity 

output 

TiO2 contained in the formulated paint, Material: TiO2 RD3, 

Relative to: Input/ TiO2 NM poured during the activity, Relative 

amount: 99.9%, Total amount: 25.9985, Unit: kg, Ref.: no. 

Activity 

release 

Emitted particles into the room (indoor), Material: TiO2 RD3, 

Relative to: Input | TiO2 NM poured during the activity, Relative 

release: 0.0005512%, RMM: no, Total release: 0,00143312, 

Unit: kg, Ref.: no, Rate/location: 143.3 mg/min.  

Duration Activity 

repetition 

Number of times this activity is applied for the same batch: 10. 

  

Operational 

repetition 

operational time needed to complete this activity: 1 min 
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Time span Total time span of all activity cycles together: 20 min. 

(Nano)material

s flow 

input Input: TiO2 NMs that are poured during the activity. 

output Output(s): TiO2 contained in the formulated paint. 

release Release(s): Release | Emitted particles into the room (indoor), 

Into compartment | zone: Factory hall | NF (LCLZ). 

 

(Nano)materials 

Identification name TiO2 RD3 

description Pigment GmbH, Pori, Finland, CAS 13463-

67-7 

origin Engineered 

Source/supplier Sachtleben Pigment GmbH, Pori, Finland, 

CAS 13463-67-7 

Shape and Size shape Spherical 

Size distribution available yes 

Method used other 

Size type Primary size 

Metric of size distribution mass 

Mean size 220 

Standard deviation 22 

Physical 

properties 

Physical state Solid 

Size category this solid 

materials present 

Ultrafine powder (100 nm – 1 µm); 

nanoscale particles (1 nm-100 nm) 

Rigidity rigid 

Dustiness [mg/kg]: 5.3 
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Surface properties Layout and charge Chemical compound: TiO3 RD3, Role: core, 

Al2O3, and: ZrO2 

Other properties function Pigment, UV filters 

Chemical info Are all constituents, impurities and 

contaminants added and identified? Yes. 

Purity in % :100 

Constituents Mass density 4 g/cm3 

Select constituents Category: chemical, name/identifier: TiO2 

RD3 (CAS No.13463-67-7), phase: solid, 

role of constituent: core, conc.:93, unit: %, 

mass perc.: 93% 

Select constituents Category: chemical, name/identifier: 

Al2O3, phase: solid, role of constituent: 

coating, conc.: 3.5, unit: %, mass perc.: 

3.5% 

Select constituents Category: chemical, name/identifier: ZrO2, 

phase: solid, role of constituent: coating, 

conc.: 3.5, unit: %,mass perc.: 3.5%. 

   

Compartment 

  Select 

compartment 

Type: indoor air, Name: Factory hall 

Type outdoor air, Name: factory hall 

Factory hall 

General Name: Factory hall 

With of the 

room 

20 m 

Length of the 

room 

30 m 

Volume of the 

room 

1500 m3 
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Zones Select zone: Zone description: NF (LCLZ), Number: 1, Medium: air, Size: 8, 

Unit: m3, Total dimension: 8 m3. 

Select zone: Zone description: Floor, Number: 1, Medium: solid, Size: 600, 

Unit: m2, Total dimension: 600 m2. 

Select zone: Zone description: Rest of the room (FF), Number: 1, Medium: 

air, Size: 1492, Unit: m3, Total dimension: 1492 m3. 

Zone: NF (LCLZ) 

  

Properties: Temperature: 25.0 °C. 

Contact 

zones: 

In contact with: Floor, Orientation: below, Separated: virtually. 

In contact with: Rest of the Room (FF), Orientation: around, 

Separated: virtually. 

Exposed Select or add a new exposed human population or eco species: 

Workers | exposure NF (LCLZ). 

Zone: Floor 

  

Properties: Temperature: 25.0 °C. 

Contact 

zones: 

In contact with: NF (LCLZ), Orientation: above, Separated: 

virtually. 

In contact with: Rest of the Room (FF), Orientation: above, 

Separated: virtually. 

Exposed Select or add a new exposed human population or eco species: 

Workers | exposure Floor. 

Zone: Rest of 

the Room (FF) 

  

Properties: Temperature: 25.0 °C, Pressure: 1 atm., Mechanical 

ventilation: Yes, Air exchanges per hour [/h]: 5. 

Contact 

zones: 

In contact with: NF (LCLZ), Orientation: within, Separated: 

virtually. 

In contact with: Floor, Orientation: below, Separated: virtually. 

In contact with: Outdoor air (outside of the factory hall) | 

outdoor air, Orientation: around, Separated: physically. 

Exposed Select or add a new exposed human population or eco species: 

Workers | exposure Rest of the room (FF). 

 

Exposure/Hazard assessment 

  Select human 

populations: 

Population name: Workers, Group: workers 
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General Population 

name: 

Workers 

Population 

category 

Workers 

Exposure 

paths 

Select indirect 

through zones: 

Exposure zone(s): factory hall | NF (LCLZ), Route(s): inhalation, 

Exposure relevant material: TiO2 RD3. 

Select indirect 

through zones: 

Exposure zone(s): factory hall | Rest of the room (FF), Route(s): 

inhalation, Exposure relevant material: TiO2 RD3. 

Select indirect 

through zones: 

Exposure zone(s): factory hall | Floor, Route(s): dermal, Exposure 

relevant material: TiO2 RD3. 
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Annex 2: Checklist for NanoCommons workflow for Risk Assessment 

Information Gathering 
R1. The user provides the information about the nanomaterial (NM) of interest  

R1.1. The user provides information about the chemical composition and purity of the NM 

R1.2. The user provides information about the impurities contained in the NM and their 

quantities 

R1.3. The user provides the NM primary size distribution and the respective measurement 

method  

R1.4. The user provides the aggregate/agglomerate size distribution 

R1.5. The user provides the NM physical properties:  

● phase  

● rigidity  

● density  

● crystalline form  

● melting point 

● boiling point 

R1.6. The user provides NM Reactivity information 

R1.7. The user provides information about the NM Shape  

R1.8. The user provides information about NM Surface properties:  

● charge  

● zeta potential  

● solubility  

● hydrophobicity/hydrophilicity 

R1.9. The user provides information about the NM Function 

R1.10. The user provides information about the NM Classification (Hazard Statement) 

R1.11. More than one NM can be included in each exposure scenario 

 

R2. The user provides information about the Activity during which the exposure to NM occurs: 

R2.1. The user provides general information about the Activity related to the NM exposure: 

● Scale 

● Handling 

● Applied energy level 

● NM life cycle phase 

● Concurrent locations 

R2.2. The user provides specific information about the Activity related to the NM exposure: 

● Input  

● Output  

● Release 

● Operational time  

● Repetition 

R2.3. The user provides information about the NM flow (between compartments) during the 

exposure 

R2.4. The user provides information about the Local controls, if available 

R2.5. More than one activity can be included in each exposure scenario 
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R3. The user provides General information about one or more compartments (indoor and 

environmental): Dimensions, surface area, volume(s) 

R4. The user provides information about the separate Zones: 

● General info: ventilation, air properties 

● Composition 

● Contact zones 

● Emmision(s) [see activity description] 

● Exposed Species: Human, animal. 

R5. The user provides information about the Distance from NM source 

R6. The user provides information about the Exposure route: 

● Inhalation 

● Oral 

● Dermal. 

 

Exposure Assessment 
R7. The user chooses one or more of the following options:  

R7.1. The user enters local measurements of the NM concentration 

R7.2. The user enters an estimation of the NM concentration  

R7.3. The user chooses one or more models to use for exposure estimation: 

● Zone derived estimate 

● ART 

● Marina Library estimate. 

R8. The user chooses whether a PBPK model will be used to derive the tissue/organ-specific mass 

profiles of NMs. 

R8.1. If a relevant PBPK model, specific to the NM and administration route, has been 

uploaded on Jaqpot: 

R8.1.1. If the model refers to different species, the user performs extrapolation e.g. by 

allometric scaling. 

R8.1.2. The user provides the External exposure estimate as dose in the corresponding 

input compartment. 

R8.1.3. The user provides the model parameters (e.g. physiological covariates, if 

applicable). 

R8.2. If no relevant PBPK model is available, the user should request the upload of a 

corresponding model. 

 

Hazard Assessment 
R9. The user provides reference information about the FSLV(s) depending on the aim of the Hazard 

assessment: 

● DNEL 

● NOAEL/LOAEL 

● OEL 

● PNEC 

R10. If there are no available Reference Points, the user provides the following information to the 

PROAST tool: 
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● Dose - Response experimental data 

● The name of the dose variable 

● The name of the response variable(s) 

● The BMR percentage (default 5%) 

● Number of bootstraps (default 10,000). 

R11. If there are no available Dose - Response experimental data: 

R11.1. If there are available characterization data for more than 20 samples, the user 

is prompted to prefer to use a nano-QSAR model: 

● The user provides the characterization data. 

R11.2. Or a Read-across methodology can be implemented: 

● The user provides NM grouping data. 

R11.3. If there are limited available data, then the user is prompted to use a Read-

Across across methodology by providing a minimal set of descriptors, for 

example physicochemical properties, theoretical descriptors etc. 

● The user enters Other model parameters (depending on the model: 

grouping or analog approach). 

R11.4. If there are no other available data resources the user is prompted to perform 

Toxicological Studies similarity assessment in order to choose candidate 

toxicology studies to extract quantitative Hazard information: 

● The user chooses from a list of available studies that are characterized 

as “Accepted” by the NM similarity, quality and relevance of each 

study assessment module.  

 

Risk Assessment 
R12. The user may select among the available measured or estimated Exposure levels. 

R13. The user may select among the available reference, estimated or approximated Hazard values. 

R14. The user may select available protective controls or exposure modification factors to evaluate 

their effect on the RCR for each assessed exposure scenario.  
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 Annex 3: Catalogue of nano-PBPK models found in the literature 

 

Nanoparticle Species Administration route Reference 

Quantum Dot 705 

(QD705)  

Mouse Intravenous http://doi.org/10.1021/es80

0254a 

99mTechnetium-labelled 

carbon nanoparticles 

(Technegas) 

Male human Pulmonary http://doi.org/10.3109/0895

8370902748542 

Silver nanoparticles Rat Intravenous http://doi.org/10.1016/j.bio

materials.2010.07.045 

poly(lactic-co-glycolic) 

acid (PLGA) 

nanoparticles  

Mouse Intravenous http://doi.org/10.2147/IJN.S

23758 

gold/dendrimer 

composite 

nanodevices (CNDs) 

Mouse Intravenous http://doi.org/10.1007/s110

95-012-0784-7 

Silver, silver alloy and 

ionic silver 

Rat Intravenous http://doi.org/10.2147/IJN.S

46624 

192Ir radio-labeled 

iridium particles and 

ultrafine carbon 

particles 

Rat Pulmonary http://doi.org/10.1115/1.402

5333 

Polyacrylamide (PAA) Rat Intravenous http://doi.org/10.3109/1743

5390.2013.863406 

Gold nanoparticles Mouse Intravenous  

https://doi.org/10.3109/174

35390.2015.1027314 

Silver nanoparticles Rat Intragastric http://doi.org/10.1134/S199

5078015020081 

Titanium dioxide (TiO2) 

nanoparticles 

Mouse, Rat Intravenous http://doi.org/10.3109/1743

5390.2014.940404 
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Zinc oxide (ZnO) and 

Zinc Nitrate (Zn(NO3)2) 

nanoparticles 

Mouse Intravenous http://doi.org/10.2147/IJN.S

86785 

Cadmium 

telluride/cadmium 

sulphide quantum dots 

(CdTe/CDS Qds) 

Mouse Intravenous http://doi.org/10.1021/acs.n

anolett.5b03854 

Silver and Carbon black 

(CB) nanoparticles 

Mouse Pulmonary http://doi.org/10.1371/journ

al.pone.0080917 

PAA, Gold, TiO2 Rat Intravenous http://doi.org/10.2147/IJN.S

94370 

QD705 Mouse Intravenous http://doi.org/10.1021/nl803

481q 

TiO2 Rat Intravenous http://doi.org/10.1371/journ

al.pone.0124490 

Amphiphilic block 

copolymers poly 

(ethylene glycol) (PEG) 

and poly (ε-

caprolactone) (PCL) 

bearing pendant cyclic 

ketals 

Mouse Intravenous http://doi.org/10.1002/psp4.

13 

Nanocrystals of SNX-

2112 

Rat Intravenous http://doi.org/10.2147/IJN.S

79734 

 192Ir radio-labelled 

iridium and silver 

nanoparticles 

Rat Pulmonary, 

Intravenous 

https://doi.org/10.1016/j.yrt

ph.2015.06.019 

Gold  Mouse, rat, pig Intravenous http://doi.org/10.2217/nnm.

15.177 

 PAA Rat Intravenous https://doi.org/10.1016/j.taa

p.2010.11.017 

 (192)Ir radio-labelled 

iridium and silver 

nanoparticles 

Rat Pulmonary https://doi.org/10.1088/174

2-6596/151/1/012028 
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Gold  Rat Pulmonary https://doi.org/10.1088/174

2-6596/151/1/012029 

Molecular imaging 

nanoparticles (MINs)  

Mouse Injection https://doi.org/10.1089/oli.2

009.0216 

Cerium dioxide (CeO2) Rat Pulmonary http://doi.org/10.1186/s129

89-016-0156-2 

CeO2 Rat Pulmonary, 

Intravenous, oral or 

its instillation 

http://doi.org/10.2147/IJN.S

157210 

Superparamagnetic 

iron oxide 

nanoparticles (SPIONs) 

Mouse Intravenous http://doi.org/10.1515/ejnm

-2017-0001 

 


