

Abstracting container technologies and transfer mechanisms in the Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference (SCAILFIN) project

Kenyi Hurtado, representing the SCAILFIN team

SCAILFIN

Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference

Motivation

Major Multi-User Research Facilities involve the comparison of data collected from experiments with "synthetic" data, produced from computationally-intensive simulations.

Comparisons of experimental data and predictions from simulations are abstractions of the specific data analysis techniques developed by the respective communities over several decades. E.g.:

Motivation

Many of these data analysis tasks are often conducted manually or through *ad hoc scripts* that might not be well maintained, making reproducibility and reusability difficult. Many of these tasks do have a well-defined workflow that make automation possible, though.

REANA was created (in collaboration with DASPOS, DIANA and CERN) to address the reproducibility and reusability of the analysis pipeline.

Motivation

In parallel:

Interest in leveraging Machine Learning (ML) and Artificial Intelligence (AI) techniques, to enhance the analysis of data from these facilities.

In particular, its application with emergent Likelihood-Free Inference (LFI) techniques when the predictions for the data are implicitly defined by the simulation, often leading to an intractable likelihood function. This can apply to analysis of data from LHC, LIGO, etc, but such Likelihood-Free algorithms have so far been implemented mostly on individual machines and in ad hoc scripts because the training workflows are very complicated.

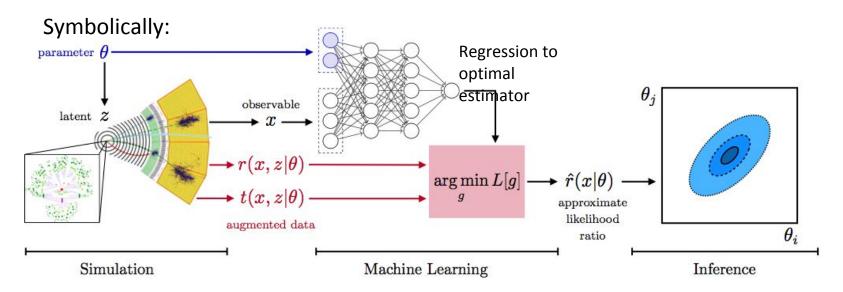
Introduction

SCAILFIN: Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference

The SCAILFIN project aims to deploy artificial intelligence and likelihood-free inference techniques and software using scalable cyberinfrastructure (CI) that is developed to be integrated into existing CI elements, such as the **REANA** system, to work on **HPC facilities**.

Pl's: Mark Neubauer, Dan Katz

Kyle Cranmer, Heiko Mueller


Mike Hildreth

J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez. arXiv:1805.00020, 2018.

Estimation of optimal estimator lends itself to ML methods:

- Training data derived from simulations
- Can be guided by optimal sampling based on phase space density of generator, sensitivity to physics under study

Today's Topic

SCAILFIN goals

- ...
- One of the goals of the project is extending the REANA platform to allow remote submission of workflows to HPC facilities.
 - General description of SCAILFIN components and functionality
 - Monday Presentation (Mike Hildreth)
 https://indico.cern.ch/event/773049/contributions/3474811/
 - Focus on integrating different container technologies and file management into the job submission component
 - This talk

• ...

Background

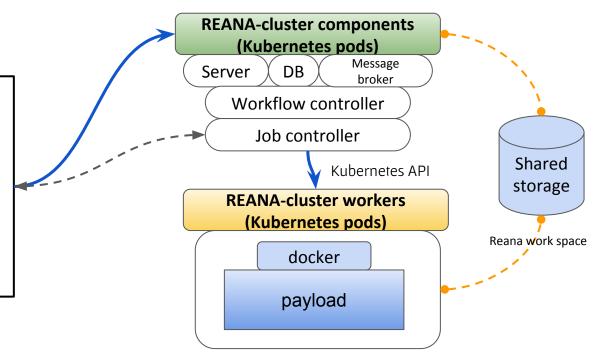
SCAILFIN components

- REANA as the Cyber Infrastructure element to deploy AI and Likelihood-Free inference techniques.
- VC3 (Virtual Clusters for Community Computation) in order to scale REANA to HPC resources.

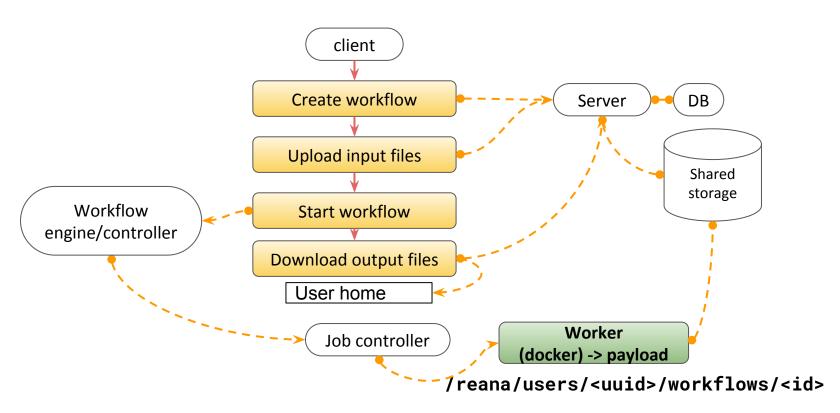
More details: Monday Presentation (Mike Hildreth)

https://indico.cern.ch/event/773049/contributions/3474811/

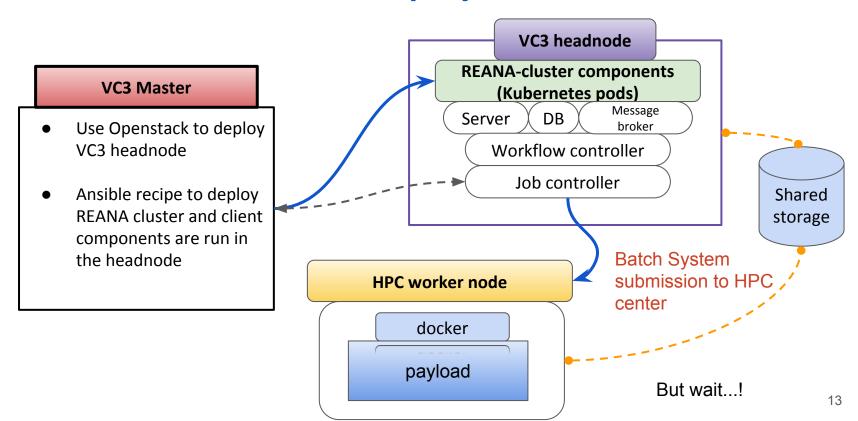
Platform Platform

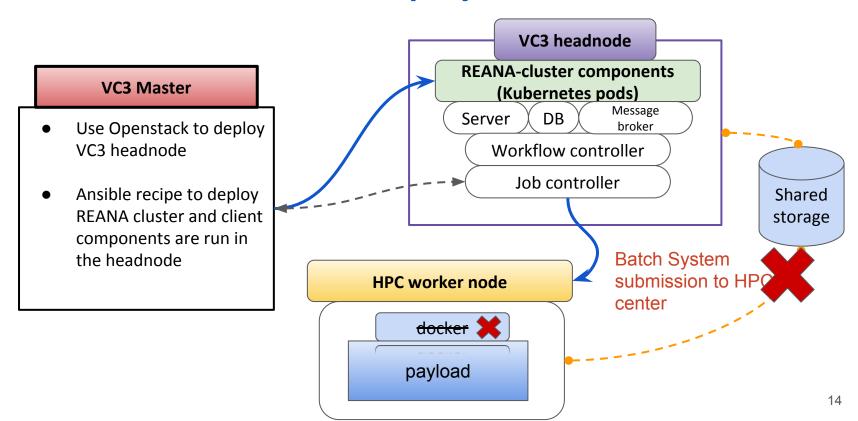

Components

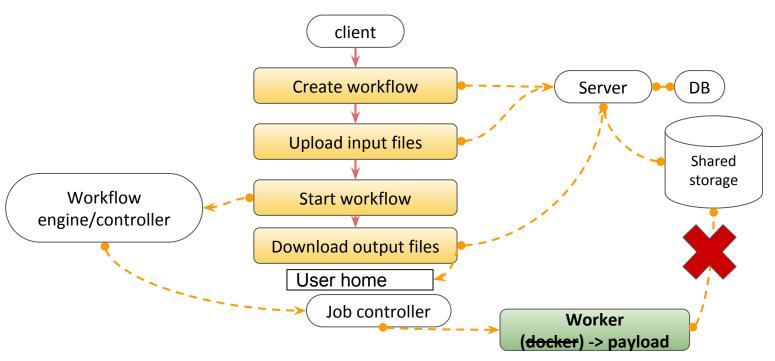
- Two major components each consisting of many sub-components
 - reana-client: User facing component.
 - Accepts workflows and and is used as interface to entire REANA system (for user).
 - reana-cluster: Workhorse.
 - Consists of many small pieces which handle workflows, dish out jobs, coordinates results, can be thought of as the job scheduler. Jobs are scheduled via Kubernetes.


REANA cluster / Workforce Infrastructure Standard kubernetes deployment

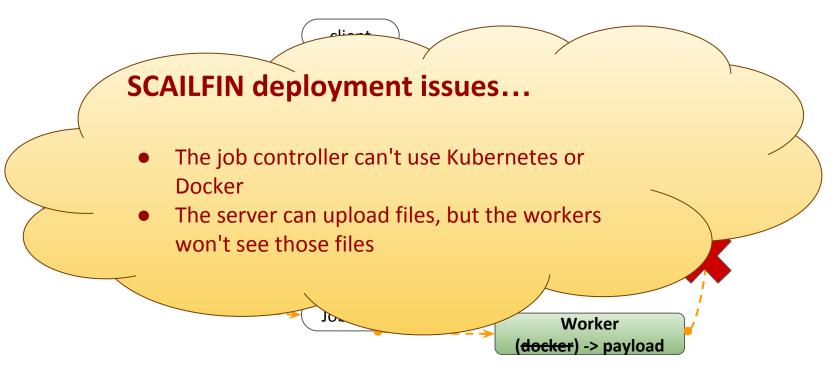
CERN cloud/Openstack


- Openstack with container orchestration engine (coe) working with Kubernetes
- REANA-cluster can be deployed via kubernetes, or can use one deployed accessible for CERN users


REANA client / User's perspective Starting a workflow


REANA cluster / Workforce Infrastructure SCAILFIN deployment

REANA cluster / Workforce Infrastructure SCAILFIN deployment



REANA client / User's perspective Starting a workflow

/reana/users/<uuid>/workflows/<id>

REANA client / User's perspective Starting a workflow

/reana/users/<uuid>/workflows/<id>

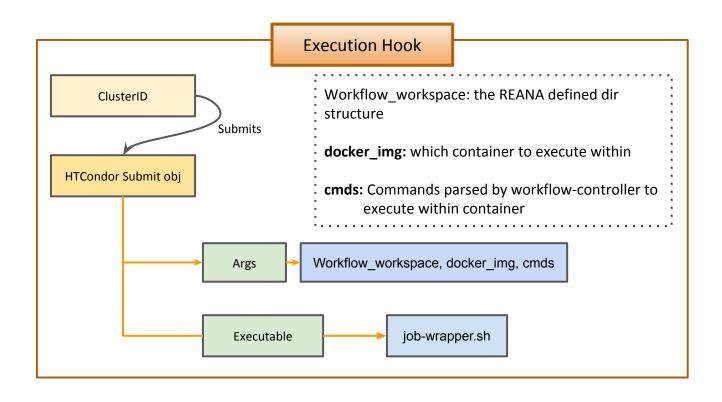
Container technologies in HPC facilities

- HPC centers are no strangers to the user's need for containers nowadays.
 - Docker is not an option though (security reasons)
 - User-space container technologies preferred instead. E.g.:
 - Singularity: PSC, Stampede, Comet, etc.
 - Shifter: NERSC, Blue Waters
 - Charlie Cloud: Unprivileged containers using linux user namespaces (linux 4.4+)
 - All options above have mechanisms to run/convert docker images

Notre Dame CCTools

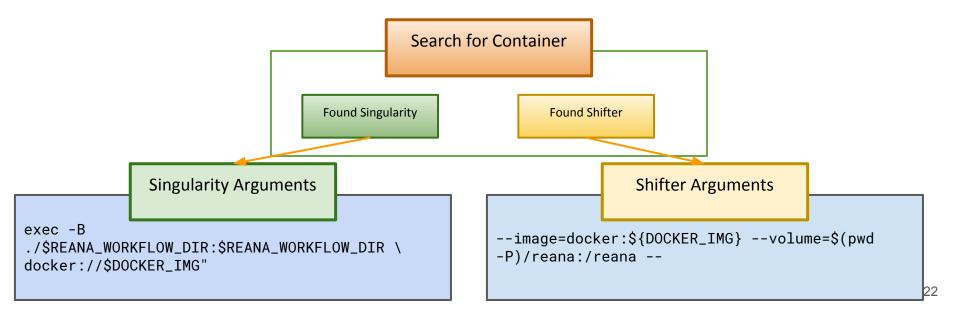
- **Chirp:** Lightweight user-level FS for collaboration across distributed systems such as clusters, clouds, and grids. An ordinary user can share storage space and data without requiring any sort of administrator privileges anywhere. Supports multiple authentication mechanisms.
- **Parrot:** A tool for attaching existing programs to remote I/O systems through the filesystem interface. E.g.:
 - \$ parrot_run vi /chirp/server.nd.edu/mydata
 - > \$ parrot_run cp /path/file /chirp/server.nd.edu/file

Notre Dame CCTools

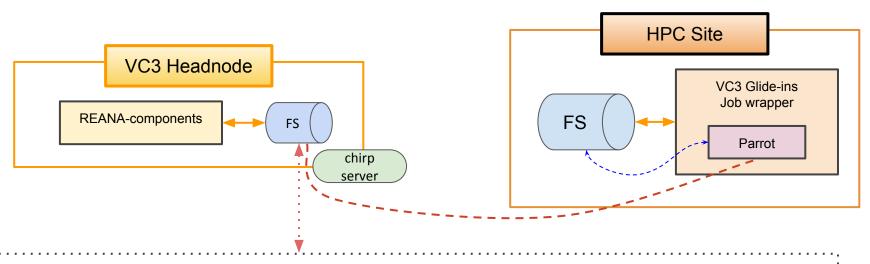

 Chirp: Integrated with HTCondor. Adding "+WantIOProxy=True" creates a chirp server than can be used between the VC3-headnode and the workers. It also takes care of the authentication.

- **Parrot:** Static version available, runs on any x86 architecture. Can be used to interact with the chirp server created by HTCondor.
 - Note HTCondor has its own chirp client, but it doesn't e.g.: recursive copy directories.

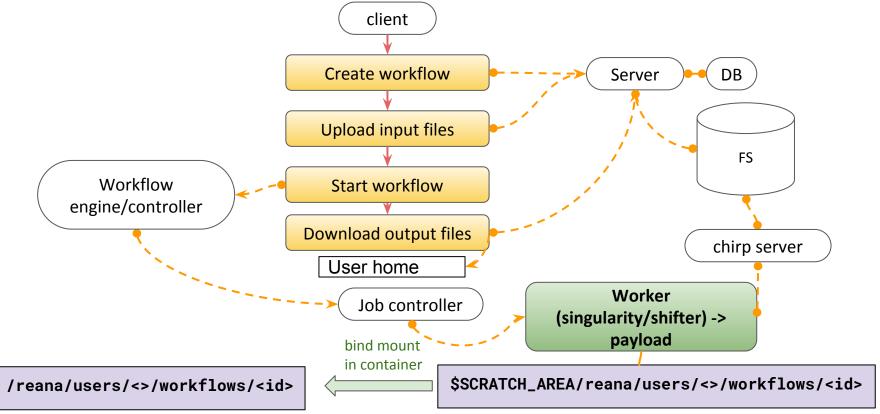
SCAILFIN's REANA modifications


- REANA requires some form of docker supporting container technology
 - Singularity and Shifter support added. Possibly Charlie Cloud
- REANA expects to submit to a kubernetes cluster
 - Added support for VC3 specialized HTCondor submissions through a modified reana-job-controller and a job_wrapper for every workflow step.
 - The modified reana-job-controller submits each workflow step to a local condor scheduler
- Job wrapper
 - Each workflow step is wrapped by a script which searches for container technology and launches each workflow step into the available container (shifter, singularity). Handles initial/final file transfer stages via parrot+chirp.

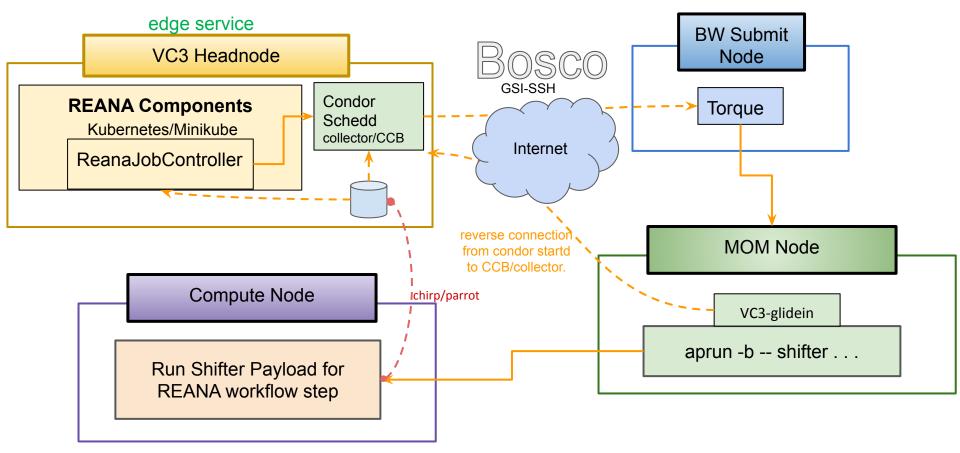
Container technologies in HPC facilities


Job-wrapper Container management

- Performs check for available container technologies
 - Checks Binaries in \$PATH (VC3 may auto-load these)
 - Attempts to load modules for Singularity and Shifter (e.g.: module load singularity)
 - Executes workflow-step within discovered container
 - Will choose depending on the currently set \$default


Job-wrapper File management

- REANA expects files to be where the workflow controller placed them
 - We want to simulate this directory structure on the HPC infrastructure
- We can easily transfer directory structures with HTCondor's <u>chirp protocol</u> and <u>Parrot</u>

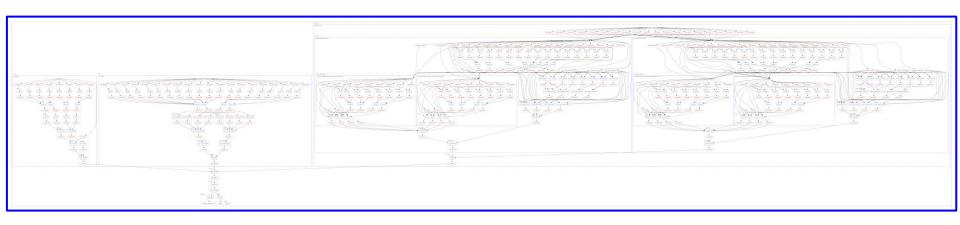


/reana/users/<uuid>/workflows/efbb0220-c53c-46da-aa09-c835a6b67e1c

REANA client / User's perspective Starting a workflow

SCAILFIN on Blue Waters

Blue Waters Tests...


Successfully ran a complex physics test: **BSM search**

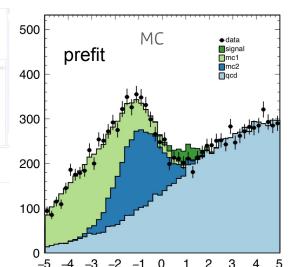
```
(reana) [khurtado@khurtado-reanabwvc3 condor]$ reana-client status
NAME
            RUN NUMBER
                         CREATED
                                               STATUS
                                                           PROGRESS
demobsmv2
                         2019-06-20T14:24:40
                                               finished
                                                          18767/65
(reana) [khurtado@khurtado-reanabwvc3 condor]$ reana-client ls | grep pdf
plot/prefit.pdf
                                                                             19405
2019-06-20T15:31:49
plot/postfit.pdf
                                                                             19431
2019-06-20T15:31:49
       [khurtado@khurtado-reanabwvc3 condor]$ condor_history -constraint
regexp("12610aee-f019-4888-85e5-e9c098d28bf8", Args)' -af:h ClusterId ExitCode LastRemoteHost
ClusterId ExitCode LastRemoteHost
                   slot1 1@31738@nid25424
96
                   slot1 1@13090@nid27638
95
                   slot1_1@13090@nid27638
94
                   slot1 1@13090@nid27638
93
                   slot1 1@13090@nid27638
```

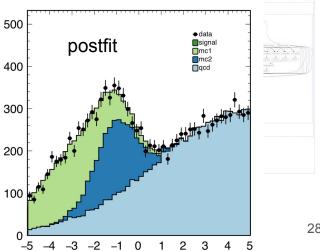
Blue Waters Tests...

Successfully ran a complex physics test: **BSM search**

Here is the workflow diagram, to give you an idea of the complexity.

Blue Waters Tests...


Once results are downloaded through the client, final plots look like this:


```
(reana) [khurtado@khurtado-reanabwvc3 condor]$ reana-client download plot/prefit.pdf
File plot/prefit.pdf downloaded to /home/khurtado/condor.
(reana) [khurtado@khurtado-reanabwvc3 condor]$ reana-client download plot/postfit.pdf
File plot/postfit.pdf downloaded to /home/khurtado/condor.
```

Data is generated/emulated according to Standard Model expectations.

After processing, a statistical model involving both signal and control regions is built and the model is fitted against the observed data.

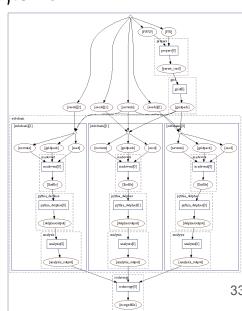
The signal sample is scaled down significantly to fit the data, which is expected since the data was emulated in accordance with a SM-only scenario

Conclusions, next steps

- Run actual Machine Learning training workflows
- Benchmark performance on variety of HPC systems/sites
- Clean up implementation and documentation
- Integration into central REANA repository at CERN

Notre Dame Contacts = Main developers

- Kenyi Hurtado
 - o khurtado@nd.edu
- Cody Kankel
 - o <u>ckankel@nd.edu</u>

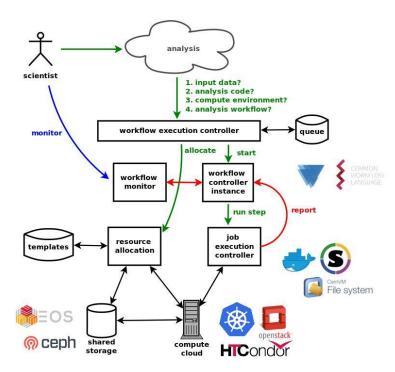

Thanks!

Backup slides

Platform Platform

Features

- Allows creation of tightly defined, container encapsulated workflows
- Built with commodity pieces
- Purpose is to allow complete reproducibility
- Sharing workflows is as easy as sharing a specification
 - o (and inputs!)
- Different workflow engines supported. e.g.:
 - CWL (Common Workflow Language) : https://www.commonwl.org/
 - Yadage (YAML based adage): https://yadage.readthedocs.io

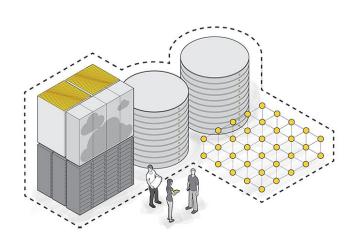


Cana: Reproducible Research Data Analysis Platform

Process

- Create workflow specification (Yadage, CWL, Serial)
- Upload workflow and inputs to RFANA cloud
- 3. Start workflow
- 4. Download / pull down results
- 5. Share workflow specs with others

Architecture

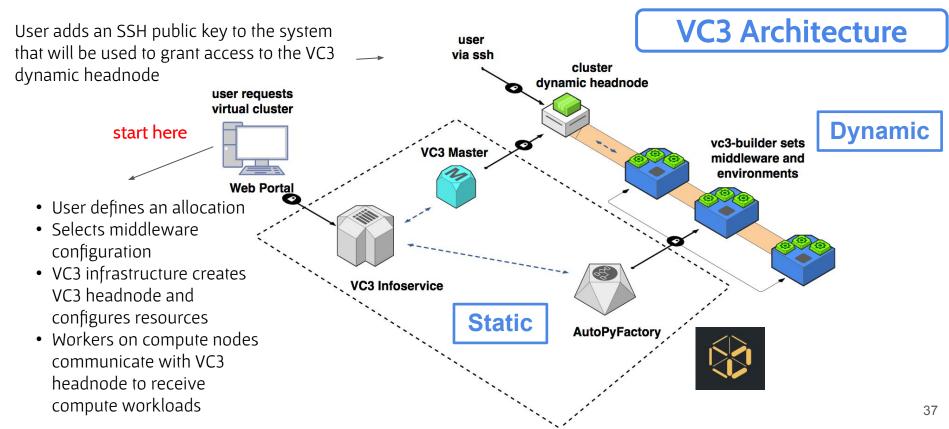


Platform Platform

Components

- Two major components each consisting of many sub-components
 - reana-client: User facing component.
 - Accepts workflows and and is used as interface to entire REANA system (for user).
 - reana-cluster: Workhorse.
 - Consists of many small pieces which handle workflows, dish out jobs, coordinates results, can be thought of as the job scheduler. Jobs are scheduled via Kubernetes.

VC3: Virtual Clusters for Community Computation

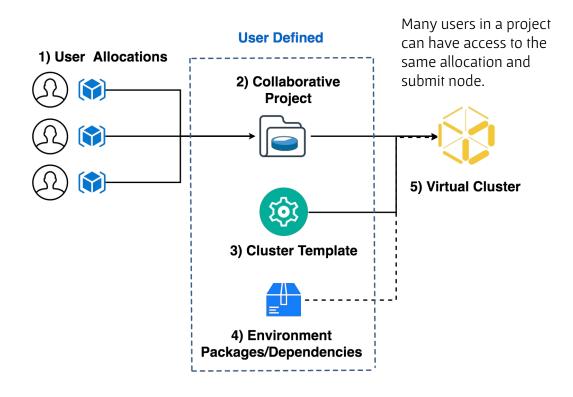

VC3: A platform for provisioning cluster frameworks over heterogeneous resources for collaborative science

- Overlays "cluster" environment on top of diverse resource allocations
- Similar to cloud services that allow you to stand up clusters, but on "your" resources

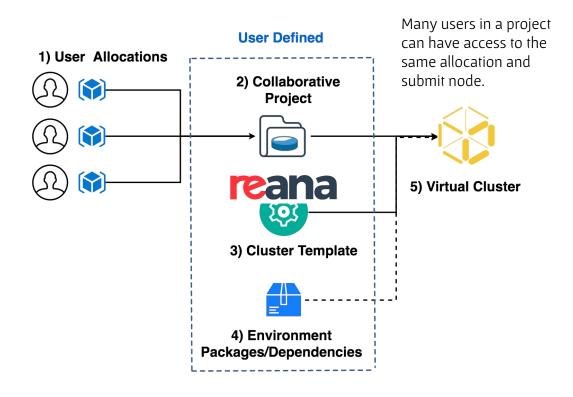
https://www.virtualclusters.org

VC3: Virtual Clusters for Community Computation

VC3: Virtual Clusters for Community Computation


Features

- The user can select its own middleware for submission (E.g.: HTCondor, WorkQueue, Spark, REANA+HTCondor).
- It doesn't matter what the resource target batch system is (as long as it is supported by glite/blah, the translation layer for submission).


E.g.: Torque (Blue Waters), SLURM (NERSC, PSC-Bridges, Stampede2), HTCondor, LSF, SGE, PBS.

Implementation: A REANA Cluster Template for VC3

Implementation: A REANA Cluster Template for VC3

Using REANA + VC3 on Blue Waters*

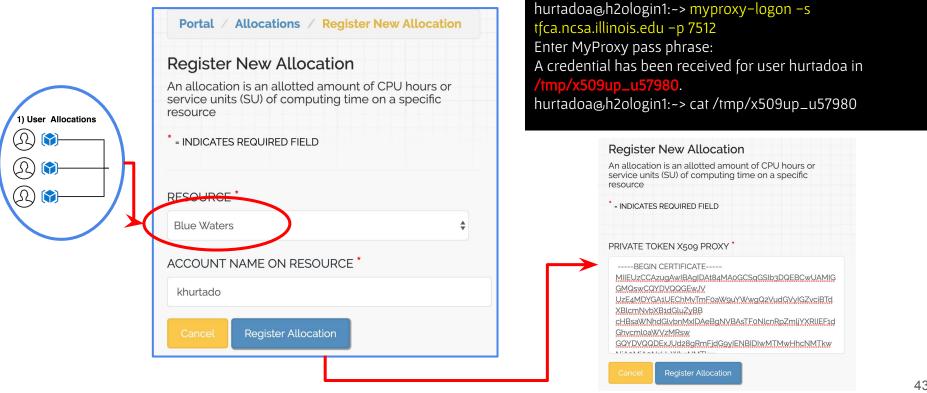
Blue Waters cluster:

- Batch system: Torque
- Container technology: Shifter
- Authentication mechanisms:
 - Multi-factor authentication (Password + RSA token)
 - GSI-SSH tokens

Virtual cluster created on top of Blue Waters:

- VC3 Submit node with kubernetes (via minikube) and a REANA cluster deployed on the fly.
- HTCondor as the middleware
- VC3 authenticates with Blue Waters via GSI-SSH

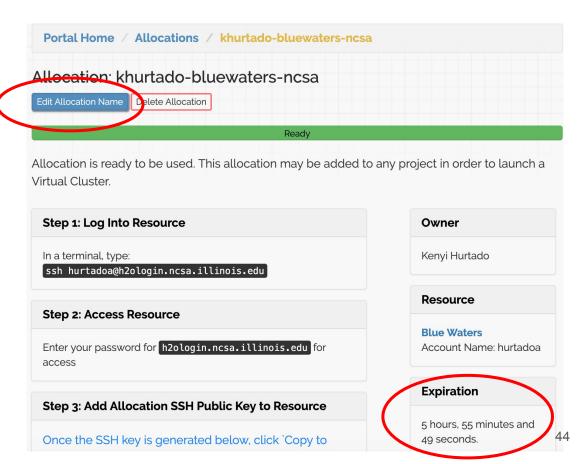
^{*}Note: Infrastructure worked out of the box on other resources such as the ND HPC Cluster and XSEDE/Pittsburgh

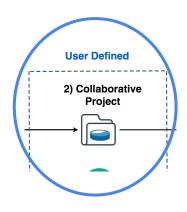

SCAILFIN Developments to make this work:

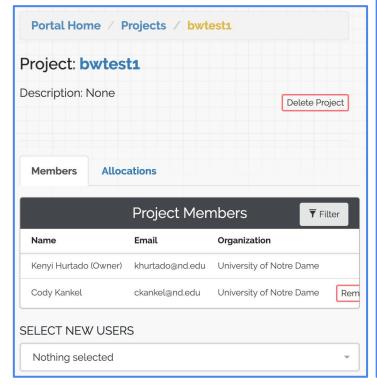
REANA Modifications:

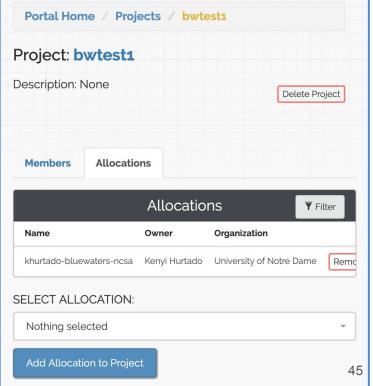
- REANA requires some form of docker supporting container technology
 - O Singularity and Shifter support finished.
- REANA expects to submit to a kubernetes cluster
 - Added support for VC3 specialized HTCondor submissions through a modified reana-job-controller and a job_wrapper for every workflow step.
 - The modified reana-job-controller submits each workflow step to a local condor scheduler
- Job Wrapper Auto-detection of container technology for workflow steps. (shifter, singularity)

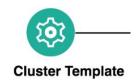
VC3 Modifications:

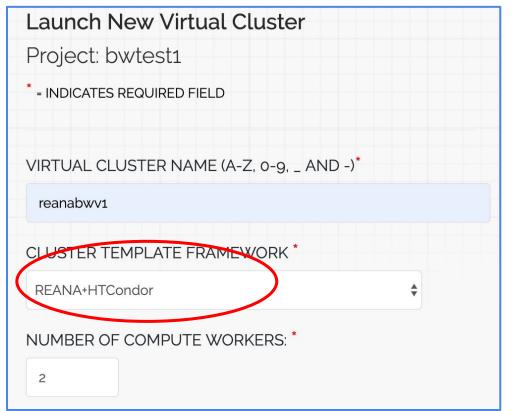

- Cluster template for REANA+HTCondor
 - Uses the standard HTCondor template as the base to create a condor pool that sends jobs to HPC resources, translating the job to the corresponding batch system submission syntax via bosco.
 - O Deploys Kubernetes via minikube
 - Deploys the REANA cluster and client and set up the environment, so the user can interact with them as soon as the VC3 headnode is created.
- GSI-SSH support
 - The GSI-SSH authentication mechanism was added in the infrastructure, in order to support e.g.P XSEDE HPC centers like Blue Waters, Stampede, NERSC.
 - Proxies can be renewed through the VC3 website for the virtual cluster allocations to remain active.

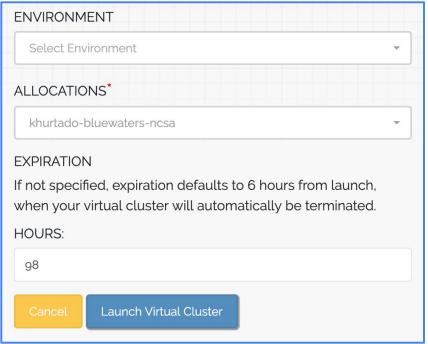



Allocation authentication mechanisms


The auth mechanisms available in VC3 are:


- SSH keys
- GSI tokens
 - Available on XSEDE HPC Systems
 - Requires renewal. The website shows when the proxy expires and the "Edit Allocation Name" button allows users to change
 - Some HPC centers have procedures to increase the default 12 hours expiration time to e.g.: 10 days (NERSC case, and previously done at BW)





My Virtual Clusters ▼ Filter					
Name	Project	Head Node	Workers	State	Cluster Template
khurtado-ndvc1	scailfin-dev	128.135.158.232	3 Requested 3 Running 0 Queued 0 Error	Running All requested compute workers are running.	reana+htcondor
khurtado- reanabwv1	bwtest1	128.135.158.188	2 Requested 2 Running 2 Queued 0 Error	Running Requesting o less compute worker(s).	reana+htcondor

End result is a REANA cluster deployed on the VC3 headnode

Components are deployed via Kubernetes (minikube)

```
(reana) [khurtado@khurtado-reanabwv1 ~]$ reana-cluster status
COMPONENT
                      STATUS
job-controller
                      Running
                      Running
server
db
                      Running
workflow-controller
                      Running
message-broker
                      Running
REANA cluster is ready.
(reana) [khurtado@khurtado-reanabwv1 ~]$ kubectl get pods
NAME
                                                            READY
                                                                    STATUS
                                                                                RESTARTS
                                                                                            AGE
batch-serial-7e79ee48-036f-4049-87ee-a3dc66d8a1da-t17zd
                                                           0/1
                                                                    Completed
                                                                                            5h54m
                                                                                0
db-69744557df-wq4mt
                                                            1/1
                                                                    Running
                                                                                            5h55m
                                                                                0
job-controller-5c7f4c8b4f-sgnj6
                                                            1/1
                                                                    Running
                                                                                            5h55m
message-broker-b7d66cf55-m9p4n
                                                                    Running
                                                                                            5h55m
                                                            1/1
server-58dc985c77-n2qpn
                                                           2/2
                                                                    Running
                                                                                            5h55m
workflow-controller-668f69d4bc-x62w7
                                                           2/2
                                                                    Running
                                                                                            5h55m
```

Links

SCAILFIN Source code:

- SCAILFIN's modified RJC <u>https://github.com/scailfin/reana-job-controller/tree/job_manager</u>
- REANA
 - https://github.com/reanahub
- o VC3
 - https://github.com/vc3-project

Websites

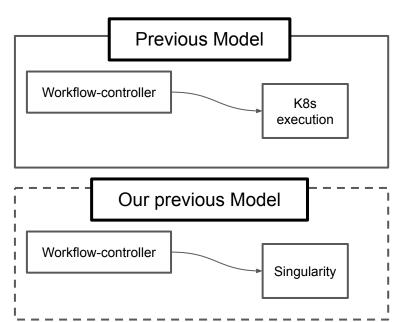
- https://www.virtualclusters.org
- http://www.reanahub.io/

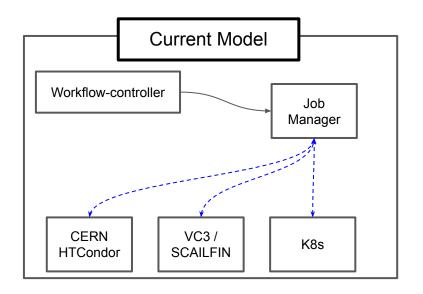
VC3: Virtual Clusters for Community Computation

Constraints

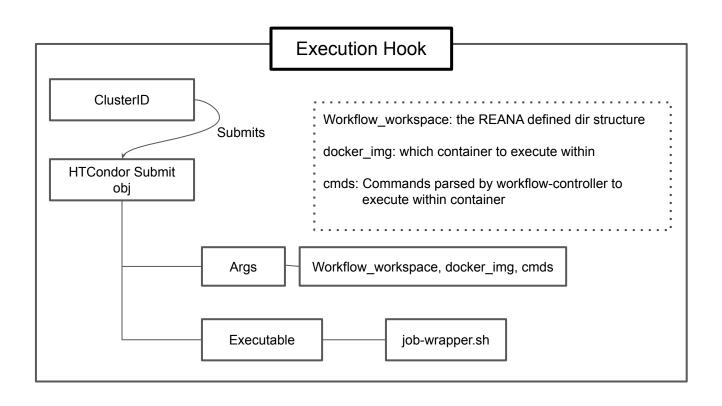
- At present, workers need outgoing network connection for a virtual cluster to work.
 - So, resources like ALCF/Theta are out of the scope with this approach.
 - But e.g.: XSEDE resources like NERSC, Blue Waters, Stampede or PSC-Bridges do meet the outgoing network requirement for example.

SCAILFIN's REANA modifications

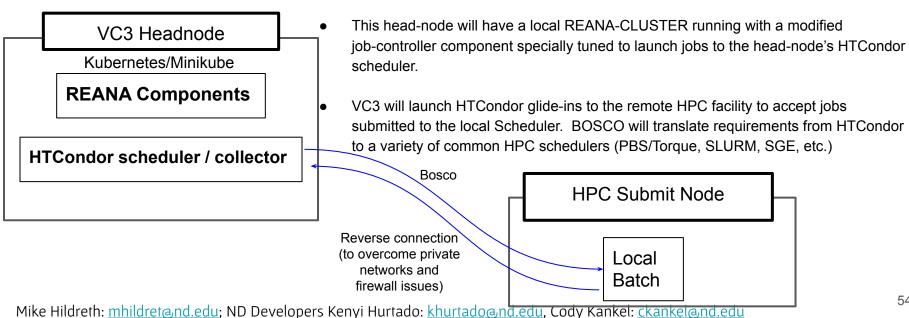

- REANA requires some form of docker supporting container technology
 - Singularity and Shifter support in the works. Possibly CharlieCloud
- REANA expects to submit to a kubernetes cluster
 - Added support for VC3 specialized HTCondor submissions through a modified reana-job-controller and a job wrapper for every workflow step.
 - The modified reana-job-controller submits each workflow step to a local condor scheduler


Job wrapper

 Each workflow step is wrapped by a script which searches for container technology and launches each workflow step into the available container (shifter, singularity)


SCAILFIN's REANA modifications

- REANA developers allowed abstraction of reana-job-controller's backend
 - Allows for "plug and play" of backends / job execution component



SCAILFIN's REANA modifications

SCAILFIN and VC3

VC3 is utilized for remote connections to clusters.

SCAILFIN's VC3 modifications

- Cluster template for REANA+HTCondor
 - Uses the standard HTCondor template as the base to create a condor pool that sends jobs to HPC resources, translating the job to the corresponding batch system submission syntax via bosco.
 - Deploys Kubernetes via minikube
 - Deploys the REANA cluster and client and set up the environment, so the user can interact with them as soon as the VC3 headnode is created.
- GSI-SSH support
 - The GSI-SSH authentication mechanism was added in the infrastructure, in order to support e.g.P XSEDE HPC centers like Blue Waters, Stampede, NERSC.
 - Proxies can be renewed through the VC3 website for the virtual cluster allocations to remain active.
- Additional patches to support Cray Linux environments (NERSC, Blue Waters)