
External Resources:
Clouds and HPCs for the expansion

of the ATLAS production system
at the Tokyo regional analysis center

Michiru Kaneda
(ICEPP, The University of Tokyo)

On behalf of the ATLAS Collaboration

1

07/Nov/2019
24th International Conference on Computing in High-Energy and Nuclear Physics

Adelaide, Australia

The Tokyo regional analysis center
• The computing center at ICEPP, the University of Tokyo
• Supports ATLAS VO as one of the WLCG Tier2 sites

→ Provides local resources to the ATLAS Japan group, too
• All hardware devices are supplied by the three years rental

→ All hardware devices are renewed in three years
• Current system (Starting from Jan/2019):

→ Worker node: 10,752cores (HS06: 18.97/core)
(7,680 for WLCG, 145689.6 HS06*cores),
3.0GB/core

→ File server: 15,840PB,
(10,560TB for WLCG)

2

Tape library

Disk storage

Worker node

~270m2

7% of Tier2 sites of
ATLAS

Our Local System

3

The Tokyo regional analysis center

CEATLAS
Central

Panda

Tasks
submitted through
WLCG system

ARC

Task
Queues

HTCondor
Sched

SE

Storage

Worker node

• Panda: ATLAS job management system,
using WLCG framework

• ARC-CE: Grid front-end
• HTCondor: Job scheduler

Future Computing Resources
• WLCG have provided enormous computing resources

and made it possible to give a lot of results by the LHC experiments
→ But we will need more resources for the future experiments

• CERN plans High-Luminosity LHC in 2026
→The peak luminosity: x 5
→The current system cannot provide

enough resources with expected budgets
→More improvements or new ideas

are necessary
→Software update
→New devices: GPGPU, FPGA, (QC)
→New grid structure: Data Cloud
→External resources: HPC, Commercial cloud

4

Hybrid System with Google Cloud Platform

5

The Tokyo regional analysis center

CEATLAS
Central

Panda ARC

Task
Queues

HTCondor
Sched

SE

Storage

Worker node

Tasks
submitted through
WLCG system

• Cost of storage is high
→Additional cost to extract data

• Only worker nodes (and some supporting servers) were
deployed on cloud, and other services are in on-premises
→Hybrid system

Google Cloud Platform Condor Pool Manager
• Google Cloud Platform Condor Pool Manager (GCPM)

→ https://github.com/mickaneda/gcpm
→ Can be installed by pip:

→ $ pip install gcpm
• Manage GCP resources and HTCondor’s worker node list

→ On-demand instance preparation
• Can be used for any of HTCondor systems

→ Useful for high-peak needs of CPUs, GPGPU instances, many cores instances, or
high-memory instances which are needed once in a while

6

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

https://github.com/mickaneda/gcpm

On-premises

Cost Estimation

7

Job
Manager

Storage Worker node

Job
Manager

Storage Worker node

On-premises

Job
Manager

Storage

Worker node

Full cloud system Hybrid System

Data export to other sites

• For GCP, use 20k to have comparable spec
→ Use Preemptible Instance (Hyperthreading On, half)

• 8PB storage which is used at ICEPP for now
• Cost to export data from GCP

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing

• Estimated with Dell machines
• 10k cores, 3GB/core memory,

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month
(+Facility/Infrastructure cost,
Hardware Maintenance cost, etc…)

Job output

Full on-premises system

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing

On-premises

Cost Estimation

8

Job
Manager

Storage Worker node

Job
Manager

Storage Worker node

Full on-premises system

Resource Cost/month
vCPU x20k $130k
3GB x20k $52k
Local Disk 35GBx20k $28k
Storage 8PB $184k
Network
Storage to Outside
600 TB

$86k

Resource Cost/month
vCPU x20k $130k
3GB x20k $52k
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total cost: $243k/month
+ on-premises costs
(storage $30k/month + others)

Total cost:
$480k/month

Data export to other sites

• Estimated with Dell machines
• 10k cores, 3GB/core memory,

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month
(+Facility/Infrastructure cost,
Hardware Maintenance cost, etc…)

Full cloud system
On-premises

Job
Manager

Storage

Worker node

Hybrid System

Job output

1 Day Real Cost

9

Reduced Hybrid system: 1k cores, 2.4GB/core memory

Worker node

On-premises

Job
Manager

Storage

Usage Cost/day x30x20
vCPU (vCPU*hours) 20046 $177 $106k
Memory (GB*hours) 47581 $56 $34k
Disk (GB*hours) 644898 $50 $30k
Network (GB) 559 $78 $47k
Other services $30 $18k
Total $391 $236k

vCPU: 1vCPU instances max 200, 8 vCPUs instances max 100
Memory: 2.4 GB/vCPU
Disk: 50GB for 1vCPU instance, 150 GB for 8 vCPUs instance

Resource Cost/month
vCPU x20k $130k
3GB x20k $42k
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total $243k

1 Day Real Cost for 1k cores Cost Estimation (20k cores/month)

Reedbush
• Supercomputer system @Information

Technology Center, The University of Tokyo
→CPU:Intel Xeon (2CPUs/node (36cores/node))
→GPU: NVIDIA Tesla P100

• CPU only nodes and GPU nodes
• OS: Read Hat Enterprise Linux 7

10

• PBS for the job
management

• Lustre file system
• No external network

access from each WN

System with Reedbush
The Tokyo regional analysis
center

CE

CE

ATLAS
Central

Panda ARC

Task
Queues

SE

Storage

Tasks
submitted through
WLCG system

Reedbush

Login node

Local
Storage

Luster

sshfs

qsubPBS wrapper commands

Task
Queues

PBS
Manager

• No administration right for WN
→ Use a singularity image to prepare environments

• WN have no external network access
→ Input/output files are managed by CE and

propagated by sshfs to/from WN
→ CE and WN have the same directory structure

• Reedbush uses PBS for the job management
→ Available only on the login node
→ To manage jobs from CE, PBS wrapper commands are

used
→ qsub:

ssh user@reedbush “cd $work_dir && qsub job.sh”

Worker node (WN)

Singularity

Software

DATABASE

Other
Input Files

ATLAS jobs on GCP and Reedbush

12

Analysis job: 1core idle
Production job: 8cores idle
Analysis job: 1core running
Production job: 8cores
runningC

PU
 C

or
es

1.0k

0

x
HTCondor status monitor for
GCP Max CPU Cores = 1k

N
od

es

20

0

PBS status monitor for
Reedbush
Max nodes = 20 (=720 CPU cores)

Other test jobs
Production job: 36cores idle
Production job: 36cores
running

Tested with the small queue
(Only a few nodes are available) Tested with the large

queue

Summary
• The Tokyo regional analysis center introduced new systems using

external resources
→Commercial cloud: GCP

→ The hybrid system with cloud WN
→ GCPM has been developed to manage

HTCondor job and instances of GCP
→ Can be used not only for WLCG, but also for any of HTCondor systems

→HPC: Reedbush (@the Univ. Tokyo)
→ WNs of the system have no external network access
→ The system covers such a special situation by using

singularity, sshfs and PBS wrapper commands are used
• ATLAS production jobs ran successfully

Future Plan
• Deploy other clouds (AWS, Azure, Oracle, …) and other HPCs in Japan

→ And other architectures (GPGPU, FPGA, …)
• Implement MPI for the HPC system

13

Backup

14

The ATLAS Experiment

15
The Higgs Boson Discovery in 2012

Raw data: ~1GB/s

Worldwide LHC Computing Grid (WLCG)

• A global computing collaboration for
the LHC experiments

• The Tokyo regional analysis center is
one of Tier2 for ATLAS

16

42 countries
170 computing centers
Over 2 million tasks run every day
1 million computer cores
1 exabyte of storage

Number of cores used by ATLAS

500k

300k

200k

100k

0

400k
~400k
cores

Commercial Clouds and HPCs
• Commercial Clouds:

→Many companies have introduced commercial clouds system
→ A lot of providers: AWS, Azure, Google Cloud Platform (GCP), IBM or

Oracle…
→A hybrid system of on-premises and cloud is also on trend
→A hybrid system using GCP was constructed

• High Performance Computing (HPC):
→HEP experiments have used

“high throughput computing” (HTC) system
→ WLCG

→But CPU clock did not get faster recently
→HPC developments are strongly pushed in many countries

→ Need to adopt to these different architectures, MPI and
special environments to obtain further computing power

→Reedbush (HPC@The Univ. Tokyo) was used
→ Intel Xeon CPU (36cores/node)

17

Data Size
• LHC provides

→40MHz proton-proton collision
• ATLAS filters events: 1kHz
• Raw event size: 1MB/events

→1GB/seconds
• 150 days data taking/year:

→10PB/year

• Current total data size: 200PB
(including Reconstructed data,
Monte Carlo simulation)

18

Commercial Cloud
• Google Cloud Platform (GCP)

→Number of vCPU, Memory are customizable
→CPU is almost uniform:

→ At TOKYO region, only Intel Broadwell (2.20GHz) or Skylake (2.00GHZ)
can be selected (they show almost same performances)

→Hyper threading on
• Amazon Web Service (AWS)

→Different types (CPU/Memory) of machines
are available

→Hyper threading on
→HTCondor supports AWS resource management from 8.8

• Microsoft Azure
→Different types (CPU/Memory) of machines

are available
→Hyper threading off machines are available

19

Performance Comparison

• The ATLAS production jobs can run with multi-processing mode
→ Normally 8 cores are used at WLCG sites
→ Will be multi-threading

• All GCP’s instances are set as hyper-threading on
→ ~half performance of other systems

• Reedbush nodes have 36 cores
→ Each job occupies all cores in the node: Run 36 processes mode

20

System Hyper
Threading Core(vCPU) Memory CPU HEPSPEC/

core
ATLAS simulation
1000events (hours) Walltime*cores/Events

ICEPP local system Off 32 96GiB Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz 18.97 (8core job) 5.19 0.042

Google Cloud Platform On 8 24GiB Intel(R) Xeon(R) Gold 6138
CPU @ 2.00GHz 12.62 (8core job) 9.27 0.074

Reedbush Off 36 256GB Intel(R) Xeon(R) CPU E5-2695
v4 @ 2.10GHz 16.78 (36 core job) 1.1 0.040

HEPSPEC (06): Benchmark for HEP

• HT On
→ All Google Computing Element (GCE) at GCP are HT On
→ TOKYO system is HT off

Google Computing Element

→ Broadwell and Skylake show similar specs
→ Costs are same. But if instances are restricted to Skylake, instances will be preempted more
→ Better not to restrict CPU generation for preemptible instances

→ GCE spec is ~half of TOKYO system

• Preemptible Instance
→ Shut down every 24 hours
→ Could be shut down before 24 hours depending on the system condition
→ The cost is ~1/3

21

System Core(vCPU) CPU SPECInt/core HEPSPEC ATLAS simulation
1000events (hours)

TOKYO system: HT off 32 Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz 46.25 18.97 5.19

TOKYO system: HT on 64 Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz N/A 11.58 8.64

GCE (Broadwell) 8 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 12.31 9.32

GCE (Broadwell) 1 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 22.73 N/A

GCE (Skylake) 8 Intel(R) Xeon(R) Gold 6138
CPU @ 2.00GHz (43.25) 12.62 9.27

• SPECInt (SPECint_rate2006):
• Local system: Dell Inc. PowerEdge M640
• GCE(Google Compute Engine)’s value were taken from Dell system with same corresponding CPU

• GCE (Broadwell): Dell Inc PowerEdge R630
• GCE (Skylake): Dell Inc. PowerEdge M640

• ATLAS simulation: Multi process job 8 processes
• For 32 and 64 core machine, 4 and 8 parallel jobs were run to fill cores, respectively

Google Cloud Platform Condor Pool Manager
• https://github.com/mickaneda/gcpm

→ Can be installed by pip:
→ $ pip install gcpm

• Manage GCP resources and HTCondor’s worker node list

22

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

https://github.com/mickaneda/gcpm

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→ Prepare necessary machines before starting worker nodes
→ Create (start) new instance if idle jobs exist
→ Update WN list of HTCondor
→ Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

23

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→ Prepare necessary machines before starting worker nodes
→ Create (start) new instance if idle jobs exist
→ Update WN list of HTCondor
→ Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

24

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

pool_password file
for the
authentication
is taken from storage
by startup script

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→ Prepare necessary machines before starting worker nodes
→ Create (start) new instance if idle jobs exist
→ Update WN list of HTCondor
→ Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

25

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→ Prepare necessary machines before starting worker nodes
→ Create (start) new instance if idle jobs exist
→ Update WN list of HTCondor
→ Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

26

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→ Prepare necessary machines before starting worker nodes
→ Create (start) new instance if idle jobs exist
→ Update WN list of HTCondor
→ Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

27

On-premises

CE

Worker node
Compute Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job
Submission

Cloud Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

• Set to execute `condor_off -peaceful –startd` after 10min by the startup script
for GCE instance

• When a job finished, the instance is removed from `condor_status` list
• Then GCPM deletes (sotps) the instance

ARC CE Hacking
• ARC checks a number of available slots before submitting jobs

→ If a job specifies a number of CPUs and there are not enough slots, job
submission fails

→ GCP pool has no slot at the start, jobs cannot be submitted
→ Hack /usr/share/arc/Condor.pm to return non-zero cpus if it is zero

28

#
returns the total number of nodes in the cluster
#
sub condor_cluster_totalcpus() {

List all machines in the pool. Create a hash specifying the
TotalCpus

for each machine.
my %machines;
$machines{$$_{machine}} = $$_{totalcpus} for @allnodedata;

my $totalcpus = 0;
for (keys %machines) {

$totalcpus += $machines{$_};
}

Give non-zero cpus for dynamic pool
$totalcpus ||= 100;
return $totalcpus;

}

System for R&D

29

The Tokyo regional analysis center

CE
Worker node
Compute EngineCreate/Delete

(Start/Stop)

ATLAS
Central

Panda

Production/Analysis
tasks

SQUID
(for CVMFS)
Compute
Engine

ARC

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

SE

Storage

Authorization

ARGUS

Stackdriver

Log (condor logs)
by fluentd

SQUID
(for Condition DB)

Compute
Engine

BDII

Site-BDII

Site Information

Xcache
Compute
Engine

Prepare before starting WNs

Required
machines

Cloud Storage

pool_password

Update
WN list

System for R&D

30

The Tokyo regional analysis center

CE
Worker node
Compute EngineCreate/Delete

(Start/Stop)

ATLAS
Central

Panda

Production/Analysis
tasks

SQUID
(for CVMFS)
Compute
Engine

ARC

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

SE

Storage

Authorization

ARGUS

Stackdriver

Log (condor logs)
by fluentd

SQUID
(for Condition DB)

Compute
Engine

BDII

Site-BDII

Site Information

Xcache
Compute
Engine

Prepare before starting WNs

Required
machines

Cloud Storage

pool_password

Update
WN list

System for R&D

31

The Tokyo regional analysis center

CE
Worker node
Compute EngineCreate/Delete

(Start/Stop)

ATLAS
Central

Panda

Production/Analysis
tasks

SQUID
(for CVMFS)
Compute
Engine

ARC

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job
Submission

SE

Storage

Authorization

ARGUS

Stackdriver

Log (condor logs)
by fluentd

SQUID
(for Condition DB)

Compute
Engine

BDII

Site-BDII

Site Information

Xcache
Compute
Engine

Prepare before starting WNs

Required
machines

Cloud Storage

pool_password

Update
WN list

GCE Instance limit for R&D
• 1 vCPU instances: Memoery 2.6GB, Disk 50GB, max 200 instances
• 8 vCPU instances: Memory 19.2GB, Disk 150GB, max 100 instances
→ Total vCPU max: 1000

Jobs Running on GCP

32

Analysis job: 1core idle
Production job: 8cores idle
Analysis job: 1core running
Production job: 8cores
running

Number of
jobs

Number of vCPUs

Analysis job: 1core
Production job: 1core
Production job:
8cores

Monitors of job starting
time

HTCondor status monitor

vC
PU

s

1.0k

2.0k

0

Analysis job: 1core
Production job: 1core
Production job:
8cores

Failure Rate (Production Jobs)

33

Succeede
d
Failed

GCP Worker Nodes
(Production Job)

ICEPP Worker Nodes
(Production Job)

Job Type Error rate
GCP Production (Preemptible) 35%
GCP Production (Non-Preemptible) 6%
Local Production 11%

Succeede
d
Failed

Mainly 8 core jobs, long jobs (~10
hours/job)

Failure Rate (Analysis Jobs)

34

Succeede
d
Failed

GCP Worker Nodes
(Analysis Job)

ICEPP Worker Nodes
(Analysis Job)

Job Type Error rate
GCP Analysis (Preemptible) 19%
GCP Analysis (Non-Preemptible) 14%
Local Analysis 8%

Succeede
d
Failed

Only 1 core job, shorter
jobs

Preemption

35

Not
Preempted
Preempted

Not
preempted
Preempted

1 core instances 8 core instances

Preemption v.s. Failure jobs

36

Not
Preempted
Preempted

Not
preempted
Preempted

• 5~30 % instances were shut down by Preemption
→Made failure jobs

• Typically shut down around 3~10 hours
→Some instances were shutdown before 1 hours running

• More preemptions in 8 core jobs (production: reco/sim)
because job running times are longer

Reedbush
• Supercomputer system @Information

Technology Center, The University of Tokyo
→CPU:Intel Xeon (2CPUs/node (36cores/node))
→GPU: NVIDIA Tesla P100

• CPU only nodes and GPU nodes
• OS: Read Hat Enterprise Linux 7

37

• PBS for the job
management

• Lustre file system
• No external network

access from each WN

Reedbush System

38

The Tokyo regional
analysis center

CE

ATLAS
Central

Panda ARC

Task
Queues

SE

Storage

Tasks
submitted through
WLCG system

Reedbush

Worker node

Login node

Local
Storage

Luster

sshfs

Necessary input managed by ARC
before job submission

qsubPBS wrapper commands

Task
Queues

PBS
Manager

Grid

Cloud

HPC
Usage of HPC by ATLAS

Reedbush Failure rate

39

MPI Job

40

• Yoda:
→A tool for Message Passing Inerface (MPI)

developed by ATLAS
→We will try to deploy the tool in our system

Cost Comparison

41

System Cost for 10k cores/Month
On-premises $200k
Reedbush $40k
Google Cloud
Platform $250k

• On-premises:
→ Total server cost of 10k cpu cores, 16PB storage (Dell)/3 years
→ Additional cost: infrastructure, maintenance

• Reedbush:
→ Price as a user
→ Non-university groups also can apply to use the system (price: x1.2)
→ Only limited number of resources

→ Currently max number of nodes is ~ 20 (~700cores)
→ Additional cost: on-premises storage and other service components
→ Cost of Reedbush itself is ~50k/month for 10k cores

• GCP:
→ Hyper Threading On: Need double number of CPU cores (calculated by assuming 20k cores)
→ Reduced cost by using preemptible instances
→ Including network cost
→ Additional cost: on-premises storage and other service components

