Advancing physics simulation and analysis workflows from customized local clusters to Cori

#### Jan Balewski, Matthew Kramer, Rei Lee, Mustafa Mustafa, Jeff Porter, Vakho Tsulaia





**CHEP 2019** 







### **NERSC Systems**

3MW

2013





## PDSF load - RAM profile of running jobs



#### 123 GB/32 CPUs =3.8 GB/task

Diversity of jobs (and users) allows for better utilization of nodes





### Cori - NERSC CRAY Workhorse



Partitions (aka queues)

2,004 Xeon "Haswell" nodes

- 32 cores (2x hyper-thread)
- 120 GB RAM

9,300 Xeon Phi "Knight's Landing" nodes (KNL)

- 68 cores (4x hyper-thread)
- 90 GB RAM



**\$SCRATCH** 20TB/user (Luster)



User Home:40 GB (GPFS)

/project/projectdirs/star,... (GPFS)



Physics computation on Cori

# Running on Cori at scale(1) - highway analogy

#### Interactive usage : salloc



Throughput: ~10 CPU hours/day

• code debugging

Submit 1-core job(s) to shared queue



Throughput: ~5k CPU hours/day 10 nodes\* 30 tasks \*20 h

- Management of 10k jobs is non-trivial
- Only 60 nodes accessible (3% of Cori)



Physics computation on Cori





# Running on Cori at scale(2) - highway analogy

Full node jobs: 30 to 50 tasks/node, regular queue



Multi-node jobs w/ ephemeral DBs



Throughput: ~100k CPU hours/day 200 nodes\* 30 tasks \*20 h

- 90% of Cori is (potentially) accessible
- IO bottleneck need optimization
- External DBs not able to handle concurrency

Throughput: ~1M CPU hours/day 2000 nodes\* 30 tasks \*20 h

- HPC compute power
- Single 30-nodes job w/ local DB creates
- Requires expert understanding of Cori



Physics computation on Cori



### DayaBay 20-h 2000-tasks as 1 Slurm job



**Office of ENERGY** Office of Science



#### Example: 20-node 1000 root4star Slurm job





Use taskFramer for BFC management

Multiple 'waves' of BFC in one job

Duration 16 wall hours

NO local DB  $\rightarrow$  lower utilizat



### **CVMFS on Cori**



DVS does I/O forwarding and caching data Cori has 32 DVS servers, 4 of those are dedicated to CVMFS



Jan Balewski, NERSC

Physics computation on Cori

CHEP 2019



## Scalable CVMFS on Cori - ATLAS workflow

#### Atlas user source 2 scripts at the start of any ATLAS job

- software and condition-DB delivered via CVMFS
- Test duration : 6h wall time
- It was simulation task
- 1. atlasLocalSetup: finds base code on CVMFS, takes ~3 seconds
- 2. Asetup, scans CVMFS tree for specific version of libs, takes ~7 seconds
- 3. Run simulation (athena.py). 3 events/simu, 15 min/simu, 60,000 simu tasks per 1 slurm job

Science



Jan Balewski, NERSC

Physics computation on Cori

**CHEP 2019** 

ERICFLEY LA

### **NERSC Systems Roadmap**









#### **Perlmutter: A System Optimized for Science**



- GPU-accelerated and CPU-only nodes meet the needs of large scale simulation and data analysis from experimental facilities
- Cray "Slingshot" High-performance, scalable, low-latency Ethernetcompatible network
- Single-tier All-Flash Lustre based HPC file system, 6x Cori's bandwidth
- Dedicated login and high memory nodes to support complex workflows







# **5 ECP Apps to Integrated into NESAP**



- ECP funded; selection occurred in partnership with ECP in Fall 2018.
- 15 Apps Applied, Reviewed by NERSC and ECP Staff. Priority given to apps beginning to or actively porting to GPUs
- Participation in NESAP funded by ECP HI Apps Integration at Facilities
- There will be additional overlap with codes that are part of ECP, but focus will be different from ECP efforts

| PI Name       | Institution | Application name | objective                                 | Category   |
|---------------|-------------|------------------|-------------------------------------------|------------|
| Yelick        | LBNL        | ExaBiome         | DNA analysis of bio-communities           | Data       |
| Perazzo       | SLAC        | ExaFEL           | real time, free-electron lasers           | Data       |
|               |             |                  | fusion and fission materials on atomistic |            |
| Voter         | LANL        | EXAALT           | level                                     | Simulation |
| Bhattacharjee | PPPL        | XGC1, GENE       | confined fusion plasma                    | Simulation |
| Vay, Almgren  | LBNL        | WarpX, AMReX     | advanced particle accelerators            | Simulation |









NERSC Computing systems evolve with time

- RAM/CPU ratio will shrink
- Total available power imposes limitations on total compute
- New, energy efficient accelerators will dominate computing at scale
- Software/workflows will evolve to utilize new hardware



