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Motivations:; HL@LHC

The High-Luminosity at LHC (HL-LHC) is a major evolution of
the accelerator and the CMS detector (2024)
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Our team is involved in the endcaps of the CMS sub-detector: y,.
High Granularity Calorimeter (HGCal) A |
-;éé%f;;f? —
HGCal Challenges W [
* Increasing pile-up (~200) L L1
* The high granularity (> 6M channels) AV .
§§ ) 4\/§§/\ VY py |
* High occupancy WA //\ N7 N7 \7 =
High trigger rate at 40 MHz \ %2 %”/}Q% é§/§ § |
* Time resolution : vertices spread in ég/\ Z\/§§§§a il
- : : WA N i B
position and time (towards 4D analysis) N fﬁéﬁw*‘/gﬁﬁ{

Involve drastic changes in the event \ ~
reconstruction

28 layers 22 layers
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Motivations : HGCal event reconstruction
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Current flexible approach: We propose to carr?/ out the two
* The lterative CLustering (TICL) steps simultaneously based on

 Combining clustering and pattern ch‘eCﬁn’.c DL in image processing
recognition iteratively ecnnics:

What we want:

* Classify in cluster categories : EM
clusters (dense) or Pions showers
(parse)

e Localize all the clusters and their
footprint

In DL field our problem falls in the
“Object detection” realm

& . MO
e L G A b5 i A LN -

Event simulation in HGCAL sub-detector: energy deposits (log scale)
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The model : Mask RCNN

Benefit from the applied research,
motivated by industrial challenges:
* automotive, face recognition, satellite
imagery, medical, ...
Object detection evolution:
* CNN with Sliding Windows
« R-CNN (2013),
* Fast RCNN (2015),
* Faster RCNN (2015),
« Mask-RCNN (2017-18)

Model Competition (speed & accuracy)
* Yolo - You Only Look Once (SxS grid)
e SSD - Single Shot Detection
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Matterport
Mask R-CNN implementation

* Original Facebook Research
https://github.com/facebookresearch/Detectron

* Matterport (TF, Keras)
https://github.com/matterport/Mask RCNN

* Medical Detection Toolkit (3D, PyTorch)

https://github.com/pfjaeger/medicaldetectiontoolkit/tree/master/models

e Tensorflow implementation
https://github.com/tensorflow/models/blob/master/research/obj
ect detection/g3doc/instance segmentation.md

We decided to start with, as a test bench, the 2D
Matterport implementation before tackling the 3D
problem


https://github.com/facebookresearch/Detectron
https://github.com/matterport/Mask_RCNN
https://github.com/pfjaeger/medicaldetectiontoolkit/tree/master/models
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/instance_segmentation.md
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Mask R-CNN Model
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Feature Pyramidal Network (FPN) Anchor Generator
Input downsampling - Aspect ratios [[:]] 9 anchors per pixel
» C2 » C3 » C4 - - Scales N
upsampling Region Proposal Layer
P2 Yt P3 e P4 ¥ PS5 |€uz, P6 |
— g ﬁegion Proposal Network (RPN)
4 > Classification || Regression
L Network Network
( Region Of fgll/bg : v bbox (dx, dy)
J Interest (ROI) classes Anchor list
- Select scale Pj Anchor Filt
. nchor Filter
v 7x7 x depth feature maps - Alignment - Score
MRCNN head ; ‘ H - loU with GT bbox
Classification Bbox Mask Layer
FC Layer FC Layer CNN layers

: ; Abbreviations:

Np, Nclc;sses Np, Nc/assves, 4 Np, Nc/asges, 2P, 2P - Ci, Pj: Resnet101 CNN

- bbox: bounding box

- GT: ground truth
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Mask R-CNN Model
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Loss computation Main model characteristics
mrenn
, L= Ijip“ "'LM‘ * Batch size: 8
with
Lrem=rpr + L * Optimizer:
L™ = Lgass - + Lipog * + Linask * Stochastic gradient descent (SGD),
and * learning rate 0.001,
* Cross- entr%pyafor class * momentum 0.3
[ lass _ _ZZPM(C% = 0).108(Podet(Cy =¢))  ° Penalization: L2 regularization
=1 c=1
* For boundm% boxes : smooth L1 (see fig.) Smooth L1 °)
4
bbox _ smooth
L ﬁZL (%) 31
« Mask Loss 2]
Binary cross-entropy (similarto L_,..) N
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Building the Data-Set

Need samples with their “object” location (bounding box or bbox) and their classification.
Difficult to extract all the details of each object from a simulation with pile-up.

Choose to simulate single particles (e*/-, y, m*/") that are overlaid on-the-fly:
small approximation and a lot of flexibility.
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Build a primary data-set with a unique
object

* Get events with unique particle with
E > 20 Gev (in fwd or in bwd detector) to
get the bbox

* Build a 2D histogram (3D -> 2D image)

* The mask will be an ellipse (PCA of the
cluster/shower)

Synthetic event 24

T e {1283 _be2 00l

. =g
Y — e~1280 Tn 1300

/128051397 L,y m Compose a traininﬁ/validation data-set
T with “objects” in the primary data-set

* Set a number of “objects” in the image
mt/1278 bs 101.1 (a range)

ISPy ER LMl ©  Select randomly them among the primary
data-set

* Random operation (data augmentation):
object symmetry, random shift dy =+/-1
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Results: Loss

12-20 objects, Training data-set 5000 ev., Evaluation data-set 50 ev., epoch ~30

RPN + MRCNN
2
Loss
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Results: nice predictions

Ground truth ev. Predicted ev.

pion 0.999 ~—

Pion-0.998

Ev 14

Pion 0.962

EM07996
EMEPEEIET

Ev 17

EM0965 —
Pion 1.000 '

Pion 1.000

Good predictions:

* Classification, localization (bbox), mask
* Dense region of objects (green arrows)
* mAP (mean Average Precision) =0.73

But ...
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Results: ... to improve

Ground truth ev.

CHEP 2019 Conference, 4-8 November, Adelaide

Predicted ev.

Pion 1.000

EM 0.734
n 0.997

EV 13 Pion 0.999

Pion 1.000

EMFOFO99 = = ——

EM 0.999

EM0.998
EMOG8 == — —- Pion 1.000

= 0-%:::—:—
L EMU870
Pion 0.917.

Ev 15

Piom I-000™

e
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Good

* Pion showers startin EM
region (green arrows)

To improve
* Missing object (red arrows)

* Small mask for pion shower
(red arrows)

mAP =0.73, ~ 15 % objects
missing
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Conclusion / Perspectives

HGCal 2D test bench

* Challenging conditions: small
data-set, rough histograms, the
layers are far from each others,
Int8 as input, ...

* However, gives pretty good
results

* Mask R-CNN captures the
scattered hits coming from Pion
showers
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Next Steps

HGCal 2D

e Getting better conditions to train
* Modify the model in MRCNN
HGCal 3D

* Apply the lessons of HGCal 2D

* Medical Detection Toolkit (3D,
PyTorch)
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