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Arctic waters have historically been regarded as harsh environments owing to their extreme weather conditions 10 

and remoteness from land. The advantages of shorter sea routes and hydrocarbon energy exploitation have recently 11 

led to increased marine activities in such harsh environments. To ensure safe operation within the area, the potential 12 

risks of ship accidents, need to be systematically analyzed, assessed and managed along with the associated 13 

uncertainties. The treatment of epistemic uncertainty in the likelihoods of adverse events due to lack of knowledge 14 

and information should also be considered. This paper presents a Frank copula-based fuzzy event tree analysis 15 

approach to assess the risks of major ship accidents in Arctic waters, taking uncertainty into consideration. The 16 

quantitative approach includes four steps, namely, accident scenario modeling by an event tree model, probability 17 

and dependence analysis of the associated intermediate events, risk assessment with respect to the consequent 18 

outcome events. A major ship accident in Arctic waters - ships stuck in ice, is chosen as a case to interpret the 19 

modeling process of the approach proposed. Crews and ships owners can use such approach to defining risk control 20 

options that enable optimal risk mitigation. Maritime management may also benefit from better risk assessment. 21 
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1. Introduction 34 

Recently, Arctic waters have become more accessible for marine activities due to the increased melting of the 35 

Arctic sea ice (Ho, 2010; Verny and Grigentin, 2009; Parsons et al., 2011; ABS, 2014). On the other hand, the 36 

northern sea route (NSR) through the Arctic sea is attractive because it offers a shorter transit than the traditional 37 
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routes through Suez Canal or Panama Canal (Liu and Kronbak, 2010; Raza and Schøyen, 2014; Schøyen and Bråthen, 38 

2011). Moreover, the polar areas are attractive for exploitation of the hydrocarbon resources. These advantages 39 

explain why marine activities in Arctic waters were gradually increasing in recent years (NSR, 2016). Nevertheless, 40 

these waters still share only a small amount of international shipping transits and lack of appropriate response 41 

capacity in case of emergency. The reason is that Arctic waters have historically been regarded as harsh environments, 42 

including extended sea ice, severe operating conditions, unpredictable weather changes, poorly charted waters, 43 

remoteness of the polar areas for marine activities, and an overall high degree of uncertainty regarding navigational 44 

environment conditions (Meng et al., 2016). The increasing ship traffic and exploitation in this area, the safety of 45 

marine activities and operations in such harsh environments, thus, becomes of great interest (MSC, 2014). Hence, 46 

there is a need for risk analysis of major ship accidents in Arctic waters. 47 

The analysis of the risk associated with ship operations in ice-covered waters has obtained much attention from 48 

academic and industry (Afenyo et al., 2016; Afenyo et al., 2016; Canada, 1998; MSC, 2014; Arctic Council, 2009; 49 

Fu et al., 2015; Fu et al., 2016; Fu et al., 2016; Goerlandt et al., 2016; Khan et al., 2014; Kotovirta et al., 2009; Kum 50 

and Sahin, 2015; Liu et al., 2016; Marken et al., 2015; Montewka et al., 2015; Sørstrand, 2012; Valdez Banda et al., 51 

2016; Valdez Banda et al., 2015). The 2009 Arctic marine shipping assessment report (Arctic Council, 2009) focused 52 

on the future scenarios development and environmental considerations of Arctic shipping. The international code for 53 

ships operating in polar waters (Polar Code) was adopted by the International Maritime Organization (IMO) during 54 

its 94th Maritime Safety Committee meeting (MSC, 2014). The polar code highlighted a comprehensive list of 55 

hazards for marine operations in Arctic waters, but it scantily elaborated on the risk influencing factors (RIFs) 56 

involved in some individual operations, or on the appropriate modeling techniques to be used for formal safety 57 

assessment(MSC, 2013). Besides, a few event-oriented models were proposed for the risk analysis of major 58 

operations in ice-covered waters. Khan et al. (Khan et al., 2014) proposed a transportation risk analysis framework 59 

for collision accidents in Arctic waters by using a Bayesian network model. Kum and Sahin (Kum and Sahin, 2015) 60 

used a fuzzy fault tree method considering some causal risk factors in human and management aspects, concerning 61 

collision and grounding accidents in Arctic waters. Marken et al. (Marken et al., 2015) conducted a delay risk analysis 62 

of ship sailing in the NSR by using a traditional Bow-tie diagram, integrated by fault tree analysis and event tree 63 

(ET) analysis. Valdez Banda et al. (Valdez Banda et al., 2016; Valdez Banda et al., 2015) presented a risk 64 

management model for the Finnish-Swedish Winter Navigation System, by incorporating formal safety assessment 65 

and a Bayesian network model. Goerlandt et al. (Goerlandt et al., 2016) carried out an analysis of winter operations 66 

in the Northern Baltic Sea involving icebreakers and assisted ships, pointing to various relationships between the ice 67 

feature and operational characteristics. Afenyo et al. (Afenyo et al., 2016; Afenyo et al., 2016) presented a model of 68 

oil spill accidents in ice-covered waters. Montewka et al. (Montewka et al., 2015) and Fu et al. (Fu et al., 2016) 69 

presented Bayesian networks models for analyzing ship performance in dynamic ice and predicting the probability 70 

of ships getting stuck in ice in the Northern Baltic Sea and NSR, respectively. These publications focus on major 71 

accidents of ship operations in ice-covered waters, such as collision (Goerlandt et al., 2016; Khan et al., 2014; Valdez 72 

Banda et al., 2016; Valdez Banda et al., 2015), grounding (Kum and Sahin, 2015; Valdez Banda et al., 2016; Valdez 73 

Banda et al., 2015), ship delay (Marken et al., 2015), oil spill (Afenyo et al., 2016; Afenyo et al., 2016; Marken et 74 

al., 2015) and ship besetting/stuck in ice (Fu et al., 2016; Fu et al., 2016; Montewka et al., 2015). However, this is 75 
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still a limited amount of publications, compared with the studies of risk analysis of ship operations in open-water (Fu 76 

et al., 2016; Goerlandt and Montewka, 2015; Graziano et al., 2016; Hanninen et al., 2014; Li et al., 2012; Mazaheri 77 

et al., 2016; Mazaheri et al., 2015; Zhang et al., 2016; Zhang et al., 2013). Furthermore, very little research to date 78 

has focused on the risks of potential accident scenarios and undesirable consequences of ship operations in ice-79 

covered waters (Kotovirta et al., 2009; Kubat et al., 2015). 80 

The ET analysis is a distinct and graphically supported method used to develop a logical relationship between 81 

the events leading to an accident and estimated the level of risk associated (Ferdous et al., 2011; Huang, 2001; Zio, 82 

2007). In an ET model, the event that generates the accident is named an initiating event, and the follow-up ones are 83 

termed intermediate events (IEs) or safety barriers (AIChE, 2000; Ferdous et al., 2011). The ET analysis represents 84 

the progression of the dichotomous conditions (e.g. success/failure or yes/no) of the initiating event onto the 85 

subsequent IEs all the way to the outcome events (OEs) of the accident sequence (AIChE, 2000; Andrews, 2000). In 86 

general, the ET analysis is used under two basic assumptions. First, the probability of occurrence of the events is 87 

assumed to be precisely known; in practice, this is often difficult to obtain due to imperfect or incomplete information 88 

(Chang et al., 2015; SRA, 2015) that leads to epistemic uncertainty in the ET probability values. The treatment of 89 

this kind of epistemic uncertainty associated with the probability of occurrence of events in an ET model – parameter 90 

uncertainty, can be of great importance, particularly in situations where little data and information are available, like 91 

for ship accidents in Arctic waters. Furthermore, the dependence of collected IEs in the ET model is also uncertain 92 

(Ferson S., 2004; Janbu, 2009). The impacts of the two different types of epistemic uncertainties, namely, parameter 93 

uncertainty and dependence uncertainty, must, thoroughly, be considered in the risk assessment process (Ferdous et 94 

al., 2011). 95 

The objective of this paper is to develop an original Frank-copula based fuzzy-ET approach for quantitative risk 96 

assessment of ship accidents in Arctic waters, by investigating the probabilities of potential accident scenarios of a 97 

certain ship accident. The primary feature of the quantitative approach proposed is that it enables us to describe, 98 

measure and propagate the effects of parameter and dependence uncertainties in the ET model. Fuzzy sets are used 99 

to describe the former uncertainty in the situation of scarce and limited datasets for IEs. For the latter uncertainty, 100 

The Frank-copula is used to describe the interdependence between dependent events and make a precise calculation 101 

for the probability of OEs in the ET model. A major ship accident in Arctic waters – ship stuck in ice, is chosen as a 102 

case to interpret the approach. For this, this study provides an insight into the combined effects of the probability of 103 

occurrence and potential consequences of the ship becoming stuck in ice, and it properly distinguishes between 104 

different accident scenarios. The approach can assist in determining risk control options that enable optimal risk 105 

mitigation. 106 

The remainder of the paper is structured as follows. Section 2 proposes an ET model for the risk analysis of a 107 

ship stuck in ice in Arctic waters. Section 3 describes the methods for epistemic and dependence uncertainties 108 

modeling and propagation. The modeling process and the obtained results are described in section 4, and discussed 109 

in section 5. Section 6 concludes the research findings. 110 

2. Methods 111 

Quantitative risk assessment of ship accidents in Arctic waters is a challenging problem, due to the limited data 112 
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and information available. A quantitative method is proposed for analyzing accident risks in Arctic waters. The 113 

quantitative method can be used for estimating the risk of potential accident scenarios, with consideration of 114 

parameter and dependence uncertainties. The following sections describe the methodological framework adopted, 115 

along with the techniques of epistemic and dependence uncertainties modeling, and propagation. 116 

2.1. Framework for quantitative risk assessment 117 

The framework of the quantitative approach can be decomposed into four steps, as follows:  118 

Step 1: Accident scenarios modeling. Analyze accident scenarios of a typical ship accident in Arctic waters by 119 

developing an ET model, including an initiating event, IEs and OEs, logically connected in the resulting accident 120 

sequences (Ferdous et al., 2011; Marken et al., 2015). 121 

Step 2: Probability analysis of the IEs. Collect information and knowledge about the probability of occurrence 122 

of the IEs in the ET model proposed, from historical records, related literature and expert knowledge. Since 123 

information related to the initiating event and the IEs are uncertain for the ice-covered polar waters, an epistemic 124 

uncertainty modeling method- fuzzy sets (Zadeh, 1965) is used for collecting knowledge from the domain experts. 125 

Step 3: Dependence analysis of the IEs. A possibilistic approach is incorporated into the fuzzy-ET analysis for 126 

generating sample data, to analyze the dependence relationships between the connected IEs in the ET model. 127 

Correlation analysis is used for calculating the Pearson product-moment correlation coefficient (PMCC) of the 128 

connected IEs. 129 

Step 4: Risk assessment. According to the dependence based-fuzzy-ET analysis method, further, integrate Frank 130 

copula to conduct conjunction operations of the connected IEs in the ET model so as to calculate the probability of 131 

each accident sequence in the ET model. The probability of the OEs and the risk of the ship accident can also be 132 

calculated. 133 

2.2. Fuzzy event tree analysis 134 

Fuzzy sets are introduced by Zadeh (Zadeh, 1965) and have gained popularity in various fields, including 135 

reliability analysis and risk assessment (Sahin and Senol, 2015; Zio and Aven, 2013). The fuzzy set theory uses fuzzy 136 

numbers to capture the imprecision or vagueness in expert linguistic assessment. The membership function of a fuzzy 137 

number establishes a numerical relationship for uncertain values, ranging from 0 to 1. Triangular fuzzy numbers 138 

(TFNs) are flexible for uncertainty representation and propagation in the ET model (Baraldi and Zio, 2008; Ferdous 139 

et al., 2009; Ferdous et al., 2012). 140 

Here, the TFN is a vector whose three elements range from 0 to 1 and are the lower bound, most likely, and 141 

upper bound values of the (uncertain) possibility/likelihood of occurrence for an event. In this paper, seven linguistic 142 

scales are used to describe expert knowledge relating to possibility values in the ET analysis. The linguistic terms 143 

and associated membership functions are reported in Table 1, taken from a study of transportation risk analysis in 144 

the Northern Sea Route (Marken et al., 2015). 145 

Table 1 146 
TFN of linguistic terms. 147 

Linguistic terms Membership function (TFNs) 
Very low (VL) (0, 0.025, 0.05) 
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Medium low (ML) (0.045, 0.125, 0.2) 
Low (L) (0.15, 0.275, 0.4) 

Medium (M) (0.35, 0.5, 0.65) 
High (H) (0.6, 0.725, 0.85) 

Medium high (MH) (0.8, 0.875, 0.955) 
Very high (VH) (0.95, 0.975, 1) 

The fuzzy set theory uses the fuzzy arithmetic operations based on the α-cut formulation to manipulate fuzzy 148 

numbers (Slier & Buckley, 2005). Suppose 𝑃"#$𝑝&', 𝑝)', 𝑝*'+ is a TFN representing the possibility of the occurrence 149 

of event A; its rules of multiplication and complement operations are calculated as follows: 150 

λ × 𝑃"# = λ × $𝑝&', 𝑝)', 𝑝*'+ = $λ × 𝑝&', λ𝑝)', λ𝑝*'+,	𝜆 > 0, 𝜆 ∈ 𝑅,     (1) 151 

𝑃"#555 = 1 − $𝑝&', 𝑝)', 𝑝*'+ = $1 − 𝑝&', 1 − 𝑝)', 1 − 𝑝*'+,       (2) 152 

where Eq. (1) is a multiplication operation between 𝑃"# and a crisp value, and 𝑃"#555 is the possibility of the occurrence 153 

of the complement event of event A. 154 

The α-cut 𝑃"89 (α ∈ [0,1]) of the TFN represents a fuzzy interval with (1 − α)% degree of belief, which can be 155 

calculated as: 156 

𝑃"#9 = [𝑝&@ + 𝛼 × $𝑝)' − 𝑝&@+, 𝑝*' − 𝛼 × $𝑝*' − 𝑝)'+C,        (3) 157 

The possibility mean of a TFN is used to calculate the defuzzification value (Kurano, 2006), which can be 158 

computed as: 159 

P#EFGHIIJGJKLMJNO = P𝑝&@ + 𝛼 × $𝑝)' − 𝑝&@+C + 2 ∗ 𝑝)' + P𝑝*' − 𝛼 × $𝑝*' − 𝑝)'+C 4⁄ .  (4) 160 

Suppose 𝑃"V$𝑝&W, 𝑝)W, 𝑝*W+ is another TFN representing the possibility of the occurrence of event B. In case of 161 

event A and event B are independent, the possibility of their conjunction operation can be computed as the product 162 

of the possibilities of the two events, as follows: 163 

P"(A&B) = 𝑃"# ⊗ 𝑃"V = $𝑝&' × 𝑝&W, 𝑝)' × 𝑝)W, 𝑝*' × 𝑝*W+.       (5) 164 

The probability of the OEs resulting from the accident scenarios in the ET model can be calculated by 165 

multiplying the conditional probabilities of the associated IEs along the corresponding sequence with branches on 166 

the ET, from the initiating event A to the OEs. Traditional fuzzy arithmetic operations assume that the connected 167 

events (or IEs) are independent (Ferdous et al., 2011), the formulations for the fuzzy-ET analysis can, then, be 168 

developed as follows: 169 

𝑃"\]^J,_
9 = 𝑃# × ∏ 𝑃"a]b

9c
def , 𝑘 = 1,2, … , 𝑛,          (6) 170 

where, k is the IEs index; n refers to the number of IEs in the ET model; 𝑃# refers to the probability of occurrence of 171 

the initiating event A;	𝑃"a]b
9  refers to the possibility of the kth IE in the α-cut; 𝑃"\]^J,_

9  refers to the possibility of the 172 
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sequence number (SEQ) j for the ith OE in the α-cut. Eq. (5) can also be seen as a multiplication operation between 173 

the probability of an initiating event A and the possibility of the corresponding 𝑃"a]b
9  in the SEQ j of the ith OE in the 174 

α-cut for calculating 𝑃"\]^J,_
9 .  175 

The total possibility of OEs in the event model can be calculated as: 176 

𝑃"j]k9 = ∑ 𝑃"j]J
9m

nef = 𝑃"\]^J,o
9 ⨁…⨁𝑃"\]^J,_

9 , 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … ,𝑀,   (7) 177 

where, according to the definition of the ET model in section 2 (as shown in Fig. 1), 𝑖 is the index of the OEs; N 178 

refers to the number of possible OE scenarios; j is the SEQ index; M refers to the SEQ number in the ET model;	𝑃"j]J
9  179 

refers to the possibility of the ith OE in the α-cut; 𝑃"\]^k9  refers to the total possibility of OEs in the ET model in the 180 

α-cut. Eq. (6) can also be seen as an addition operation between the corresponding possibility of the ith OE in the α-181 

cut (𝑃"j]J
9  ) for calculating the total possibility 	𝑃"\]^k9 . 182 

2.3. Dependence analysis 183 

As mentioned in the previous section, the probability of occurrence of the events in the ET model is derived 184 

from multi-expert judgment, with the majority of them being possibilistic regarding linguistic terms, as illustrated in 185 

Table 1. A possibilistic approach integrating the Monte Carlo technique and fuzzy set theory (Baraldi and Zio, 2008; 186 

Terje Aven, 2014), is then used to propagate the uncertainty of information using the following three main steps: 187 

● Select possibility value α and the corresponding cuts of the possibility distributions 𝑃"a]b
9  as the interval of 188 

possible values of the possibilistic variables IEk. 189 

● Compute the smallest and largest values of IEk, denoted by 𝑝&uvb
9  and 𝑝*uvb

9  respectively, considering all 190 

values of the possiblilistic variables IEk in the α-cuts of their possibility distributions. 191 

● Return to the first step and repeat for another α-cut; after having repeated the above two steps for all the α-192 

cuts of interest, the fuzzy random realization can then be obtained as the sample data from which to 193 

calculate the correlation coefficient. 194 

The PMCC is, then, used to estimate the correlation between two events, as follows (Freedman, 2010): 195 

𝑟xyzz =
∑ ({J|{5)(}J|}5)
O
J~o

�∑ ({J|{5)�O
J~o �∑ (}J|}5)�O

J~o

	,           (8) 196 

where a = P(A) and b = P(B), 𝑎n  and 𝑏n  are two variables with random possibility distribution calculated by a 197 

possibilistic approach, and 𝑎5 and 𝑏5 are the means of the 𝑎n and 𝑏n, respectively. 198 

The 𝑟xyzz  can describe the full range of dependencies ranging from -1 to 1, where 1 represents perfect 199 

dependence, (0,1)  represents positive dependence, 0 represents independence, 	(−1,0)  represents negative 200 

dependence and −1 represents opposite dependence. 201 

According to the scale for categorizing the dependence between events proposed in Ferdous et al. (Ferdous et 202 

al., 2011), the dependence relationship between events can be further decomposed into six types, as follows: 203 
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l Perfect dependence. The value of the correlation coefficient between events is 1.000. 204 

l Very strong dependence. The value of the correlation coefficient between events is between 0.800 and 205 

0.995. 206 

l Strong dependence. The value of the correlation coefficient between events is between 0.450 and 0.850. 207 

l Weak dependence. The value of the correlation coefficient between events is between 0.150 and 0.500. 208 

l Very weak dependence. The value of the correlation coefficient between events is between 0.005 and 0.200. 209 

l Perfect independence. The value of the correlation coefficient between events is 0.000. 210 

A significance test can be conducted to justify the degree of belief in the dependence between the data, which is 211 

calculated as: 212 

𝑡∗ = 𝑟�c|�
f|��

.                (9) 213 

For Eq. (8), if |𝑡∗| > 𝑡9/�, this indicates that the correlation of the data 𝑎n and 𝑏n is significant at level 𝛼; for example, 214 

if 𝛼 is set at 0.01 or 0.05, this would correspond to a degree of belief in the results of 99% or 95%, respectively. 215 

2.4. Frank copula-based conjunction operations 216 

The fuzzy-ET analysis method above can be used to calculate the probability of each scenario and propagate 217 

uncertainty in the ET model. However, the independent assumption underlying IEs simplifies the actual dependence 218 

relationships between the connected IEs and, thus, adds dependence uncertainty. For this reason, an extended Frank 219 

copula-based conjunction operation mathematic is proposed to express this dependence, as discussed in this section. 220 

Frank copula (Frank, 1979) is a formulation for expressing the correlation of events, which is defined by  221 

𝐶��{cd(𝑎, 𝑏) = logk[1 + (𝑠{ − 1)(𝑠} − 1)/(𝑠 − 1)],       (10) 222 

s = tan(π(1 − r) 4⁄ ), s ≥ 0,            (11) 223 

where a and b refer to the probability of event A and event B, respectively; and a = P(A) and b = P(B), r is the 224 

correlation coefficient between P(A) and P(B). Perfect dependence arises in the limit as s tends to 0; opposite 225 

dependence arises when s goes to infinity, and independent corresponds to s equal to 1 (Ferson S., 2004). 226 

In the Frank model of correlation between events, the probabilities of a conjunction of events A and B are given 227 

by the formula:  228 

𝑃��{cd(A&B) = Frank(a, b, r) =

⎩
⎨

⎧
min(𝑎, 𝑏) , 𝑖𝑓	𝑟 = 1

𝑎𝑏, 𝑖𝑓	𝑟 = 0
max(1 + 𝑏 − 1,0), 𝑖𝑓	𝑟 = −1

logk[1 + (𝑠{ − 1)(𝑠} − 1) (𝑠 − 1)⁄ ], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (12) 229 

This function is continuous; a special case arises when r is +1, 0 or -1. 230 

Since the ET model uses fuzzy numbers for the uncertain event probabilities, the Frank copula must be extended 231 

for using in the fuzzy-ET analysis. To do this, the monotonicity and bounds of Eq. (11) in each condition need to be 232 
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analyzed. According to Eq. (10), if r is defined on the interval 	(−1,0) ∪ (0,1), the value of s belongs to the interval 233 

(0,1) ∪ (1,+∞). 234 

Suppose 	f(a, b) = (𝑠{ − 1)(𝑠} − 1) (𝑠 − 1)⁄  in the condition 	r ∈ (−1,0) ∪ (0,1) , the probability of the 235 

conjunction of event A and event B can be worked out using the formula: 236 

𝐹(s) = logk[1 + f(a, b)], 𝑎, 𝑏 ∈ (0,1), s ∈ (0,1) ∪ (1,+∞).      (13) 237 

According to the monotonicity of the logarithmic function, if the base of the logarithmic function belongs to interval 238 

(0,1) or (1, +∞), then the logarithmic function will be a decreasing or increasing function, respectively. Hence, 𝐹(s) 239 

is a decreasing function when s ∈ (0,1), while 𝐹(s) is an increasing function when s ∈ (1,+∞).  240 

On the other hand, the partial derivative of f(a, b) can be calculated as: 241 

𝑑𝑓(𝑎, 𝑏) 𝑑𝑎⁄ = [(𝑠} − 1) ∗ 𝑠{ ∗ ln 𝑠] 𝑠 − 1, 𝑎, 𝑏 ∈ (0,1),⁄ s ∈ (0,1) ∪ (1,+∞).   (14) 242 

In Eq. (14), if s is in interval (0,1), then (𝑠} − 1) < 0, 𝑠{ > 0, ln 𝑠 < 0, 𝑠 − 1 < 0 and the value of 𝑑𝑓 𝑑𝑎⁄  will be 243 

negative, namely 𝑑𝑓 𝑑𝑎⁄ < 0; if s is in interval (1, +∞), then (𝑠} − 1) > 0, 𝑠{ > 0, ln 𝑠 > 0, 𝑠 − 1 > 0 and the 244 

value of 𝑑𝑓 𝑑𝑎⁄  will be positive, namely 𝑑𝑓 𝑑𝑎⁄ > 0. Similarly, since a and b are symmetrical in the 𝑓(𝑎, 𝑏), 𝑑𝑓 𝑑𝑏⁄  245 

is negative when s ∈ (0,1), while 𝑑𝑓 𝑑𝑏⁄  is positive when s ∈ (1,+∞). 246 

It is clear that Frank(a, b, r) is a monotonic increasing function since both 𝐹(s) and 𝑓(𝑎, 𝑏) are increasing 247 

functions when s ∈ (0,1), and decreasing functions when s ∈ (1,+∞). In Eq. (13), if the value of the correlation 248 

coefficient r between events P(A) and P(B) is a constant, and the probabilities of the occurrence of events A and B 249 

(a and b) are intervals from fuzzy sets, the thresholds for the function can be calculated by using the lower and upper 250 

bounds of the probabilities of occurrence (𝑎)nc, b)nc) and (𝑎){©, b){©), respectively. By this way, the monotonic 251 

increasing copula function Frank(a, b, r), can be extended into fuzzy theory. If the input variables in the copula 252 

function Frank(a, b, r) are TFNs, this function can be formulated as follows: 253 

𝑃"��{cd(A&B) = ª𝑃��{cd$𝑝&@, 𝑝&W+, 𝑃��{cd$𝑝)',× 𝑝)W+, 𝑃��{cd$𝑝*', 𝑝*W+« .   (15) 254 

For two dependent IEs IE® and IE¯5555, the conjunction operation of these two events can then be calculated as: 255 

P"°±²³´$IE®&IE¯5555+ = logµ¶·¸&¶·¹55555 º1 + ªs»¼¸&»¼¹5555
½¾¶·¸
¿
− 1« ªs»¼¸&»¼¹5555

½¾¶·¹55555
¿
− 1« (s»¼¸&»¼¹5555 − 1)À Á, (16) 256 

𝑠»¼o&»¼�55555 = tan$π$1 − 𝑟»¼o&»¼�55555+ 4⁄ +.           (17) 257 

3. Risk model 258 

In this section, we present a risk model of a typical ship accident in Arctic waters – a ship stuck in ice. This is 259 

chosen as a case to interpret the quantitative approach proposed in section 2. 260 

3.1. Accident scenarios modeling (step 1) 261 

To model the ET of a ship stuck in ice, we consider the following technical and environmental factors: ice class 262 
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of the ship, navigation operations, ice conditions, rescue ability, channel depth, meteorological environment and the 263 

ship’s maintenance ability. The proposed ET model for the accident of a ship stuck in ice is depicted in Fig. 1. The 264 

considered risk factors are associated with the technical and environmental aspects of shipping, and organizational 265 

and human-related factors are beyond the scope of this paper and are not considered in the ET model. 266 

 267 
Fig. 1. An ET model for accident scenarios of a ship stuck in ice, including nine intermediate events (IEs), five outcome events (OEs) 268 

and twelve accident sequences; upper branch corresponds to the occurrence of the event, lower branch to nonoccurrence. SEQ = 269 
sequence number. 270 

As shown in Fig. 1, the potential scenarios that can originate from the given initiating event - a ship stuck in ice 271 

- are described by nine IEs and five OEs, logically structured in twelve possible accident sequences on the basis of 272 

expert knowledge and related studies (Afenyo et al., 2016; Afenyo et al., 2016; Committee, 2014; Council, 2009; Fu 273 

et al., 2016; Fu et al., 2016; Goerlandt et al., 2016; Khan et al., 2014; Kotovirta et al., 2009; Kubat et al., 2015; Kum 274 

and Sahin, 2015; Marken et al., 2015; Montewka et al., 2015; Valdez Banda et al., 2016). The structure of the risk 275 

model is developed as an ET with nine IEs, as follows: 276 

● IE1: The stuck ship breaks the harsh sea ice by itself. 277 
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IE3: The stuck ship encounters fast moving ice.
IE4: The ship is assisted by an icebreaker during a period of an uncontrolled drift.
IE5: The ship collides with assisting ships (icebreakers) or objects.
IE6: The damage extend of the ship is not significant.
IE7: The depth of the fairway is less than the draught of the ship.
IE8: The uncontrolled ship collides with ships or objects.
IE9: The ship hull is breached upon collision with ships (icebreaking ships or icebreakers) or objects.
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● IE2: There is nearby ship/icebreaker assistance. There is available icebreakers or ice-going ships with a 278 

high ice class to assist the stuck ship in breaking up the harsh sea ice.  279 

● IE3: The stuck ship encounters fast moving ice. In some extreme weather conditions, ships may lose control 280 

and collide with ice floes or ice ridges. This event had happened and caused the wrecking of several ships 281 

in Arctic waters (Marchenko, 2011). 282 

● IE4: The ship is assisted by an icebreaker during a period of uncontrolled drift. Following the drift, 283 

icebreakers are available in some coastal areas and within the scope of research and rescue. 284 

● IE5: The ship collides with the assisting icebreaker. The forces of collision may lead to damage to the hull 285 

structure. 286 

● IE6: The damage extend of the ship is not significant. 287 

● IE7: The depth of the fairway is less than the draught of the ship. During an uncontrolled drift with the ice 288 

field, the ship may drift into shallow waters. 289 

● IE8: The uncontrolled ship collides with ships (icebreaking ships or icebreakers), an iceberg, or ice ridge 290 

ice. 291 

● IE9: The ship hull is breached in the collision accidents (Khan et al., 2014). 292 

On the consequences of the ship accident following the development of the initiating event and possible IEs for 293 

the accident of a ship stuck in ice may lead to five major OEs, as follows: 294 

● OE1: Safe. The ship is released from the harsh sea ice and can continue its voyage. 295 

● OE2: Near miss. The ship sustains slight damages, which can be handled by the crew onboard. The ship 296 

can continue its voyage. 297 

● OE2: Damage. Damage occurs to the hull structure, which cannot be repaired by the crew on board. The 298 

ship is unable to continue and has to proceed to the nearest port, where the necessary repairs can be done. 299 

● OE4: Grounding. The uncontrolled ship runs aground and is unable to continue its voyage. 300 

● OE5: Wreck. The hull is breached, and the ship cannot continue its voyage. 301 

As shown in Fig. 1, the ship will be safe (OE1) in SEQ 1, 4, 7 and 11; the ship will have a near miss (OE2) in 302 

SEQ 2, 5 and 10, suffering slight damages on board; the ship will be damaged (OE3) in SEQ 3 and 6, because of 303 

collision with objects; the ship will be grounded (OE4) in SEQ 8, if the water depth is deficient; the ship will wreck 304 

(OE5) in SEQ 9, owing to a significant breach in the hull structure after collision. 305 

3.2. Probability analysis of the IEs (step 2) 306 

The data and information used for probability analysis of the IEs in ET model are elicited from seven experts, 307 

including one captain, four professors, and two senior researchers. Their detail information is listed as follows: 308 

l Expert A: An associate professor engaged in risk management of ship operations in ice-covered waters since 309 

more than five years, from the National Engineering Research Center for Water Transport Safety and the 310 

Wuhan University of Technology. 311 

l Expert B: A professor engaged in navigation safety in polar waters since more than twenty years, from 312 
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School of Navigation of the Wuhan University of Technology. 313 

l Expert C: An associate professor engaged in safety management of ship accidents system since more than 314 

five years, from the National Engineering Research Center for Water Transport Safety and the Wuhan 315 

University of Technology. 316 

l Expert D: A specialist research scientist engaged in safety management and risk assessment of ship 317 

operations in harsh environments, from the Finnish Geospatial Research Institute. 318 

l Expert E: An associate professor engaged in navigation safety in polar waters since more than a decade, 319 

from Shanghai Maritime University, also engaged as a second officer on board. 320 

l Expert F: A senior researcher engaged in security management of ship operation in polar waters more than 321 

fifteen years, from China Classification Society Certification Company Shanghai Branch. 322 

l Expert G: A senior captain with more than fifteen years’ navigation experience in ice-covered waters, from 323 

the Polar Research Institute of China. 324 

The linguistic judgments of the seven experts are given in Table 2, concerning the linguistic terms of Table 1. 325 

As shown in Table 2, experts' linguistic judgments as to the likelihood of various IEs are presented. Since these 326 

experts have difference working experiences and stand for different stakeholders, their opinions for several IEs are 327 

different. Some experts are negative for the undesired events. For example, the judgment of expert F for the IEs is 328 

more cautious compared to the other experts. We will analyze these experts’ judgments individually so as to make a 329 

comprehensive analysis.  330 

Table 2 331 
Experts’ linguistic judgments as to the likelihood of various IEs. 332 
IEk Expert A Expert B Expert C Expert D Expert E Expert F Expert G 

IEf ML VL L M L L M 

IE� H VH M H H H L 

IEÂ L MH MH M M H MH 

IEÃ VL ML L H M ML ML 

IEÄ ML VL L VL VL M ML 

IEÅ L VL VL M-H ML L VL 

IEÆ ML VL VL ML L H VL 

IEÇ H ML M M MH M ML 

IEÈ M H H ML L MH M 

Use Eq. (3) to calculate the TFNs of the IEs from experts’ judgment at 95% degree of belief (α=0.05). The TFNs 333 

in the α-cuts are listed in Table 3, which will be used in the subsequent dependence analysis, scenario analysis, and 334 

risk assessment. 335 

 336 

 337 

 338 
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 339 

 340 

Table 3 341 
TFNs from experts’ judgment for the IEs at 95% degree of belief (α=0.05). 342 
IEk Expert A Expert B Expert C Expert D 

IEf (0.049,0.125,0.196) (0.001,0.025,0.049) (0.156,0.275,0.394) (0.358,0.5,0.643) 

IE� (0.606,0.725,0.844) (0.951,0.975,0.999) (0.358,0.5,0.643) (0.606,0.725,0.844) 

IEÂ (0.358,0.5,0.643) (0.804,0.875,0.951) (0.804,0.875,0.951) (0.358,0.5,0.643) 

IEÃ (0.001,0.025,0.049) (0.049,0.125,0.196) (0.156,0.275,0.394) (0.606,0.725,0.844) 

IEÄ (0.358,0.5,0.643) (0.001,0.025,0.049) (0.156,0.275,0.394) (0.00,0.025,0.049) 

IEÅ (0.156,0.275,0.394) (0.001,0.025,0.049) (0.001,0.025,0.049) (0.179,0.2625,0.346) 

IEÆ (0.049,0.125,0.196) (0.001,0.025,0.049) (0.001,0.025,0.049) (0.049,0.125,0.196) 

IEÇ (0.606,0.725,0.844) (0.049,0.125,0.196) (0.049,0.125,0.196) (0.358,0.5,0.643) 

IEÈ (0.358,0.5,0.643) (0.606,0.725,0.844) (0.606,0.725,0.844) (0.049,0.125,0.196) 

IEk Expert E Expert F Expert G  

IEf (0.156,0.275,0.394) (0.156,0.275,0.394) (0.358,0.5,0.643)  

IE� (0.606,0.725,0.844) (0.606,0.725,0.844) (0.156,0.275,0.394)  

IEÂ (0.358,0.5,0.643) (0.606,0.725,0.844) (0.804,0.875,0.951)  

IEÃ (0.358,0.5,0.643) (0.049,0.125,0.196) (0.049,0.125,0.196)  

IEÄ (0.001,0.025,0.049) (0.358,0.5,0.643) (0.358,0.5,0.643)  

IEÅ (0.049,0.125,0.196) (0.156,0.275,0.394) (0.001,0.025,0.049)  

IEÆ (0.156,0.275,0.394) (0.606,0.725,0.844) (0.001,0.025,0.049)  

IEÇ (0.804,0.875,0.951) (0.358,0.5,0.643) (0.049,0.125,0.196)  

IEÈ (0.156,0.275,0.394) (0.804,0.875,0.951) (0.358,0.5,0.643)  

3.3. Dependence analysis of the IEs (step 3) 343 

To undertake this, we use the probability of occurrence of the IEs derived from the seven expert judgments to 344 

calculate the probability of the corresponding complement events for Eq. (3). For each of the seven expert judgments, 345 

the possibilitic approach is applied as follows: 346 

(1) Set the possibility value α=0 and the corresponding cuts of the possibility distribution 𝑃"a]b
9eÉ as the intervals 347 

of possible values of the possibilistic variables IEk	(𝑘 = 1,2, … , 𝑛). In this ET model of Fig. 1, the number of the 348 

probabilities of the IEs n is 12. 349 

(2) Compute the smallest (𝑝&uvb) and largest (𝑝*uvb) values in its 𝛼-cut intervals º𝑝&uvb , 𝑝*uvbÁ (calculated based 350 

on Eq. (3) for 1000 Monte Carlo application sampled from a uniform distribution. 351 

(3) Return to the first step and repeat for another α value (here ten α-cuts, for α=0.1:0.1:1). 352 

Random realization can, then, be obtained by sampling the occurrence of each event 70,000 times. This is done 353 

in order to calculate the correlation coefficients of the events. The results of the PMCC and associated significance 354 

tests are shown in Table 4, as based on Eq. (8) and Eq. (9). The dependence relationships between connected IEs in 355 
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the ET model are also depicted in Table 4. 356 

 357 

 358 

Table 4 359 
Product-moment correlation coefficients (𝑟xyzz) between the connected IEs in the ET model. 360 

Events 𝑟xyzz Dependence relationship Events 𝑟xyzz Dependence relationship 

IE� IEÂ -0.519** Negative, strong dependence IEf5555 IE� 0.658** Positive, very strong dependence 

 IEÂ5555 0.519** Positive, strong dependence  IE�5555 -0.658** Negative, very strong dependence 

IE� IEÄ 0.475** Positive, weak-strong dependence IE�5555 IEÂ 0.288** Positive, weak dependence 

 IEÄ5555 -0.475** Negative, weak-strong dependence  IEÂ5555 -0.288** Negative, weak dependence 

IEÂ IEÃ -0.689** Negative, strong dependence IEÃ5555 IEÆ 0.066** Positive, very weak dependence 

 IEÃ5555 0.689** Positive, strong dependence  IEÆ5555 -0.066 Negative, very strong dependence 

IEÄ IEÅ 0.203** Positive, weak dependence IEÆ5555 IEÇ -0.424** Negative, weak dependence 

 IEÅ5555 -0.203** Negative, weak dependence  IEÇ5555 0.424** Positive, weak dependence 

IEÇ IEÈ -0.464** Negative, weak-strong dependence     

 IEÈ5555 0.464** Positive, weak-strong dependence     

**. Correlation is significant at the 0.01 level (2-tailed). 361 

As shown in Table 4, the dependence relationships between the most of the connected IEs are significant since 362 

the correlation coefficients (𝑟xyzz) are more than 0.2, except the 	𝑟xyzz  between 	IEÃ5555 and IEÆ/IEÆ5555. Hence, we use Eq. 363 

(16) and Eq. (17) to calculate the conjunction operations for these couples of connected IEs. The dependence 364 

relationships between IEÃ5555 and IEÆ/IEÆ5555 are neglected in this paper, and a traditional formula – Eq. (5) are used to 365 

calculate the conjunction operations for these two conditions. 366 

4. Results of risk assessment 367 

4.1. Probability of the accident scenarios 368 

The probability of the initiating event for a ship stuck in ice is set to a crisp of 0.02, based on our earlier work 369 

(Fu et al., 2016). Use the TFNs of the IEs listed in Table 3 to calculate the probability of the accident scenarios in the 370 

ET model, according to Eq. (6), (16) and (17). Then, use Eq. (4) to calculate the defuzzification values for each 371 

sequence. The sequence probability results for the twelve sequences, based on the seven experts’ judgments, are 372 

listed in Table 5. 373 

Table 5 374 
Resulting defuzzification numbers for each sequence from the seven experts’ judgments in the ET model proposed for the accident of a 375 
ship stuck in ice. 376 

SEQ Expert A Expert B Expert C Expert D Expert E Expert F Expert G 
1 2.48E-03 5.00E-04 5.50E-03 1.00E-02 5.50E-03 5.50E-03 1.00E-02 
2 2.06E-03 2.04E-05 7.86E-05 6.39E-05 5.00E-05 1.77E-03 6.48E-05 
3 4.64E-03 4.73E-04 1.95E-03 1.40E-04 2.41E-04 3.92E-03 1.57E-03 
4 7.23E-03 1.86E-02 6.38E-03 7.89E-03 1.10E-02 6.32E-03 2.21E-03 
5 1.13E-05 4.94E-08 1.59E-05 7.06E-06 4.04E-06 5.51E-05 1.42E-05 
6 2.22E-05 9.69E-07 3.35E-04 1.51E-05 1.83E-05 1.09E-04 2.99E-04 
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7 4.86E-05 5.08E-05 1.39E-03 1.00E-03 1.02E-03 2.41E-04 5.18E-04 
8 1.13E-05 2.05E-06 5.84E-05 1.65E-04 3.49E-04 2.62E-04 2.71E-05 
9 8.48E-04 3.70E-05 4.32E-04 3.34E-05 2.59E-04 3.90E-04 3.31E-04 
10 1.13E-03 2.24E-05 2.54E-04 2.57E-04 8.23E-04 9.95E-05 4.51E-04 
11 9.37E-04 3.96E-04 4.54E-03 3.55E-04 2.27E-04 5.59E-04 5.18E-03 
12 2.44E-03 8.11E-05 9.55E-04 1.28E-03 1.96E-03 1.13E-03 9.55E-04 

4.2. Probability of the outcome events 377 

The probabilities of the OEs are calculated using Eq. (7), by multiplying the probability of the initiating event 378 

A with the total probabilities for the consequent scenarios: 379 

𝑃j]o = 𝑃\]^o + 𝑃\]^Ê + 𝑃\]^Ë + 𝑃\]^oo + 𝑃\]^o�,        (18) 380 

𝑃j]� = 𝑃\]^� + 𝑃\]^Ì + 𝑃\]^oÍ,           (19) 381 

𝑃j]Î = 𝑃\]^Î + 𝑃\]^Ï,              (20) 382 

𝑃j]Ê = 𝑃\]^Ð,                (21) 383 

𝑃j]Ì = 𝑃\]^Ñ.                (22) 384 

According to Eq. (18) ~ (22), the resulting defuzzification numbers of the OEs provided by the seven experts’ 385 

judgments are depicted in Fig, 2. 386 

 387 
Fig. 2. Resulting defuzzification numbers of the OEs according to seven experts’ judgments in the ET model proposed for the accident 388 

of a ship stuck in ice. 389 

As shown in Fig. 2, the grey bar refers to the probability of the safe scenario - OE1 from the seven experts’ 390 

judgment, using the left vertical axis as a coordinate. The four lines use the right vertical axis as a coordinate for 391 

representing the hazardous scenarios in the ET model. The fine grey line refers to the probability of the OE2, the fine 392 

black line refers to the probability of the OE3; the bold black line refers to the probability of the OE4; and the bold 393 

gray line refers to the probability of the OE5. The ranking of the resulting probability of the OEs from the seven 394 

experts’ judgments can be obtained, as follows: 395 
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l Expert A: OE1> OE3>OE2>OE5>OE4, 396 

l Expert B: OE1> OE3>OE2>OE5>OE4, 397 

l Expert C: OE1> OE3>OE5>OE2>OE4, 398 

l Expert D: OE1> OE2>OE4>OE3>OE5, 399 

l Expert E: OE1> OE2>OE4>OE3=OE5, 400 

l Expert F: OE1> OE3>OE2>OE5>OE4, 401 

l Expert G: OE1> OE3>OE2>OE5>OE4. 402 

According to the above rankings from the seven experts, it can be seen that OE1 and OE4 are seen both as the 403 

most likely and most unlikely OEs respectively for a ship stuck in ice; OE3 is the second most likely to occur; OE2 is 404 

the third most likely; finally, OE5 is seen as the least likely to occur, by the majority of the experts’ judgments. OE1 405 

is considered by far the most likely OE by all seven experts, with probabilities approximately around 10-2; OE3 is 406 

considered the second likely OE by five experts’ judgments, with probabilities ranging between 2.59E-04 and 4.66E-407 

0; OE2 is considered the third likely OE by four experts’ judgments, with probabilities ranging between 1.55E-04 408 

and 1.87E-03; OE5 is considered the fourth likely OE by four experts’ judgments, with probabilities ranging between 409 

3.34E-05 and 8.48E-04; OE4 is considered the most unlikely OE by five experts’ judgments, with probabilities 410 

ranging between 2.05E-06 and 3.49E-04.  411 

This ranking (OE1> OE3>OE2>OE5>OE4) is in accordance with the resulting average values of the probability 412 

of the OEs provided by the seven experts. As shown in Fig. 3, it can be discerned that OE1 and OE4 are seen both as 413 

the most likely and most unlikely OEs for the accident of a ship stuck in ice, with probabilities 1.78E-02 and 1.25E-414 

04, respectively; OE3 is the second most likely to occur with probability 1.96E-03; OE2 is the third most likely with  415 

probability 1.25E-04; and finally, OE5 is seen as the least likely to occur with probability 3.33E-04. 416 

 417 
Fig. 3. The average values of the probability of the OEs in the ET model proposed for the accident of a ship stuck in ice. 418 

The results obtained in the course of the presented study are compared with the similar studies conducted for 419 

the Northern Baltic Sea, see for example (Valdez Banda et al., 2016; Valdez Banda et al., 2015). The results of the 420 

probability of occurrence for the undesired events in this paper are between 10-5 and 10-3, and these values are 421 

comparable to those characterizing maritime transportation systems operating in ice-covered waters of the Northern 422 

Baltic Sea . For example, the probability of occurrence of the damage event approximately equals to 10-4. However, 423 
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the resulting probability of occurrence for the grounding event in (Valdez Banda et al., 2015) is less than 10-4, which 424 

is lower than the corresponding result for the OE4 with the value being 1.25E-04, as presented in Fig. 3. This 425 

difference is due to the diverse environment conditions considered. 426 

 427 

 428 

5. Discussion 429 

Risk assessment of ship accidents in Arctic waters is a high concern issue in the marine industry with high 430 

uncertainty. The quantitative approach presented here shows a strong prediction power of the probability of ship 431 

stuck in ice in the current case study, in the absence of high-quality data in Arctic waters. The application of expert 432 

judgment in the proposed approach makes a supplement for such kind of data problem. However, it is difficult to 433 

judge the correction of the collected information for the disagreements among experts, which are influenced by 434 

complex factors, such as research background, status (stakeholder or not), personality (conservative or optimistic), 435 

working experience, etc. We intend to collect and analyze more expert judgments in the future. 436 

The proposed ET model clearly depicts the IEs, scenarios and OEs in a figure for the initiating event of a ship 437 

stuck in ice in Arctic waters. If the conditions of some IEs are changed, we can see the new sequences through ET 438 

figure. Also, the risk of multiple scenarios of a ship stuck in ice can be calculated respectively, so that we can quickly 439 

find the worst scenario and make associated risk control options considering corresponding IEs. 440 

Besides, both epistemic and dependence uncertainties in the quantitative risk assessment have been handled 441 

regarding the mathematical forms of fuzzy sets and Frank copula methods. The Frank copula based-ET analysis is a 442 

useful method that enables description and propagation the effects of uncertainties. Some other copula functions may 443 

be better than the Frank copula, but it is difficult to make a comparison the limited objective data. If high-quality data 444 

can be obtained, I would like to conduct further studies. 445 

6. Conclusions 446 

In this paper, a quantitative approach is proposed to analyze risks for ship accidents in Arctic waters. The 447 

occurrence probabilities of the initiating event and intermediate events are extracted from expert knowledge, and the 448 

probabilities of potential outcome events are computed. Fuzzy set theory and Frank copula are incorporated into the 449 

ET model to handle the parameter uncertainty in the probability values and the dependence uncertainty between 450 

dependent events, respectively. Additionally, a possibilistic approach integrating Monte Carlo simulation and fuzzy 451 

set theory is used to calculate the correlation relationship between events regarding linguistic terms. A typical event 452 

for ship operations in Arctic waters- ship stuck in ice is chosen as a case to interpret the approach proposed. The 453 

results show that the risk for ships stuck in ice in Arctic waters is comparable to that of maritime transportation 454 

systems operating in the Northern Baltic Sea. Through the case study analysis, the presented approach can be 455 

considered an appropriate approach for predicting the probability of the consequence of a ship getting stuck in ice. 456 

The proposed risk approach enables to predict the risk for a ship stuck in ice in Arctic waters and also enables 457 

one to describe, measure and propagate the effects of uncertainties. Moreover, the approach provides an insight into 458 

the combined effects of the probability of occurrence and potential consequences of ship accidents. This study can 459 
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assist the management of accident prevention or a ship’s crew in planning and conducting an actual sea passage 460 

through Arctic waters. 461 

 462 

 463 
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