Belle II Tracking Performance

Petar Rados (DESY) on behalf of the Belle II Tracking Group

CHEP 2019 Adelaide, Australia, 7 November 2019

SuperKEKB Accelerator

- New facility to search for new physics by studying *B*, *D* and τ decays
- Electron-positron collisions at $\sqrt{s} \approx 10.6 \text{ GeV}$

- Unprecedented design luminosity of 8×10³⁵ cm⁻²s⁻¹
- First beams and commissioning in 2016, Belle II detector rolled in 2017

Belle II Detector

Belle II Detector

• Phase 2 completed in April-July last year $\Rightarrow \sim 0.5 \text{ fb}^{-1}$ recorded

• Aim for **50 ab**⁻¹ by around 2027 (50 times Belle dataset)

KL and muon detector

Scintillator + WLSF + MPPC

Resistive Plate Counter (barrel outer layers)

- Three tracking sub-systems:
 - central drift chamber (CDC)
 - silicon vertex detector (SVD)
 - pixel detector (PXD)

 1.5T solenoid and final focusing magnets inside detector volume (moderate non-uniformity of *B*-field)

• PXD

- 2 layers of DEPFET pixel sensors (r = 14, 22 mm)
- 40 sensors, 7.7 million total pixels

• PXD

- 2 layers of DEPFET pixel sensors (r = 13, 22 mm)
- 40 sensors, 7.7 million total pixels

- Phase 2: one sector of VXD installed
- Phase 3: full coverage, 2nd PXD layer with only 4 sensors installed

Challenges of Tracking @ Belle II

- Tracking performance is critical for achieving Belle II physics goals
 - ⇒ PXD provides ~2x better single vertex resolution wrt Belle
- Typical Y(4S) event has 11 tracks

B/D meson tagging requires both high efficiency and purity of the tracks.

- Many tracks are at low momentum \Rightarrow multiple scattering, curling tracks
- Sizeable machine background
 - Synchotron radiation, Touscheck, beam-gas and Radiative Bhabha scattering, e⁺e⁻ production
 - high-occupancy

11 tracks \Rightarrow 10² signal hits vs 10⁴ bkg hits

Track Finding @ Belle II

- Belle II has state-of-the-art tracking detectors and software
- Modular code structure, with flexibility for reconstruction sequence

Track Finding @ Belle II

- Belle II has state-of-the-art tracking detectors <u>and software</u>
- Modular code structure, with flexibility for reconstruction sequence

Track Finding @ Belle II

- Belle II has state-of-the-art tracking detectors *and software*
- Modular code structure, with flexibility for reconstruction sequence

CDC Track Finding

Local Algorithm

 Segment building: cellular automaton with vertices from hit triplets + linear trajectory. Edges from neighbouring triplets sharing two hits. Weights based on common fit quality.

 Track building: CA with vertices from pair of segments in axial + stereo layers. Edges from common segments. Weights from Riemann fit in x-y and linear fit in s-z space.

SVD Standalone Tracking

 Reduce combinatorics by combining 3D space-points from compatible (friend) sectors and applying filters to reject background hits

Training of friendship relations + filters on MC ⇒ SectorMap

- Cellular automaton collects longest paths beginning with outermost space-points
- Final set of tracks is chosen from all paths such that no tracks share an SVD hit

For competing paths a **quality estimation** is employed (triplet fit, Chi2 of triplets, p-value of competing tracks)

Performance in MC

Performance in Data: Rediscoveries

- Many known processes have been "rediscovered" in early Belle II data
- Clear mass peaks from tracks
- ⇒ VXD+CDC detectors and track finding algorithms performing as expected

Performance in Data: IP Resolution

- Study of impact parameter resolutions in early Phase 3 data
- Using back-to-back two track events with both tracks detected by the CDC, SVD and PXD

• Assuming two tracks come from same vertex, we can estimate d₀ resolution as:

$$\Delta d_0 = d_0(t_-) + d_0(t_+) \qquad \hat{\sigma}(d_0) = \sigma_{68}(\Delta d_0)/\sqrt{2}$$

Data: $14.2 \pm 0.1 \,\mu m$ **MC**: $12.5 \pm 0.1 \,\mu m$

- 13% larger in data than simulation
 - hit cluster resolution too optimistic in MC
 - sensor parameters not optimal

Performance in Data: D^o Lifetime

- Measurement of D⁰ lifetime using only a small fraction of the Phase 3 data (0.34 fb⁻¹)
- Fit to proper time distribution of D*-tagged D⁰ candidates from $D^{*+} \rightarrow D^{0}(\rightarrow K^{+}\pi^{-})\pi_{s}^{+}$
- **TreeFitter** for full decay chain fit
 - ⇒ direct extraction of long-live particle lifetimes, short-lived D* constrained to measured beamspot

 Important test of Belle II tracking performance!

(VXD reconstruction, track finding, and vertex fitting)

Summary and Outlook

- In order to achieve its physics goals, Belle II requires excellent tracking performance
- Modular track finding approach has been developed, combining several algorithms tailored for track finding in VXD and CDC detectors
- Performing well in early data from Phase 2 and Phase 3 operations of SuperKEKB
- Further improvements and adjustments are possible, depending on machine background and performance requirements
- More data will come quickly...exciting times ahead!

BACKUP

Performance in Data: B⁰B⁰ Mixing

• First glimpse of B⁰ lifetime + B⁰B⁰ mixing frequency in Phase 3 data (2.66 fb⁻¹) l_{sig} ^rtag • TO DO... $l''_{_{\mathrm{tag}}}$ Δz **B**_{tag} $\mathsf{B}_{\mathsf{sig}}$ $\pi_{_{
m soft}}$ Fraction of unmixed events Belle II 2019, preliminary Belle II 2019, preliminary events / (0.5 GeV²/c⁴) 000 000 000 $L dt = 2.66 \text{ fb}^{-1}$ 0.8 L dt = 2.66 fb^{-1} data 0.6 → **D**** Ι ν B⁺ combinatorial 0.4 continuum Data Expected 0.2 $\tau_{_{_{\rm B^0}}} = 1.525 \ ps$ $\Delta m_{d} = 0.507 \text{ ps}^{-1}$ 0 0 10 -5 0 5 0 -15 -10 5 M_{v}^{2} [GeV²/c⁴] l∆tl [ps]

Belle II Timeline

- First collisions recorded by Belle II on 26th April 2018
- Phase 2 of data taking completed last year
 - April-July 2018
 - around 0.5 fb⁻¹ of data recorded
 - one sector of VXD installed

- Phase 3 started in March this year
 - around 6.5 fb⁻¹ recorded so far
 - full VXD coverage, 2nd PXD layer has only 4 sensors installed
- Aim for **50 ab**⁻¹ by 2027 (x50 Belle)

Outline

- 1) Overview of SuperKEKB, Belle II and its tracking system
- 2) Track finding at Belle II and performance in MC
- 3) Performance in collision data
- 4) Summary and outlook

• PXD

- 2 layers of DEPFET pixel sensors (r = 13, 22 mm)
- 40 sensors, 7.7 million total pixels

• SVD

- 4 layers of double-sided silicon strip sensors (r = 39, 80, 104, 135 mm)
- 172 sensors, 220k read-out strips

