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Abstract

Multiresolution decomposition of signals has been
conventionally carried out by the wavelet represen-
tation. In this paper, the orthogonal polynomial ap-
proximation has been employed for multiresolution
analysis. It is demonstrated that the proposed tech-
nique based on polynomial approximation has certain
distinct advantages over the conventional method em-
ploying wavelet representation.

1 Introduction

Multiresolution representations have been proven to
be very effective for analyzing the information con-
tent of signals and images [1-6]. Multiresolution
analysis refers to approximating the signal at var-
ious resolutions, computing the details (the differ-
ences of information between the approximations at
current and next resolutions) of the signal, and then
interpreting the signal information as depicted in ap-
proximations and details. Conventionally, the mul-
tiresolution representations of a signal are obtained
by decomposing the signal in a wavelet orthonor-
mal basis. The wavelet decomposition can be inter-
preted as a signal decomposition in a set of indepen-
dent frequency channels with orientation in time or
space. The wavelet orthonormal bases are generated
on translation and dilation of the special functions
called wavelets. It is important that the elements of
orthonormal bases have good localization properties
in both the temporal (or spatial) and Fourier domains
[5].

Considering the great potentiality of multiresolu-
tion signal decomposition in applications like pattern
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recognition, it is imperative that the study of opera-
tors which approximate a signal at various resolutions
will be highly desirable. In this paper, we propose an
alternative multiresolution representation of a signal
based on the orthogonal polynomial approximation
[7]. The analysis technique presented here is con-
ceptually simpler and easier to implement than the
wavelet representation.

2 Orthogonal Polynomial Approxima-
tion

Let f(z) be a function and {z;;% = 0,...,n — 1} be
a sequence of sampling points, not necessarily uni-
formly spaced, at which the observed value of the
function is f; and f; = f(=x;) is the true value. The
orthogonal polynomial approimation of order m for
the function is given by

f(@) =) eipj(x) (1)
j=0

where the set of polynomials {p;(z)} of degree j is
orthogonal over the sampled points,

S p@inE) =0 frlgk (2)

and, there exists a recurrence relation for generating
the polynomials:
Pi+1(2) = (—aj1)p; () —bjpj- (2) 7>0 (3)

with po(z) =1,p_1(z) =0, and
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The coefficients of the polynomial series are com-
puted in the least squares sense as

1 7
o = izo Jipi(i)
i = 1 :
Yico [pj(@)P?
Moreover, when the order of approximation, m is cho-

sen by the criterion of minimum error—variance, the
uncorrelated part (noise) of the signal can be rejected

[7].

(4)

3 Multiresolution Analysis

Let P; be the operator which approximates a signal
with a combination of first j orthogonal polynomials.
Then it is easy to verify that P; is a linear projection
operator on a vector space W; spanned by these poly-
nomials, and among all the approximated functions
in W;, P;f(x) is the function which is most similar
to f(x) (least squares approximation) [8]. Moreover,
the approximation of a signal by first j polynomials
contains all the necessary information to compute the
same signal with first & polynomials for all £<j. Fur-
thermore, the approximation P;f(z) of a signal f(x)
can be characterized by j + 1 samples (interpolation
formula) [8], and when f(z) is translated by some
length, P; f(z) is translated by the same amount. It
is also to be noted that since we have n samples of the
signal, the approximated signal P; f(z) will converge
to the original signal as j increases to n — 1. Con-
versely, as 7 decreases to 0, the approximated signal
settles to a constant value.

The above discussion shows that except for the
property by which the spaces of approximated func-
tions should be derived from one another by scaling
(similarity property) [5], all the properties of mul-
tiresolution approximation hold for the polynomial
approximation. Since the property of similarity does
not hold for the polynomials, the different basis func-
tions can not be obtained by dilating one function.
Instead, the different basis functions in this case are
obtained by the recurrence relation (3).

4 Simulation Study

In the simulation study, a set of 190 samples of the
electrocardiogram (ECG) signal is processed. The
plot of the signal is shown in Fig. 1. The discrete
time when multiplied by the sampling interval (1/250
s) provides the continuous time. The multiresolution
decomposition of the signal is obtained in turn by

the wavelet representation and polynomial approxi-
mation. For the wavelet transform, we implement the
algorithm given by Mallat [4] using the functions de-
veloped by Cody [9]. We have used the cubic spline
wavelets (« = —1.0,8 = 0.5). For the polynomial
approximation, the optimum degree of polynomial is
found to be 45. Figs. 2 to 10 show all the graphs for
comparison of corresponding signals at various reso-
lutions as obtained by the wavelet representation and
polynomial approximation with appropriate degree.
At the optimum (degree 45) polynomial approxima-
tion, the approximated signal is close to the signal at
resolution 1/4 indicating that the original signal has
been corrupted with noise.

Figs. 11 to 18 show the power spectral density
(PSD) plots for the signals at different resolutions.
As we can observe from the PSD plots of the cor-
responding approximated signals, the peak patterns
are slightly different but the spreads of the spectra
are same in all the cases. Clearly then, the simulation
study shows that the orthogonal polynomial approxi-
mation can be used for multiresolution analysis. The
frequency contents of polynomials of different degrees
are shown in Figs. 19 and 20. It can be seen from
the graphs that these polynomials occupy different
frequency bands with slight overlaps.

5 Discussions and Conclusions

We know that the wavelets have the varying time lo-
calization property [6]. Indeed, the polynomials also
have the varying time localization property. Suppose
we have a data sequence which has n samples, and we
wish to approximate it with an n — 1 degree polyno-
mial. If we change one of the samples in the original
data, only that sample in the fitted curve will change
because for this degree, the polynomial reproduces all
the points exactly. This is the case of narrowest time
window. Now as we decrease the degree of the poly-
nomial, the curve becomes smoother and the change
in one sample of the input starts propagating through
neighboring samples. Eventually, when we approxi-
mate the signal with a zero degree polynomial, the
output is the d.c. value of the signal and change in
one sample of the input results in a uniform change
in all the samples of the output. This is the case of
the widest time window.

Finally, the orthogonal polynomial approximation
has certain advantages over the wavelet representa-
tion as listed below:

1. In the case of wavelet decomposition, the step



size is fixed, whereas with the polynomial approxima-
tion one can choose much smaller step size for more
detailed information.

2. With polynomial approximation, the decompo-
sition and reconstruction of a signal are the one—step
processes with direct implementation.

3. The polynomial approximation has inher-
ent noise rejection capability (using minimum error—
variance criterion) [7]. This allows us to identify the
noise part, of a signal, which generally has no signifi-
cance in multiresolution analysis.

4. Since the orthogonal polynomials are generated
with arbitrarily spaced points, the approximation can
be used for nonuniformly sampled data [7].
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