
S.Lantz, K.McDermott, M.Reid, D.Riley, P.Wittich (Cornell); G.Cerati, A.Reinsvold Hall, 
M.Kortelainen (Fermilab); P.Elmer, B.Wang (Princeton); S.Krutelyov, M.Masciovecchio, M.Tadel, 
F.Würthwein, A.Yagil (UCSD); B.Gravelle, B.Norris (UOregon)

CHEP2019 - Nov. 07, 2019

Reconstruction of Charged Particle Tracks in Realistic Detector 
Geometry Using a Vectorized and Parallelized Kalman Filter Algorithm



2019/11/07 mkFit - CHEP2019

Tracking “Problem”

• Tracking is crucial for the physics goals of 
the LHC experiments
- charged particle momenta, particle ID, jet tagging, 

jet&MET resolution
• It is the most time consuming reco task
- and scales poorly with pile-up, problem for HL-LHC
- challenge especially for High Level Trigger (HLT)
• Two options in front of us:
- save time by reducing the tracking phase space 
• with consequences on the experiments’ physics reach

- save time by making tracking faster! Requires R&D…

2



2019/11/07 mkFit - CHEP2019

Moore’s Law
• CPU frequency stopped growing 

exponentially: 
- nothing for free anymore
• Since 2005, most of the gains in 

single-thread performance come 
from vector operations
• But number of logical cores is rapidly 

growing too: multi-threading

• Must exploit both levels of 
parallelization to avoid sacrificing on 
physics performance!

3



2019/11/07 mkFit - CHEP2019

mkFit Project
• Ongoing for ~5 years, well advanced
• Collaboration between physicists and computer scientists 

from Cornell, Fermilab, Princeton, UCSD, UOregon
- funding from NSF IRIS-HEP, DOE SciDAC, USCMS
- http://trackreco.github.io/

• Mission: speedup Kalman filter (KF) tracking 
algorithms using highly parallel architectures
• Why sticking to KF?
- Widely used in HEP in general, and CMS in particular
- Demonstrated high efficiency physics performance 
- Robust handling of material effects

4



2019/11/07 mkFit - CHEP2019

Kalman Filter

• Two step iterative process: 
- Propagate the track state from layer N-1 to layer N (prediction) 
- Update the state using the detector hit (measurement) on layer N 

• Computing challenges: 
- Many operations with small matrices, low arithmetic intensity
- O(2k) seeds and O(100k) hits/event @PU=70

• KF track finding is not straightforward to parallelize 
- Combinatorial algorithm: branching to explore many candidates 
- Heterogeneous environment:  

different number of hits per track and tracks per event

5
seed



2019/11/07 mkFit - CHEP2019

Key Features of the Algorithm
• Kalman filter operations use Matriplex library: SIMD processing of track candidates
- auto-generated vectorized code is aware of matrix sparsity
• Algorithm multithreaded at multiple levels with TBB tasks
- events, detector regions, bunches of seeds
• Lightweight description of detector in terms of geometry, material, magnetic field
- collapse barrel (endcap) layers at average r (z), use 3D position of hits
• Minimize memory operations (number and size) within combinatorial branching
- bookkeeping of explored candidates, clone only best ranking ones at each layer (with per seed cap)

6

CMS-2017 Geometry in mkFit !
•  Unlike CMSSW, choose not 

to deal with detector modules, 
only layers!
– Makes algorithm faster and 

more lightweight!
•  Geometry implemented as a 

plugin: core algorithm is 
entirely separate from 
detector geometry !

•  Track propagation to center 
of layer, then hit selection!

•  In overlap regions, only pick 
the single best hit!

A. Hall! Connecting the Dots 2019! 15!

Actual geometry used by MkFit!
Layer centroids!

!
!
!
!
!
!

Layer size!

CMS-2017 Geometry 
8 Mario Masciovecchio (UCSD), 7 November 2018 

•  Top: 
o  Layer centroids 
 

•  Bottom: 
o  Layer size 
o  Actual geometry 

used by mkFit 

•  Geometry is implemented as a plugin 
 

CMS-2017 Geometry 
8 Mario Masciovecchio (UCSD), 7 November 2018 

•  Top: 
o  Layer centroids 
 

•  Bottom: 
o  Layer size 
o  Actual geometry 

used by mkFit 

•  Geometry is implemented as a plugin 
 



2019/11/07 mkFit - CHEP2019

Timing Results for Standalone Application
• Showing results on Intel Skylake Gold processor (SKL)
• Core of algorithm achieves nearly 3x speedup from vectorization
- Ahmdal’s law: 60-70% of core algorithm code is effectively vectorized
• Full application achieves 30x speedup with multi-threading
- close to ideal scaling when all threads dedicated to different events

7



2019/11/07 mkFit - CHEP2019

 Deployment in CMS: CMSSW integration

• Integration in CMSSW has recently been the main focus of the group
- Github repository made public, mkFit is now integrated into CMSSW as an external
• Two aspects are not ideal in the first integration:
- When distributed in central CMSSW release, mkFit is compiled with gcc/core2
- Dedicated steps are used to convert CMSSW data formats to/from mkFit

• CMS tracking structured in 10+ iterations
- Seeding+building = combinatorial algorithms
- Fitting+selection+masking = linear algorithms
• First milestone: track building for initial iteration
- Seeds made of 4 hits, finds most prompt tracks 
- Could easily be extended to include other iterations

8

https://github.com/trackreco/mkFit


2019/11/07 mkFit - CHEP2019

Physics Performance Improvements
• Integration in CMSSW gave access to central validation tools, which revealed a 

phase space where mkFit physics performance was suffering: short tracks
• Dedicated effort to recover efficiency at low number of crossed layers
- Updated logic to count the number of missing hits in a track in a consistent way
- Updated candidate score used to decide which is the best track candidate
• Efficiency now on par with CMSSW across the board
- some more work needed to reduce fakes and duplicates, also need to recover overlap hits

9

ttbar events, <PU>=50  
Algorithmic efficiency: 
require Initial Iteration  
seed in denominator

mkFit
CMSSW



2019/11/07 mkFit - CHEP2019

Timing Performance of Initial Iteration

• Single-thread performance on Intel SKL
- use ttbar events with <PU>=50
• Speedup of 6.2x compared to CMSSW
- track building is not the slowest component anymore!
• Data format conversions between CMSSW 

and mkFit account for ~25% of mkFit time
- larger speedup possible if data formats are harmonized
• Here mkFit is compiled with icc and AVX-512
- with gcc speedup reduces to ~2.5x

10



2019/11/07 mkFit - CHEP2019

Towards HLT Integration
• Work so far mostly focused on offline configuration
• However, HLT is the natural application environment for mkFit
• HLT configuration has different challenges with respect to offline
- for many HLT paths, tracking is done in regions of interest
- silicon strip local reconstruction is on-demand within the track pattern recognition
• mkFit aims at performing global tracking at HLT: read all hits as an input
• Global strip reco is currently costly, investigate faster implementation:
- ideally start from raw and produce hits in the mkFit data format; compatible with GPU 
• Current status:
- raw data unpacking and remapping to DetIds: implementation in progress
- strip data calibration: implementation in progress
- strip data clustering: initial implementation made and begin tested

11



2019/11/07 mkFit - CHEP2019

Strip Clustering Results on CPU and GPU
• Clustering Algorithm (current implementation):
- Identify seeds: ≥1 strip must have ADC > 3x noise
- Seek L/R boundaries: 
• (1) included strips must have ADCs > 2x noise
• (2) Strips must be consecutive or have gap <= N strips (N depends on good/bad strips)

- Final checks: quadrature sum of ADCs >= 5x quadrature sum of noise; total charge > min
• Standalone implementation on CPU (OpenMP for now) and GPU (CUDA)
- initial version processes a single event
- GPU version (P100) is ~3x faster than CPU (14-core Broadwell), including overhead
- overheads currently include data transfer and memory allocation; actual kernel time 7% only
• Working on improved version that will reduce overheads
- processing multiple events concurrently: asynchronous memory transfer
- using memory pool to pay the allocation overhead only at begin and end of job

12



2019/11/07 mkFit - CHEP2019

Exploration of Portable Implementations

• Exploration of GPU-compatible, portable implementations of track building
- pros: maintainable, minimal diffs between CPU and GPU code
- cons: may require trade-offs in terms of performance

• Started collaboration with RAPIDS@ORNL to  
explore usage of portable compiler directives
- version of full application with OpenMP (CPU for now)
- OpenACC in PropagationToZ function (out of ~100)  

from full code, get large speedups on GPU
- challenges ahead: data transfer, CMSSW interface
• Other tests towards GPU-compatible code:
- array programming: xtensor/numpy/cupy
- plan to try portable libraries and revisit CUDA implementation

13



2019/11/07 mkFit - CHEP2019

Conclusions

• mkFit code integrated in CMSSW as external library
• Physics performance (efficiency) on par with current tracking
• Speedup of >6x when compiled with icc and AVX-512
• Exploring utilization of GPUs at different stages
- strip local reconstruction
- portable implementation of algorithm
• Plans to publish a paper with detailed results soon - stay tuned!

14



2019/11/07 mkFit - CHEP2019

Backup

15



2019/11/07 mkFit - CHEP2019

mkFit: early GPU results
• Explore GPU-friendly data structures
• Matrix layout: Linear vs. Matriplex
- For 6x6 matrix multiplications, the Matriplex layout  

(with large size) gives better performance than alternatives
- Share same templated interface as CPU version, but implementation 

customized for GPU/CUDA
• Candidate cloning: avoid moving tracks in global memory
- Parallelization implemented as one GPU thread per candidate
- Select the best new candidates for each seed in shared memory 
- Process the list of new candidates with a heap-sort algorithm

• These developments were successful for track fitting while track 
building on K40 showed no significant speedups with respect to 
the CPU version
- Including data transfers (taking about half of build time)
- Building code was still in embryonal stage, missing important features like 

multiple events in flight (event: detector readout at beam crossing)

16

Fitting time vs 
Matriplex size
for different Nthreads  
on CPU filling the GPU


