

Using multiple engines in the
Virtual Monte Carlo package
Andreas Morscha, Benedikt Volkela,b, Ivana Hřivnáčovác,

Jan Fiete Grosse-Oetringhausa, Sandro Wenzela

aCERN,bRuprecht-Karls-Universitaet Heidelberg,
cInstitut de Physique Nucléaire (IPNO), Université Paris-Sud, CNRS-IN2P3

CHEP 2019, Adelaide, 05.11.2019
(Track 2 – Offline Computing)

CHAPTER I
Virtual Monte Carlo – how it used to be

VMC how it used to be
● abstract / unified interface to run detector

simulation with different engines
[such as GEANT3, GEANT4]

● one set of user hooks serves for any engine
[e.g. stepping, begin / end of event, wrapped in one class
derived from TVirtualMCApplication]

● one user stack implementation serves for
any engine
[class derived from TVirtualMCStack]

● 3 main interfaces, via

1) TVirtualMC (e.g. via static TVirtualMC::Instance())

2) any method of the MCApplication

3) user stack
schematic of dependencies and interplay between
VMC, user framework and engine backend

3

engine
layer

interface
layer

VMC
layer

user framework

abstract
engine

interface

implemented
engine

interface

concrete
engine

abstract
stack

abstract
user

hooks

stack
implemen-

tation

hooks
implement-

tation

inherit/
implement

use/
aggregate

VMC how it used to be
● abstract / unified interface to run detector

simulation with different engines
[such as GEANT3, GEANT4]

● one set of user hooks serves for any engine
[e.g. stepping, begin / end of event, wrapped in one class
derived from TVirtualMCApplication]

● one user stack implementation serves for
any engine
[class derived from TVirtualMCStack]

● 3 main interfaces, via

1) TVirtualMC (e.g. via static TVirtualMC::Instance())

2) any method of the MCApplication

3) user stack
schematic of dependencies and interplay between
VMC, user framework and engine backend

3

limitation of running only a single engine

engine
layer

interface
layer

VMC
layer

user framework

abstract
engine

interface

implemented
engine

interface

concrete
engine

abstract
stack

abstract
user

hooks

stack
implemen-

tation

hooks
implement-

tation

inherit/
implement

use/
aggregate

Development goals
● overcome limitation of running only one simulation engine

● allow partitioning events among multiple different engines

– e.g. use detailed GEANT4 simulation where necessary and use GEANT3 when less accuracy is
already enough but full simulation is still desired

● more freedom for the user to inject his / her own VMC implementation

– custom fast simulation to work with GEANT3 and GEANT4 on VMC level

– complex / re-usable tasks neither suited for belonging to the stack nor to the application

● enable and test interplay of different engines

4

CHAPTER II
running multiple engines

Mixing multiple engines
vanilla sampling calorimeter to
demonstrate mixing of engines

sensitive layer passive layer

6

n particles of specific type
and energy (here: electrons)

Mixing multiple engines
simulation scenariosvanilla sampling calorimeter to

demonstrate mixing of engines

sensitive (GAPX) passive (ABSO)

GEANT3

GEANT4

GEANT4 GEANT3

● in mixed scenario

– keep detailed GEANT4 simulation of
sensitive layers

– use GEANT3 for passive layers

6

sensitive layer passive layer

n particles of specific type
and energy (here: electrons)

Mixing multiple engines
simulation scenariosvanilla sampling calorimeter to

demonstrate mixing of engines

sensitive (GAPX) passive (ABSO)

GEANT3

GEANT4

GEANT4 GEANT3

● in mixed scenario

– keep detailed GEANT4 simulation of
sensitive layers

– use GEANT3 for passive layers

6

sensitive layer passive layer

n particles of specific type
and energy (here: electrons)

TMCManager
...
void TransferTrack(Int_t targetEngineId)
...

Mixing multiple engines (continued)

vanilla sampling calorimeter to
demonstrate mixing of engines

7

increase
#layers

fix length

TMCManager
...
void TransferTrack(Int_t targetEngineId)
...

Mixing multiple engines (continued)

vanilla sampling calorimeter to
demonstrate mixing of engines

● time elapsed relative to G3

● simulation more slowly using GEANT4 only

● speed-up is possible by mixing engines

● no scaling overhead with
number of track transfers

7

increase
#layers

fix length

TMCManager
...
void TransferTrack(Int_t targetEngineId)
...

A custom VMC “fast simulation”
vanilla sampling calorimeter to
demonstrate mixing of engines

8

custom VMC “fast sim”GEANT4

● again a mixed scenario

A custom VMC “fast simulation”
vanilla sampling calorimeter to
demonstrate mixing of engines

8

custom VMC “fast sim”GEANT4

● again a mixed scenario

● “fast sim” draws total energy deposit
from fitted distribution

disclaimer: proof-of-concept

A custom VMC “fast simulation”
● provide VMCFastSim class

– only 2 methods to be implemented by the user

1) VMCFastSim::Process()

2) VMCFastSim::Stop()

● use VMCFastSim to implement a “FastShower” class

● code at

– https://github.com/benedikt-voelkel/VMCFastSim

– https://github.com/benedikt-voelkel/FastShower

8

https://github.com/benedikt-voelkel/VMCFastSim
https://github.com/benedikt-voelkel/FastShower

A custom VMC “fast simulation”
● provide VMCFastSim class

– only 2 methods to be implemented by the user

1) VMCFastSim::Process()

2) VMCFastSim::Stop()

● use VMCFastSim to implement a “FastShower” class

● code at

– https://github.com/benedikt-voelkel/VMCFastSim

– https://github.com/benedikt-voelkel/FastShower

bool FastShower::Process() {
 if(GetCurrentParticle()->GetPDGCode() == 2212) {
 mStoreHit(mDistribution(mGenerator));
 }
 // ...
} 8

actual fast simulation might be done in a few lines

https://github.com/benedikt-voelkel/VMCFastSim
https://github.com/benedikt-voelkel/FastShower

CHAPTER III
technical details – below the hood

Sketching the implementation

engine manager

user hooks

stack
(exchange)

engine 1

engine 2

user
framework

1a

4a

3

2

4b

1b

engine1 engine2track arrives at
volume boundary

engine1 engine2certain particle
produced

engine1 engine2track enters
phase space

engine1 engine2more complex
condition

partition simulation among multiple different engines

10

New classes and extensions
TMCManager

void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
...

● singleton object

● needs to be explicitly requested by
the user during construction of the
UserApplication
[keep runtime overhead as small as possible]

● VMCs are

– owned by the manager

– automatically registered when instantiated

● handles

– communication between engines

– pausing and resuming engines

– transferring particles / tracks
between engines

11

New classes and extensions
TMCManager

void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
...

● singleton object

● needs to be explicitly requested by
the user during construction of the
UserApplication
[keep runtime overhead as small as possible]

● VMCs are

– owned by the manager

– automatically registered when instantiated

● handles

– communication between engines

– pausing and resuming engines

– transferring particles / tracks
between engines

11

TMCManagerStack
A concrete implementation of TVirtualMCStack
providing the interfaces accordingly for the
usage and communication with the TMCManager.

TVirtualMCApplication
void RequestManager()

TMCManager* fMCManager

Conclusion
● VMC package enhanced to allow usage of multiple engines and

to overcome previous limitations

– mix full simulation engines, e.g. GEANT3 and GEANT4

– inject custom user VMC, e.g. some kind of fast simulation

● user is free to decide how to partition simulation between engines
[geometry, particle type, phase space etc.]

● former run-mode (single engine) fully preserved

● no runtime overhead observed when moving tracks between engines

● implementation details wrapped into TMCManager and TMCManagerStack
● example available in GEANT4_VMC package, E03c

12

Thanks for your attention

BACKUP

Deployment overview (thanks to I. Hřivnáčová)

● crucial enhancements have been explained (more can be found in the BACKUP)

● example using multiple engines implemented along with GEANT4_VMC: E03c

– a diff (e.g. to E03a) nicely shows that just a few modifications in the user code are necessary

● VMC now distributed via its own repository

● ROOT supports building with or without built-in VMC
[ROOT version >= 6.18.00]

● releases
– VMC, tag 1.0

https://github.com/vmc-project/vmc

– GEANT3_VMC, tag 3.0
https://github.com/vmc-project/geant3

– GEANT4_VMC, tag 5.0
https://github.com/vmc-project/geant4_vmc

● new VMC documentation can be found at https://vmc-project.github.io
B1

se
e

al
so

 p
os

te
r

co
nt

rib
ut

io
n

32
2

by
 I.

 H
řiv

ná
čo

vá

https://github.com/vmc-project/vmc
https://github.com/vmc-project/geant3
https://github.com/vmc-project/geant4_vmc
https://vmc-project.github.io/
https://indico.cern.ch/event/773049/contributions/3474775/

New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
template <typename F> Init(F f)
void Run(Int_t nEvents)
void ConnectEnginePointer(TVirtualMC*& mc)
TVirtualMC* GetCurrentEngine()

● singleton object

● needs to be explicitly requested by
the user during construction of the
UserApplication
[keep runtime overhead as small as possible]

● VMCs are

– owned by the manager

– automatically registered when instantiated

● handles

– communication between engines

– pausing and resuming engines

– transferring particles / tracks
between engines

B2

New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
template <typename F> Init(F f)
void Run(Int_t nEvents)
void ConnectEnginePointer(TVirtualMC*& mc)
TVirtualMC* GetCurrentEngine()

● user is still owner of constructed
TParticle objects and numbering

● should be called in
UserStack::PushTrack(...)

● additional last argument might be
the target engine ID

void Ex03MCStack::PushTrack(Int_t toBeDone, Int_t parent, ..., Int_t& ntr, ...) {
 // TParticle construction yielding “particle”
 // define track ID
 ntr = GetNtrack() - 1;
 if(auto mgr = TMCManager::Instance()) {
 mgr->ForwardTrack(toBeDone, ntr, parent, particle);
 }
 // further implementation
}

B3

New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
template <typename F> Init(F f)
void Run(Int_t nEvents)
void ConnectEnginePointer(TVirtualMC*& mc)
TVirtualMC* GetCurrentEngine()

● call e.g. in
UserApplication::Stepping()

● interrupts transport and transfers
particle to target engine stack
[preserves momentum and geometry information]

● decide based on geometry,
particle phase space / type etc.

void Ex03MCApplication::Stepping() {
 // ...
 Int_t targetId = -1;
 if(fMC->GetId() == 0 && strcmp(fMC->GetCurrentVol(), “ABSO”) == 0) {
 targetId = 1;
 } else if(fMC->GetId() == 1 && strcmp(fMC->GetCurrentVol(), “GAPX”) == 0) {
 targetId = 0;
 }
 // ...
 fMCManager->TransferTrack(targetId);
} B4

New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId,
 Int_t parentId,
 TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
template <typename F> Init(F f)
void Run(Int_t nEvents)
void ConnectEnginePointer(TVirtualMC*& mc)
TVirtualMC* GetCurrentEngine()

● the type F is assumed to
implement () taking
a TVirtualMC as an argument

● f is applied to all
registered engines

● passed pointer will be kept
up-to-date

void Ex03MCApplication::InitMC(
 std::initializer_list<const char*> setupMacros) {
 // ...
 fMCManager->Init([this](TVirtualMC* mc) {
 mc->SetRootGeometry();
 mc->SetMagField(fMagField);
 mc->Init();
 mc->BuildPhysics();
 });
 // ...
}

Ex03DetectorConstruction::Ex03DetectorConstruction() {
 // ...
 if(auto mgr = TMCManager::Instance()) {
 mgr->ConnectEnginePointer(fMC);
 }
 // ...
}

B5

Mixing multiple engines (continued)

vanilla sampling calorimeter to
demonstrate mixing of engines

B6

● track length in ABSO (top) relative to G3

● track length in GAPX (top) relative to G3

● no cut optimisation done per engine yet,
however, simulated track lengths of same
order of magnitude

increase
#layers

fix length

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

