

3rd SUNRISE Meeting

NEW ADVANCED IN CANCER STEM CELLS

Abstract submission form

Submission deadline: February 25, 2019

TITLE μ Pulse Electric Fields exposure targeting medulloblastoma cancer stem cells

Authors full names:

Mirella Tanori¹, Arianna Casciati¹, Barbara Tanno¹, Paola Giardullo^{1,2}, Alessandro Zambotti¹, Carmela Marino³, Caterina Merla¹ and Mariateresa Mancuso¹

Authors affiliations

¹Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy;

²Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy

³Division Health Protection Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy

Type of presentation:

Poster presentation

Authors asked to submit abstracts under one of the following categories:

- CSC targeting

ABSTRACT

Medulloblastoma (MB) is the most common pediatric malignant brain tumor in which cancer stem cells (CSCs) seem to be candidates in the onset of the disease, constitute an endless reserve for the maintenance and progression of the tumor and, furthermore, they could be the reason of conventional therapy failure. Therefore, new therapeutic strategies are necessary to targeting specifically CSCs. The goal of this study is to selectively target quiescent malignant CSCs and subsequently induce a differentiation process to sensitize them to radiotherapy treatment using appropriately modulated pulse electric fields (PEFs).

To this aim, different μ PEFs are been selected to exposure D283Med cells, resulted to be a perfect model of MB CSCs, and normal human astrocytes. In particular, the μ PEF-3 (40 μ s 0.35 MV/m 5 pulses) exposure induced a different response in term of cell death and cell cycle perturbation. To provide deep insight into the mechanism that differentiate the response, we focus our attention on the cell cycle network, using the RT² Profiler PCR Arrays. Results showed that μ PEF-3 induced the G2/M arrest via the up-regulation of GADD45a that could be crucial for the choice of the cell fate activating apoptosis, senescence or differentiation mediated by stress-activated p38 MAPK process.

Our results suggest that this new therapeutic approach could be used to neutralize CSCs or as pretreatment to promote radiosensitization.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 737164 SUMCASTEC