DUNE DAQ readout R&D at ProtoDUNE Single-Phase

Roland Sipos - for the DUNE Collaboration CERN

24th International Conference on Computing in High Energy & Nuclear Physics 4th November 2019

Outline of the talk

- DUNE and its single-phase prototype
 - DAQ differences
- Integration objectives and results
 - FELIX readout
 - Self-triggering
- Summary and outlook

2

DUNE - Deep Underground Neutrino Experiment

- Future experiment due to take data in 2025
- Varied physics program
 - Neutrino beam from Fermilab
 - Explosion of supernovas
 - Atmospheric & solar neutrinos
 - Proton decay
 - Underground: shielded environment

DUNE "Far Detector"

- 4 super-module in 4 caverns excavated in a former gold mine
- Liquid Argon Time Projection Chamber detectors (LAr-TPC)
- Cryostat internal dimensions:
 14m x 14m x 62m = 17.000 ton LAr
- Liquid argon @ 87K (-186 °C)

ProtoDUNE Single-Phase

- Demonstrate design, construction, and operation of the single-phase technology DUNE TPCs
- External cryostat dimensions: 10m x 10m x 10m 750 ton of LAr
- Charged particle beam from SPS

- Ionisation tracks are collected by the wires of the Anode Plane Assemblies (APAs)
- 6 APAs in ProtoDUNE-SP (4% of the 150 APAs of a DUNE supermodule)
- Scintillation light collected by Photon Detectors installed on APA frame
- Successful beam run in Q4 2018

DAQ farm

- On-detector electronics connected to DAQ via ~700 optical fibers
- ~20 high performance servers for dataflow, monitoring and control
 700TB on-site storage
- Maximum 20 Gb/s data rate towards EOS

Timing and trigger

- Phase-aligned master clock to all components
- Aggregate trigger inputs from CRT/PD/BI
- External trigger due to high rate of cosmic flux

Self triggering

William Panduro Vazquez - FELIX: commissioning the new detector interface for the ATLAS trigger and readout system

- Single copy pipeline: serialization to user buffer
- Data published on Infiniband over Ethernet

DUNE

to fragment

write

DUNE DAQ

Real-time processing and selection of Z view interesting data regions for trigger decision 9700 raw q a 9600 ×× processing q Figures: P. Recv netio msg, eg 9500 Rodrigues subscriber push to raw q Offline push to processing a 9400 push hits to find hits processing pop processing a 9300 hit q, ptmp 4600 hit q pass Pop raw data q, ਙ 4500 · trigger match fragments recv trig req mbe hit a to artdag **HitFinder thread** Extract collection channel 4400 Do pedestal, filter, hit-finding (FIR filter) ullijo 4300 Implementation with specific AVX2 registers and instructions 4200 500 750 250 1000 0

Operational in ProtoDUNE: With full self-triggering chain!

1250

Time (tick)

1500

1750 2000

DUNE DAQ

OnHost BoardReader

Merged FELIX data routing software, with data selection (trigger-matching) algorithm

- Eliminated 100Gb P2P connection
- Reduced space and cost requirement

Covered:

- Extensive server evaluation
 - PCIe riser configurations,
 - BIOS settings
- Optimized for memory throughput
 - Performance profiling
- Heavy NUMA balancing between processing threads and allocated memory
- Interrupt moderation of 10Gb NIC

Operational in ProtoDUNE: Provides expected performance characteristics! (Ex. compression)

HitFinding in FELIX FPGA

FELIX & processing host

FPGA gateware R&D for HitFinding

- Bitwise and byte operations are CPU heavy
- FPGA HitFinder implementation is ready
- Integration with FELIX is ongoing
- Outgoing hits have dedicated virtual links

Ongoing work, in collaboration with DUNE DAQ and FELIX developers.

DUNE DAQ

Supernova Burst trigger

A supernova could produce thousands of neutrino events within several seconds!

But recording the data is tricky:

- Long time for trigger decision
- Physics event is distributed over time
- Most critical data: avoid any potential losses

Requirements:

- 10s transient buffer (15TB for one detector module)
- On trigger: 100s continuously persisted data stream (150TB)

Possible solutions:

- Dedicated ultra-fast distributed NAS?
 - How to dimension a network + storage to cope with this I/O rate?
- Bring storage close to readout?
 - NVMe SSDs?
- ???

SNB buffer prototype

Evaluation of RDIMM + NVDIMM (Non-Volatile Memory Module) solutions

Hardware:

- C628 chipset + Cascade Lake Xeon[®] Platinum L SKU processor
- 192GB RAM + 6TB Intel[®] Optane[™] DC NVDIMMs

Software:

16

- Persistent Memory Development Kit (PMDK libpmem)
- pmem in AppDirect (persistent) mode, mounted as dax filesystem in interleaved configuration
- For each APA link:
 - Fixed 100GB pmem pool
 - On SNB trigger:
 - Persist 10s buffer
 - Persist incoming 1GB/s data for 100s!

Preliminary, SNB trigger functional prototype in ProtoDUNE! (Half APA)

FELIX + processing + storage

FELIX PMEM AVX QAT

Outlook

- Continue hit-finding optimization
- Integrate fake SNB trigger to ProtoDUNE-SP
 - In order to validate the storage and data transmission flow
- Aim for 2 FELIX cards in the same server
 - Testing FELIX driver with NUMA support
- Continue incorporating emerging technologies for data processing, storage, and compression

Conclusions

- We applied the FELIX system to a new experiment
- Substantial progress on DUNE DAQ prototypes and their integration to PDSP
- DUNE DAQ benefits from advancing data center and server technologies
- There are a lot of further possibilities to explore

Also, thanks to ATLAS FELIX developers for their support