Knowledge Discovery in Climate Change Domain

Pinar Öztürk, Erwin Marsi
Norwegian University of Science and Technology
(NTNU), Norway

Natalia Manola
University of Athens, Greece

Outline

- Introduction of Ocean-Certain (OC) EU- project
- Knowledge Discovery in OC
- Decisions underlying OC's Knowledge Discovery system
 - Type of knowledge to focus on
 - Corpus
 - Text mining subtasks
 - Technology/tool
 - External sources
- Some results (and examples) so far
- Conclusions

EU Project "Ocean Certain"

- Title: Ocean Food web Patrol Climate Effects: Reducing Targeted Uncertainties with an Interactive Network
- Work programme topic: F7- ENV.2013.6.1-1
- EU funding: 7.1 Mill Euro
 - Our workpackage : 40 man/month
 - 3 years, with start Nov. 2014

List of participants:

Partner no. *	Participant organisation name	Country
1 (Coordinator)	Norwegian University of Science and Technology	Norway
2	University of Bergen	Norway
3	GEOMAR Helmholtz Centre for Ocean Research Kiel	Germany
4	Vlaamse Instelling voor Technologisch Onderzoek	Belgium
5	DEU-IMST	Turkey
6	University of Gothenburg	Sweden
7	Griffith University	Australia
8	Universidad Austral de Chile	Chile
9	National Research Council and Institute of Marine Sciences	Italy
10	Centre for Environment, Fisheries & Aquaculture Science	UK
11	World Ocean Council	UK
12	Universidad de Concepción	Chile

Overarching goal of Ocean-Certain

- Identifying the interactions (impacts and feedbacks) between the climate related oceanic processes, food web and biological pump
- Determining qualitative and quantitative changes in the functionalities of the "food web" and estimating the efficiency of the "biological pump" in exporting carbon to deep sea

Climate change domain

Figure from Thingstad et al. (2008)

Main obstacle of scientific discovery

- is often not lack of scientific research and reporting of these – i.e., not knowledge
- is the lack of ability of *linking* various disciplines and making sense out of the accumulated/documented knowledge across disciplines – i.e., inferring new knowledge from the existing knowledge

Why knowledge linking is challenging

- Vast amount of literature and growing – info overload
- Increased specialisation
- Isolated research communities and literatures – research silos
- Different conventions and terminology

StraT: Stratification

DOC: Dissolved organic carbon

EP: Carbon Export (synonym: biological pump)

MOC: Meridional Overturning current

NAO: North Atlantic oscilliation

Computational support for handling scientific text

- Support the user in various ways
 - Search
 - Question-answering
 - Citation analysis
 - Trend discovery
 - Hypothesis generation literature-based knowledge discovery

Search

- Literature search works reasonably well
 - ScienceDirect, Google Scholar, Medline/PubMed, ...

— Who has time to sift through hundreds/thousands of abstracts or full papers?

Hypothesis generation

- Two main cognitive tasks
 - Identifying important knowledge pieces
 - Inferring new knowledge from these pieces
- Focus in this presentation: Identification of knowledge pieces in scientific papers
- Computational method:
 - Literature-based knowledge discovery (LBKD)

LBKD history – Swanson example

- 1. Relation of spreading depression to the visual scotomata of classical migraine
- 2. Magnesium in the extracellular cerebral fluid can prevent or terminate spreading depression
- 3. INFER: migraine \leftarrow - \rightarrow magnesium deficiency

Example: Hypothesis Generation in OC

Identify important knowledge pieces

 \uparrow iron \rightarrow \uparrow phytoplankton \rightarrow \uparrow photosynthesis \uparrow photosynthesis \rightarrow \downarrow CO₂

Infer new knowledge from these pieces

Text mining for extraction of knowledge pieces

- Text mining deals with identification and extraction of phrases/sentences of interest
- Techniques: natural language processing, information retrieval, machine learning, information extraction, various statistics-based techniques

Design of a text mining system for OC -1

1. Decide what type of knowledge to attend to

ÖztürkMarsiMa

Process Change events Variables Relationships between events pH, temperature Causal/correlational **Biological Pump** Increase/decrease Chemical /change compounds **Biological species** "Gran (1933) was among the first tothat the addition of demonstrate that the addition of iron to <u>iron</u> to seawater **may** stimulate the growth of seawater may stimulate the growth of phytoplankton." phytoplankton." 个iron **↑iron** → **↑**phytoplankton **†**phytoplankton LIBER Conference 14

Change events

Event expressions in natural language

- Same event may be expressed in various ways in natural language
- E.g., "increase":
 - "Rise in atmospheric CO2 levels..."
 - "...addition of iron..."
 - "elevated value of"
- E.g., "decrease":
 - "...to slow down calcification in corals.."
 - "decreasing temperature..."
 - "...reduced pH value..."

Design of a text mining system for OC- 2

2. Design and construct Corpus

- Decide which disciplines, publishers, journals
 - Ensure sufficient coverage, i.e number and variety of publications
 - . Currently 10 K papers from Nature
 - . Problems with open access text mining &sharing rights

3. Determine text mining subtask(s):

- Event extraction
- Causal/Correlational relationships between events
- Recognizing Entity mentions
- Linking to ontologies and generalization of terms LIBER Conference 20/15, ÖztürkMarsiManola

Design of a text mining system for OC - 3

- 4. Identify the tools to be used
- 5. Decide the external sources to be used

Design of a text mining system for Climate Change domain - 4

- Preliminary yet
- Our Strategy: try to map if/which of the existing tools, methods, and external sources developed for other domains (e.g., biomedicine, news text, digital heritage etc) are relevant
- Tools:
 - NLP tools & Annotation tools, e.g., Stanford's NLP, GATE,
 Brat annotation tool
- External resources
 - Controlled vocabularies, terminologies, thesauruses, ontologies, data bases
 - Examples: dbpedia, Wiki, WordNet, Chebi, Oscar,
 ChemSpot,, linnaeus2

Example: Identify tools & external resources for named-entity-recognition (NER) in Ocean-Certain

- Named entities are the entities of interest
 - Examples in news text: people names, organisations, places
 - Examples in Ocean-certain: chemical compounds, biological species, locations
- A lot of NER systems but mostly built for other domains (e.g, news, humanities or biomedicine)
- Check whether/which existing NER systems can be used for processing papers in the climate change domain
- In particular, we are evaluating :
 - CoreNLP (for geographical locations)
 - Linnaeus2 (species)
 - Oscar3 (chemical compounds)

Evaluation of existing NER tools

Judgment of appropriateness of the NER system to CC domain

Evaluation experiments are run by Sean Holloway – MSc student, 2015

Evaluated System

23

IllinoisNE

LIBER Conference 2015,

ÖztürkMarsiManola

Sharing extended resources?

- Preprocessed scientific papers in machine readable format
 - 10 K full papers from Nature but we cannot share them
- Annotated papers
 - Two types of annotations
 - For Entity recognition
 - For relation and event recognition
- Currently crawling open access (PLOS first) publicationsaiming to prepare and share a large volume corpus for CC domain

Annotated gold standard – not shared

Summary

- Text mining as a support to scientific discovery
 - The preliminary results promising for extraction of
 - entities/variables,
 - change events and
 - relations between events

Conclusion

- Some of the existing tools (general and specific to other domains) may be useful
- However, we need to adapt and extend these for the CC domain
- Corpus is an important problem
 - We cannot share the preprocessed and annotated corpus we create
 - We would not possible use others' resources because of the same reasons
 - Repetition of task (inefficient use of money and time)
 - Slows down our own work as well as the knowledge discovery research in CC domain, because of

Future work

- Preparation of a corpus for the CC domain larger volume and sharable
- Currently working on automated crawling&preprocessing that fits to variations in various publishers
- We need more annotation, meaning more people, more funding
- Planning to apply EU and Norwegian Research council for funding
- Organizing a workshop (in connection with the OC project) to gather people working in text mining in Earth science
- Want/need collaboration with other people/universities
- The work presented here is partly reported in :

Marsi, Erwin; Özturk, Pinar; Aamot, Elias; Sizov, Gleb Valerjevich; Ardelan, Murat Van. (2014) Towards Text Mining in Climate Science: Extraction of Quantitative Variables and their Relations. *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*.

Demo

 http://www.idi.ntnu.no/~emarsi/ocwp1/ chavarex