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CHAPTER I
Virtual Monte Carlo – how it used to be



  

VMC how it used to be
● abstract / unified interface to run detector 

simulation with different engines
[such as GEANT3, GEANT4]

● one set of user hooks serves for any engine
[e.g. stepping, begin / end of event, wrapped in one class 
derived from TVirtualMCApplication]

● one user stack implementation serves for 
any engine
[class derived from TVirtualMCStack]

● 3 main interfaces, via

1) TVirtualMC (e.g. via static TVirtualMC::Instance())

2) any method of the MCApplication

3) user stack
schematic of dependencies and interplay between 
VMC, user framework and engine backend
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Development goals
● overcome limitation of running only one simulation engine

● allow partitioning events among multiple different engines

– e.g. use detailed GEANT4 simulation where necessary and use GEANT3 when less accuracy is 
already enough but full simulation is still desired

● more freedom for the user to inject his / her own VMC implementation

– custom fast simulation to work with GEANT3 and GEANT4 on VMC level

– complex / re-usable tasks neither suited for belonging to the stack nor to the application

● enable and test interplay of different engines
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CHAPTER II
running multiple engines



  

Mixing multiple engines
vanilla sampling calorimeter to 
demonstrate mixing of engines

sensitive layer passive layer

6

n particles of specific type 
and energy (here: electrons)
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TMCManager
...
void TransferTrack(Int_t targetEngineId)
...



  

Mixing multiple engines (continued)

vanilla sampling calorimeter to 
demonstrate mixing of engines
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Mixing multiple engines (continued)

vanilla sampling calorimeter to 
demonstrate mixing of engines

● time elapsed relative to G3

● simulation more slowly using GEANT4 only

● speed-up is possible by mixing engines

● no scaling overhead with
number of track transfers
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A custom VMC “fast simulation”
vanilla sampling calorimeter to 
demonstrate mixing of engines
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custom VMC “fast sim”GEANT4

● again a mixed scenario



  

A custom VMC “fast simulation”
vanilla sampling calorimeter to 
demonstrate mixing of engines
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custom VMC “fast sim”GEANT4

● again a mixed scenario

● “fast sim” draws total energy deposit 
from fitted distribution

disclaimer: proof-of-concept



  

A custom VMC “fast simulation”
● provide VMCFastSim class

– only 2 methods to be implemented by the user

1) VMCFastSim::Process()

2) VMCFastSim::Stop() 

● use VMCFastSim to implement a “FastShower” class

● code at

– https://github.com/benedikt-voelkel/VMCFastSim 

– https://github.com/benedikt-voelkel/FastShower 
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A custom VMC “fast simulation”
● provide VMCFastSim class

– only 2 methods to be implemented by the user

1) VMCFastSim::Process()

2) VMCFastSim::Stop() 

● use VMCFastSim to implement a “FastShower” class

● code at
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bool FastShower::Process() {
  if(GetCurrentParticle()->GetPDGCode() == 2212) {
    mStoreHit(mDistribution(mGenerator));
  }
  // ...
} 8

actual fast simulation might be done in a few lines

https://github.com/benedikt-voelkel/VMCFastSim
https://github.com/benedikt-voelkel/FastShower


CHAPTER III
technical details – below the hood



  

Sketching the implementation

engine manager

user hooks

stack
(exchange)

engine 1

engine 2

user
framework

1a

4a

3

2

4b

1b

engine1 engine2track arrives at
volume boundary

engine1 engine2certain particle
produced

engine1 engine2track enters
phase space

engine1 engine2more complex
condition

partition simulation among multiple different engines
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New classes and extensions
TMCManager

void ForwardTrack(Int_t toBeDone, Int_t trackId, 
                  Int_t parentId,
                  TParticle* particle)
void TransferTrack(Int_t targetEngineId)
...

● singleton object

● needs to be explicitly requested by 
the user during construction of the 
UserApplication
[keep runtime overhead as small as possible]

● VMCs are

– owned by the manager

– automatically registered when instantiated

● handles

– communication between engines

– pausing and resuming engines

– transferring particles / tracks
between engines
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TMCManagerStack
A concrete implementation of TVirtualMCStack 
providing the interfaces accordingly for the 
usage and communication with the TMCManager.

TVirtualMCApplication
void RequestManager()

TMCManager* fMCManager



  

Conclusion
● VMC package enhanced to allow usage of multiple engines and

to overcome previous limitations

– mix full simulation engines, e.g. GEANT3 and GEANT4

– inject custom user VMC, e.g. some kind of fast simulation

● user is free to decide how to partition simulation between engines
[geometry, particle type, phase space etc.]

● former run-mode (single engine) fully preserved

● no runtime overhead observed when moving tracks between engines

● implementation details wrapped into TMCManager and TMCManagerStack
● example available in GEANT4_VMC package, E03c
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Thanks for your attention
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Deployment overview (thanks to I. Hřivnáčová)

● crucial enhancements have been explained (more can be found in the BACKUP)

● example using multiple engines implemented along with GEANT4_VMC: E03c

– a diff (e.g. to E03a) nicely shows that just a few modifications in the user code are necessary

● VMC now distributed via its own repository

● ROOT supports building with or without built-in VMC
[ROOT version >= 6.18.00]

● releases
– VMC, tag 1.0

https://github.com/vmc-project/vmc 

– GEANT3_VMC, tag 3.0
https://github.com/vmc-project/geant3 

– GEANT4_VMC, tag 5.0
https://github.com/vmc-project/geant4_vmc

● new VMC documentation can be found at https://vmc-project.github.io 
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New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId, 
                  Int_t parentId,
                  TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
template <typename F> Init(F f)
void Run(Int_t nEvents)
void ConnectEnginePointer(TVirtualMC*& mc)
TVirtualMC* GetCurrentEngine()

● singleton object

● needs to be explicitly requested by 
the user during construction of the 
UserApplication
[keep runtime overhead as small as possible]

● VMCs are

– owned by the manager

– automatically registered when instantiated

● handles

– communication between engines

– pausing and resuming engines

– transferring particles / tracks
between engines
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● user is still owner of constructed 
TParticle objects and numbering

● should be called in
UserStack::PushTrack(...)

● additional last argument might be 
the target engine ID

void Ex03MCStack::PushTrack(Int_t toBeDone, Int_t parent, ..., Int_t& ntr, ...) {
  // TParticle construction yielding “particle”
  // define track ID
  ntr = GetNtrack() - 1;
  if(auto mgr = TMCManager::Instance()) {
    mgr->ForwardTrack(toBeDone, ntr, parent, particle);
  }
  // further implementation
}
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New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId, 
                  Int_t parentId,
                  TParticle* particle)
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template <typename F> Apply(F f)
template <typename F> Init(F f)
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● call e.g. in 
UserApplication::Stepping()

● interrupts transport and transfers 
particle to target engine stack
[preserves momentum and geometry information]

● decide based on geometry, 
particle phase space / type etc.

void Ex03MCApplication::Stepping() {
  // ...
  Int_t targetId = -1;
  if(fMC->GetId() == 0 && strcmp(fMC->GetCurrentVol(), “ABSO”) == 0) {
    targetId = 1;
  } else if(fMC->GetId() == 1 && strcmp(fMC->GetCurrentVol(), “GAPX”) == 0) {
    targetId = 0;
  }
  // ...
  fMCManager->TransferTrack(targetId);
} B4



  

New classes and extensions (implementation examples)

TMCManager
void SetUserStack(TVirtualMCStack* userStack)
void ForwardTrack(Int_t toBeDone, Int_t trackId, 
                  Int_t parentId,
                  TParticle* particle)
void TransferTrack(Int_t targetEngineId)
template <typename F> Apply(F f)
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void ConnectEnginePointer(TVirtualMC*& mc)
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● the type F is assumed to 
implement () taking
a TVirtualMC as an argument

● f is applied to all
registered engines

● passed pointer will be kept
up-to-date

void Ex03MCApplication::InitMC(
 std::initializer_list<const char*> setupMacros) {
  // ...
  fMCManager->Init([this](TVirtualMC* mc) {
    mc->SetRootGeometry();
    mc->SetMagField(fMagField);
    mc->Init();
    mc->BuildPhysics();
  });
  // ...
}

Ex03DetectorConstruction::Ex03DetectorConstruction() {
  // ...
  if(auto mgr = TMCManager::Instance()) {
    mgr->ConnectEnginePointer(fMC);
  }
  // ...
}

B5



  

Mixing multiple engines (continued)

vanilla sampling calorimeter to 
demonstrate mixing of engines

B6

● track length in ABSO (top) relative to G3

● track length in GAPX (top) relative to G3

● no cut optimisation done per engine yet, 
however, simulated track lengths of same 
order of magnitude

increase
#layers

fix length
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