Grid Information Systems: Past, Present and Future

Markus Schulz, Laurence Field and Maria Alandes

20 Years Of Grid Computing

• CHEP 2000

- Discussions on the emerging field of Grid computing
- Two matching fundamental concepts:
- The integration of distributed computing resources
- The provision of authentication and authorization
 - Enabling access resources in different administrative domains
- The Globus Tool Kit
 - Grid Resource Information Protocol (GRIP)
 - Grid Resource Registration Protocol (GRRP)
 - Grid Resource Access and Management (GRAM)
 - Grid File Transfer Protocol (GridFTP)
 - Grid Security Infrastructure (GSI)

Grid Information Systems

- Support coordinated resource-sharing and problem-solving
 - VOs need to obtain information about the structure and state of Grid services
 - which are widely distributed geographically.
- Information describing a Grid service is provided by the service itself
 - hence the Grid service is the primary information source
- The information provided conforms to an information model
 - More details later
- Assumption that the information source is up-to-date
 - that is the values represent the real state of the Grid service
- Queries may consider thousands of information sources
 - in order to enable efficient Grid functions that may utilize multiple cooperating services
- The goal is to efficiently execute:
 - many queries
 - from many clients
 - for many information sources

MDS and the BDII

- The Metacomputing Directory Service (MDS) from the Globus project
 - two information protocols (GRIP and GRRP) from the proposed Grid architecture
 - information providers and information indexing services,
 - separation between inquiry and discovery
- The MDS implementation adopted the standard Lightweight Directory Access Protocol (LDAP)
 - GRRP messages mapped onto LDAP add operations
 - GRIP where it is used to define the data model, query language and transport protocol
- Not only is the LDAP data representation extensible and flexible, but LDAP is beginning to play a significant role in Web-based systems. Hence, we can expect wide deployment of LDAP information services, familiarity with LDAP data formats and programming, and the existence of LDAP directories with useful information. - Aug 1997 DOI: 10.1109/HPDC.1997.626445
 - Predictions are dangerous, especially when related to the future
- - **Fake II**)
 - annual deployment of MDS in DataGrid project
- The Berkeley Database Information Index (Dependent of the Infinite Infinite Information Index (Dependent of Solution Index (Dependent of Index (Dep inponent of the EDG Middleware in December 2002

Information Models

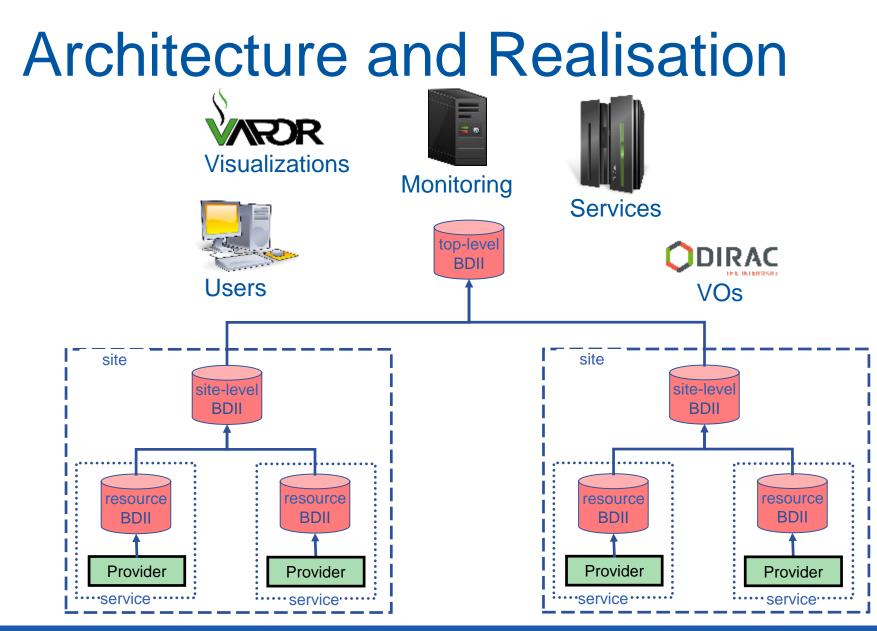
- Ensure agreement on the meaning of information
- They describe:
 - The real entities
 - The relationships between those entities
 - Their semantics
- A data model
 - Defines the syntax by which information is exchanged
- The MDS information model described
 - the physical and logical components of a compute resource
- The EDG described the Compute (CE) and Storage Elements (SE)

GLUE Information Model

- Grid Laboratory Uniform Environment
 - Defines a uniform representation of Grid resources
 - An information model
 - and LDAP data model
- A collaborative effort between:
 - DataTAG, US-iVDGL, Globus and EDG
 - Enabled transatlantic Grid interoperability
- GLUE 1.3
 - OSG/EGEE interoperability
 - Put the W in WLCG (thanks to Ruth!)

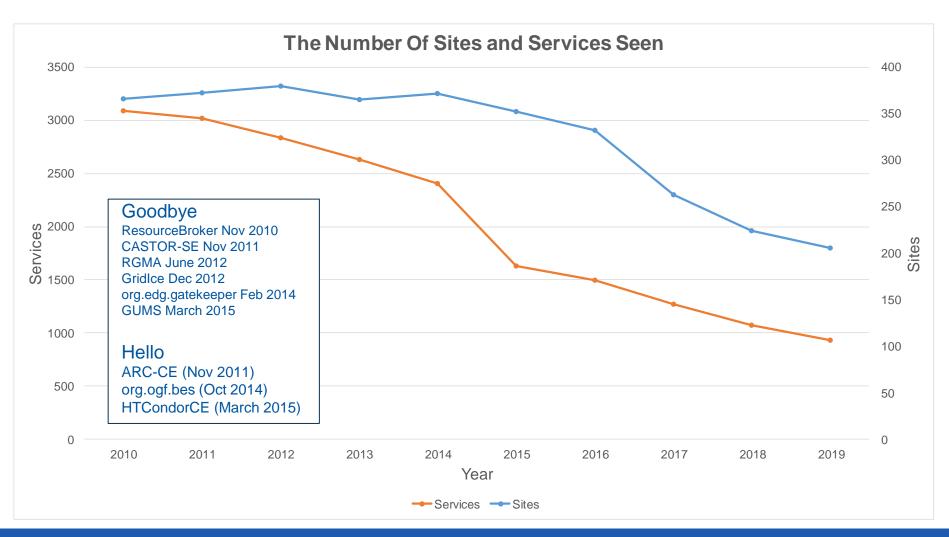
10 Years Of GLUE 2.0

- GLUE Working Group
 - in the Open Grid Forum
 - GFD.147 (2009-03-03)
- Describes Grid Services


- 45 phone conferences
 - ~ 3 days talking
 - ~ 2 months FTE
- 40 versions of the document
 - 347 days
 - 46 pages, 12787 words
 - 254 Attributes
 - 28 Objects
- As opposed to **resources/protocols**
- Official renderings in XML, JSON and LDIF
 - GFD.209 Reference Realization to XML Schema
 - GFD.219 Reference Realization to JSON Schema
 - GFD.218 Reference Realization to LDAP Schema

Information Validation

- Information providers
 - Distributed data sources
- Conformance goes a long way
 - Checks before information is published
- Limitations on information and data models
 - Information missing or not existing?
 - Reflects the actual state of the system?
 - Assumption that the information source is up-to-date
 - Correctness (using [bytes] vs [Gbytes])


Evolution Of The Grid

• CHEP 2007

- Scalability and performance analysis of the EGEE
 information system
 - 251 sites which provided 1428 Services.
 - 2 million connections per day (lcg-bdii.cern.ch)
 - ~100MB in the Top BDII
- Daily snapshots since March 2010
 - Archived !!!
- Sep 2019 (OSG stopped publishing in 2015)
 - 209 sites providing 883 Services (GLUE 2.0)
 - 200 sites providing 909 Services (GLUE 1.3)
 - 1 million queries per day (lcg-bdii.cern.ch)
 - ~32MB in the Top BDII

Evolution Of The Grid

Top Ten Queries

2007

2019

Q/h	Query	Q/h	Query
6075	Close CE to an SE	5960	A specific Cluster
5475	VO's SA for an SE	5923	All entries linked to a Cluster
5043	All SRMs	5377	EEs of a Cluster
4791	An SE	4898	GLUE2Shares for a VO
2432	Close SE to a CE	2928	A specific Site
2117	All Services for a VO	909	SRM endpoint of a SE
664	All CEs for a VO	305	Find all CEs for a VO
638	All SAs for a VO	217	Find a specific CEs for a VO
479	All SubClusters	193	A specific GLUE2 share
448	GlueVOView for a CE	134	Cream CEs for a VO

Italics show GLUE2 queries

HTCondor CE Provider

- New provider required for HTCondorCE
 - Only publishes GLUE 2.0 information
 - Published initially minimal information
 - Responded to requests for additional information
- Included upstream
 - As part of the HTCondor CE distribution
 - Adoption by other sites
- Observations:
 - Compute Service information is required
 - GLUE 1.3 no longer needed
 - GLUE 2.0 is being used

Future

- The system is still used
 - The usage is decreasing
- There still seems to be a need
 - E.g htcondor provider
- Options are the same as presented in 2011*
- Lazy:
 - Do nothing
- The Radical:
 - Decommission
- The Slow and Steady
 - Remove site-bdiis
 - Drop GLUE 1.3
 - Streamline GLUE 2.0 usage
- The Rocky
 - Separate the use cases
 - Centralized and reliable service discovery system
 - Provide a single system for experiment annotation and configuration

*https://indico.cern.ch/event/106645/

Summary

- 20 Years of Grid Computing
- 10 Years of GLUE 2.0
- Service Discovery and Status Still Relevant
 - ~900 services, ~200 sites
- Information providers are necessary!
 - To provide the status of services
 - →information models for complex services
 - Information models matter, representations don't
- The Grid is shrinking
 - Peak ~2012 (in number of sites)
- The roads ahead are the same as 2011
 - Lazy, slow and steady, radical or rocky
- Validation, Validation and Validation
 - Provider, system-wide and cross-checks

