
Faster RooFitting
Automated Parallel Computation

of Collaborative Statistical Models

Carsten D. Burgard

Patrick Bos, Stephan Hageböck, Vince Croft,
Wouter Verkerke, Inti Pelupessy, Jisk Attema

4th of November
CHEP 2019

Adelaide

1 / 17

RooFit

I RooFit is the statistical modeling & fitting package of ROOT

I used for statistical inference in many experiments

I extract parameters via Likelihood maximization

I separate model building & fitting from the technical
implementation and optimization

Parallelization

I CPU time dominated by repeated calculations of -log L

I RooFit internally parallelizes fitting

I user interface via NumCPU(..) argument

2 / 17

Collaborating & combining

I central container object RooWorkspace
I store models (p.d.f. modeling the data)
I store datasets (binned or unbinned)
I made persistent via ROOT streamer

I measurements can be easily combined by combining
workspaces (both p.d.f and data)

0 20 40 60 80 100

0

5

10

15

20 ATLAS√
s =13 TeV, 24.5 - 79.8 fb−1

mH = 125.09 GeV, |yH | < 2.5
pSM = 50%

68% CL 95% CL Best Fit SM

σggF [pb]

σ
V

B
F

[p
b] H→ γγ

H→ ZZ
H→ WW
H→ ττ

Combined

arXiv:1909.02845

3 / 17

https://arxiv.org/abs/1909.02845

RooFit: Existing Optimizations

I constant-term optimization/caching

I likelihood parallelization by event/bin

LH
CPU #1

CPU #2

LH
CPU #1

CPU #2

Faster RooFitting

I further parallelization (this project)

I vectorization of calculations (Stephan Hageböck)

4 / 17

Challenges

I Many components too small to efficiently distribute over many
cores ⇒ Relatively large overhead

I Other components very large (binned regions), not splitting
efficiently over multiple workers

Solutions

1. Increase chunk sizes

2. Dynamic load balancing

5 / 17

Solution 1: Partial derivatives

I Most CPU time spent in derivative calculations inside
minimizer MINUIT
I 1 Iteration ∼ Gradient + line-search
I gradient for N parameters p: df

dp ≈
f (p−dp)−f (p)

dp ⇒ 2N calls of f
I line-search: descend along gradient direction ⇒ O(1) calls of f

I Focus on partial derivatives as calculation chunk instead of
component likelihood
I Required changes in MINUIT
I made sure outputs stay exactly same

6 / 17

Solution 2: Dynamic Load Balancing

old custom BidirMMapPipe handles fork, mmap, pipes

new ∅MQ for communication between forks

Master

Job: n tasks

get results

Queue

Task 1
Task 2

. . .

Result 1
Result 2

. . .

Worker 1

Worker 2

. . .

7 / 17

Benchmarks for MIGRAD fit / minimization

label fast big

model ATLAS H →WW fit ATLAS Higgs combi-
nation Moriond 2019

components 13795 126883
parameters 265 1487
approx. timing 20 s 10 min – few hours
comment not main target audi-

ence, but used for fast
benchmarking

depending on starting
point

8 / 17

Small model

9 / 17

Small model

I update slow, but at least constant
I fast model not ”main target”
I mainly want to speed up runs that take hours
I this constant part becomes insignificant

I rest ignored for now, focusing on long runs
10 / 17

Big model

11 / 17

Big model

12 / 17

Big model

13 / 17

Big model

I gradient not scaling well
I mainly due to first partial derivative on each node taking long

due to expensive precalculation

time

I big rest term caused by long synchronization step in serial part
(master node) between roofit and minuit

I specifically the many constant terms in this model

14 / 17

Conclusions

I effective collaboration requires short wall times
I minutes rather than hours
I Parallelization can deliver this

I improved scaling of existing likelihood-level parallelization
I introduced new flexible framework

I multi-level parallelization: likelihood, gradient

I gradient-level parallelization scales for large (> 1 h) fits
I main goal achieved!

Related poster

Stephan Hageböck: A faster, more accessible RooFit

15 / 17

Outlook

I include new infrastructure into ROOT/RooFit
I for the adventurous: development version

I github.com/roofit-dev/root

I investigate imperfect scaling observed in gradient calculation

I redesign core test statistic classes for future-proof interface
I allows to plug in any new types of calculation strategy

I e.g. analytical derivatives

I HESSE can be parallelized in similar way

I With combination of all techniques expect speedups of factor
20 for fits > 1 hour.

16 / 17

https://github.com/roofit-dev/root

What to expect in the future

Existing roofitcore classes

RooAbsReal

+ getValV(RooArgSet&): double

RooAbsPdf

+ createNLL(RooAbsData&, [options]): shared_ptr<RooRealL>

+ createAbsL(RooAbsData&, [options]): shared_ptr<RooAbsL>

RooMinimizer

- fcn: RooMinimizerFcn

- _theFitter: ROOT::Fit::Fitter *

+ RooMinimizer(RooAbsL*)

+ RooMinimizer(RooRealL*)

RooMinimizerFcn

- likelihood: LikelihoodWrapper

- gradient: LikelihoodGradientWrapper

- hessian: LikelihoodHessianWrapper

+ RooMinimizerFcn(RooAbsL*)

1

shared pointers
returned here?

How to construct with specific wrapper types? have the default constructor just hardcode the
type of wrapper to be one of these MultiProcess::XJob ones, but in addition provide a factory
function that has template parameters that can be used to specify the wrapper subclasses,
so something like:

RooMinimizer::from_wrapper_types<typename LWrapper, typename GWrapper, typename
HWrapper>(RooAbsL * likelihood);

And then the wrappers are just created inside and owned by the RooMinimizerFcn.

Basic serial likelihood maths

does optimizer have to be member?
does it have state?
if not, just use function instead of class

should optimize_pdf be virtual or is
it the same for all classes?

I prefer size_t over int, no "special" values
like -1 or 0...
Stephan: I'm ok to choose size_t over int in
RooAbsL. Eventually, these are converted
into numbers that select an event range, and
that's size_t. Admittedly, converting them
isn't a big issue, though.

RooAbsL

- pdf: RooAbsPdf*

- data: RooAbsData*

- optimizer: RooPDFOptimizer

+ evaluate_partition(int, int, int): double

- optimize_pdf(): void

RooUnbinnedL

RooBinnedL

RooMultiL

RooConstraintL

Stephan: The optimisation could
take an AbsL and yield another
AbsL. It's not necessarily a function
of the AbsL itself

RooFit::MultiProcess

ProcessManager

+ is_master/_worker(): bool

+ init_/term_processes()

Messenger

- zmq_sockets

+ send/receive(T)

Queue

- task_queue: std::queue<size_t>

+ add_task(size_t)

+ pop_task(): size_t

+ loop() <worker.cpp> (free fcts)

+ worker_loop()

+ is_worker_loop_running() : bool
11 1

JobManager

- jobs: std::vector<Job*>

- process_manager_ptr

- messenger_ptr

- queue_ptr

+ activate() (start loops)

Job

- current_strategy: size_t

+ evaluate_task(size_t): void
*

LikelihoodJob

+ task_results: vector<pair<double>>

+ result: double GradientJob HessianJob

The Job strategy cannot be
implemented as enum at abstract base
class level, but it must be at base level
to be able to implement syncing it in
worker_loop. In general, keep types that
must be synced (like task_id) simple.

Use

JobManager, ProcessManager,
Messenger and Queue used to be
together in one big jumbled up mess
called the TaskManager class (still
untangling it all). The worker_loop
used to be in the Job class.

pair: value &
carry (Kahan)

Existing ROOT classes

ROOT::Math::IMultiGenFunction

+ DoEval(const double* x) const: double

+ NDim() const: unsigned int

+ Clone() const: pointer to new object

ROOT::Fit::Fitter

+ FitFCN(const ROOT::Math::IMultiGenFunction &)

+ FitFCN(const ROOT::Math::IMultiGradFunction &)

ROOT::Math::IMultiGradFunction

ROOT::Math::IGradientMultiDimTempl<double>

+ DoDerivative(const double *, unsigned int): double

+ DoSecondDerivative(const double *, unsigned int): double

+ DoStepSize(const double *, unsigned int): double

Extends

Extends

Use

Use

Use

create

Likelihood wrappers

LikelihoodWrapper

- likelihood: shared_ptr<RooAbsL>

+ get_value(parameters): double

LikelihoodGradientWrapper

- likelihood: shared_ptr<RooAbsL>

+ get_value(parameters, size_t index): double

RooRealL

- likelihood: shared_ptr<RooAbsL>

For users that need the
value of a likelihood for
other reasons than
minimization

LikelihoodHessianWrapper

- likelihood: shared_ptr<RooAbsL>

+ get_value(parameters, size_t i, size_t j): double

It's unclear how to
implement a Hessian
wrapper. Minuit
implements its own
Hessian calculation,
no callback like with
FCN and GRAD.

1

11create

1
1

1

1

In which library to put the Job implementations?
They depend on the wrappers and those are
probably in roofitcore, but roofitcore will depend
on MultiProcess, so circular dependency...
Or should the wrappers also be a separate
library on which roofitcore then depends?

17 / 17

