
AliECS
A New Experiment Control System for the ALICE Experiment

Teo Mrnjavac
CERN EP-AID-DA
on behalf of the ALICE O²/FLP project
4 November 2019

1



The ALICE Online-Offline computing system

Detector

FLP FLP FLP FLP FLP FLP…

EPN EPN EPN EPN EPN EPN…

Synchronous readout

Synchronous reconstruction

Grid EPN EPN EPN…

Asynchronous reconstruction

Storage

Storage

Be
am

 O
N

Be
am

 O
N

 o
r 

O
FF

O² facility
LHC point 2

• Multiprocess data flow and
processing framework

• 100 000s of processes, ~1000
machines

• Synchronous and asynchronous
(grid-like) workflows

• One computing system, 2 types
of node arranged in 2 clusters:
FLP - First Level Processors
EPN - Event Processing Nodes

• Operations will start in 2021
2



ECS and O² cluster control

• Manage the lifetime of thousands of
stateful processes in the O²/FLP cluster
(control of O²/EPN delegated to a
specialized O²/EPN cluster control)

• Minimize the waste of beam time by reusing
processes and avoiding time-consuming
process restart operations

• Interface with the LHC, the trigger system,
the Detector Control System and other
systems through common APIs

3



Managing a cluster with Apache Mesos

“Program against your datacenter like it’s a single pool of resources.”

• Mesos acts as a distributed execution environment
which streamlines how AliECS manages its components, resources and tasks inside the O²/FLP farm.

• Benefits:
• knowledge of what runs where,
• resource management (ports, CPU, RAM, ...),
• transport for control messages,
• task event notification (dead, failed to launch, ...),
• node attributes, high availability, checkpointing, ...

4



Managing a cluster with Apache Mesos

“Program against your datacenter like it’s a single pool of resources.”

• Mesos acts as a distributed execution environment
which streamlines how AliECS manages its components, resources and tasks inside the O²/FLP farm.

• Benefits:
• knowledge of what runs where,
• resource management (ports, CPU, RAM, ...),
• transport for control messages,
• task event notification (dead, failed to launch, ...),
• node attributes, high availability, checkpointing, ...

4



AliECS in a nutshell

5



AliECS in a nutshell

6



AliECS in a nutshell

7



AliECS in a nutshell

• Components:
• AliECS core (incl. Apache Mesos scheduler)
• AliECS executor
• AliECS control and configuration utility (coconut)
• Single process state machine debug utility (peanut)
• O² control and configuration FairMQ plugin (FairMQPlugin_OCC)
• O² control and configuration library (libOCC)

• Also available:
• The web-based AliECS GUI
• AliECS deployment mechanism

8



AliECS in a nutshell

• Components:
• AliECS core (incl. Apache Mesos scheduler)
• AliECS executor
• AliECS control and configuration utility (coconut)
• Single process state machine debug utility (peanut)
• O² control and configuration FairMQ plugin (FairMQPlugin_OCC)
• O² control and configuration library (libOCC)

• Also available:
• The web-based AliECS GUI
• AliECS deployment mechanism

8



AliECS in a nutshell

• Components:
• AliECS core (incl. Apache Mesos scheduler)
• AliECS executor
• AliECS control and configuration utility (coconut)
• Single process state machine debug utility (peanut)
• O² control and configuration FairMQ plugin (FairMQPlugin_OCC)
• O² control and configuration library (libOCC)

• Also available:
• The web-based AliECS GUI
• AliECS deployment mechanism

8



AliECS concepts

• AliECS schedules, configures and controls
tasks (stateful processes)

• Each role represents either a task, or its own
child roles

• A tree of roles is a workflow
• Tasks, roles and environments have their
own state machines

• An environment in RUNNING state is granted
a unique run number which remains valid
until the RUNNING state exits

9



AliECS workflow and task configuration

• Based on Git, multiple repositories per AliECS instance
• Task descriptors and workflow templates are YAML (plus template system)
• Once loaded, every task type and workflow is uniquely identified by

git repository + task/workflow file name + git revision

Documentation: https://github.com/AliceO2Group/Control/blob/master/coconut/doc/coconut_repository.md 10

https://github.com/AliceO2Group/Control/blob/master/coconut/doc/coconut_repository.md


AliECS workflow and task configuration

11



AliECS GUI

12



AliECS GUI

• As few dependencies as possible to facilitate maintenance
• Node.js with Express.js as server framework
• grpc/proto-loader and grpc for communication with AliECS core
• UI and other components built from scratch and exported as npm module for
look&feel consistency across O²/FLP interfaces

• Puppeteer for integration tests
• Kafka-node for displaying browser notifications via common Notification
Service

13



Conclusions

• The new ALICE O² computing system requires a new control system
• AliECS carries both ECS and O²/FLP cluster control duties
• Opportunity to leverage technologies such as Mesos and Go for a high
performance, low latency ECS

• Mesos gives us resource management, transport and much more
• Minimize waste of beam time
• Improved operational flexibility

AliECS on GitHub: github.com/AliceO2Group/Control
Configuration examples: github.com/AliceO2Group/ControlWorkflows

14

https://github.com/AliceO2Group/Control
https://github.com/AliceO2Group/ControlWorkflows


Backup slides

15



Target improvements

• Improved flexibility & latency:
• no workflow redeployment when excluding/including a detector from data
taking,

• recover from process and server crashes,
• reconfigure processes without restart,
• scale workflows based on immediate needs.

• Next gen web-based GUIs with SSO & revamped design.
• Take advantage of modern developments in computing.

16



Why Go?

• Go is a statically typed general-purpose programming language in the
tradition of C.

• 100% Free and open source.
• Prominent features include:

• simple syntax and excellent readability,
• garbage collection,
• interface system and composition, but no inheritance,
• lightweight processes (goroutines) and channels,
• build system and remote package management included in compiler,
• fast compilation,
• statically linked native binaries.

• Go is already used in some components of the O² stack, including Consul,
Docker and InfluxDB.

17



gRPC in AliECS

• gRPC, an RPC system based on Protobuf was chosen as the lingua franca of
AliECS IPC:

• backed by Google,
• multi-language support,
• already packaged for O²,
• widely used in the microservices community.

• In AliECS, gRPC is used for
• communication between the AliECS core and the GUI,
• communication between the executor and the OCC plugin.

• Higher performance and better multi-language integration compared to REST
(Swagger, etc.)

• Better interoperability and/or support/documentation compared to other
RPC methods (JSON-RPC, MessagePack-RPC, net/rpc, Cap’n’Proto, etc.)

18



Why Apache Mesos? / Why not Kubernetes?

• Apache Mesos vs. Kubernetes is a false equivalence:
• Apache Mesos is primarily a cluster resource management system

• See also Marathon, Aurora, DC/OS...
• Kubernetes is a container orchestration platform

• “Opinionated software”: it enforces its own structure of Pods and Containers
• The benefits of Kubernetes + containerization are dubious at best in a
heterogeneous environment such as the O²/FLP farm, which includes:

• different configurations of FLP machines
• custom PCIe hardware
• physical point-to-point fiber links to detector front-end electronics.

• A resource management system with deployment functionality at the single
process level such as Apache Mesos fits well with O²/FLP requirements.

A container orchestration platform wasn’t needed and still isn’t.

19



Workflows, roles and tasks

• Concepts:
• task - the basic unit of control, generally 1
process

• role - a node in the control tree, aggregates
child roles and ultimately tasks

• workflow - the in-memory control tree of an
environment, made of roles which drive tasks

• Workflow templates generate workflows of tasks
• Generated from DPL specs
• Stored in O² configuration (YAML + Git)
• Variables, iterators, internal references

20



Control of FairMQ devices

21



Control of non-FairMQ O² processes (e.g. Readout)

22



Debug mode for non-FairMQ O² processes

23


