BROOKHAVEN NATIONAL LABORATORY EVOLUTION OF THE ATLAS ANALYSIS MODEL FOR RUN-3 AND PROSPECTS FOR HL-LHC

Christos Anastopoulos, Jamie Boyd, James Catmore, *Johannes Elmsheuser*, Heather Gray, Attila Krasznahorkay, Josh McFayden, Chris Meyer, Anna Sfyrla, Jonas Strandberg, Kerim Suruliz, Timothée Theveneaux-Pelzer on behalf of the ATLAS collaboration

5 November 2019, CHEP 2019, Adelaide

ATLAS experiment analysis in LHC Run2 and resource usage

Recommendations of ATLAS experiment analysis model study group for Run3 (AMSG-R3)

INTRODUCTION: SIMPLIFIED DATA ANALYSIS WORKFLOW FOR ATLAS

In essence: several steps of data processing and then **data reduction** First parts on Grid/Cloud/HPC - last step usually on local resources

ATLAS RUN2 ANALYSIS WORKFLOWS

DAOD: highly successful in view of productivity of ATLAS, the Run 2 model has been expensive in terms of resources

- DAOD data formats used by almost all analysis in ATLAS but additional group analysis post-DAOD
- Supposed to be ${\sim}$ 1% of size of data inputs
- 84 formats in current use, shared among similar physics final states,

AOD/DAOD CONTENTS

tt MC, 1 AOD, 79 DAODs

Example sample sizes:

		MC16e	data18
AOD	logical [PB]	11.2	2.7
	disk [PB]	13.0	4.2
	evt [10 ⁹]	17.178	12.108
DAOD	logical [PB]	9.9	6.1
	disk [PB]	13.4	12.7
	evt [10 ⁹]	91.292	110.139

Top 10 DAOD:

DAOD_TOPQ1 10.10.PB DAOD_STDM4 3.57.PB DAOD_DTOPQ4 3.40.PB DAOD_FTAG4 3.27.PB DAOD_FTAG4 3.10.PB DAOD_HTAG20 2.41.PB DAOD_JETM6 2.08.PB DAOD_LETAG1 1.98.PB DAOD_LICTM1 1.97.PB DAOD_LON_TS 1.80.PB		
DA0D_STDM4 3.57 PB DA0D_TOP04 3.40 PB DA0D_FTAG4 3.27 PB DA0D_FTAG4 3.10 PB DA0D_HIG02D1 2.41 PB DA0D_HIG02D1 2.08 PB DA0D_FTAG1 1.98 PB DA0D_JETM4 1.97 PB DA0D_LETM5 1.80 PB	DAOD_TOPQ1	10.10 PB
DAOD_TOPQ4 3.40 PB DAOD_FTAG4 3.27 PB DAOD_BEVUL 3.10 PB DAOD_BEG201 2.41 PB DAOD_JETM6 2.08 PB DAOD_FTAG1 1.98 PB DAOD_FTAT1 1.97 PB DAOD_EXTV1 1.97 PB DAOD_EXTV5 1.80 PB	DAOD_STDM4	3.57 PB
DA0D_FTAG4 3.27 PB DA0D_RPVLL 3.10 PB DA0D_IRPVLL 2.41 PB DA0D_JETM6 2.08 PB DA0D_FTAG1 1.98 PB DA0D_LETM1 1.97 PB DA0D_ETX05 1.80 PB	DAOD_TOPQ4	3.40 PB
DA0D_RPVLL 3.10 PB DA0D_HIGG2D1 2.41 PB DA0D_JETM6 2.08 PB DA0D_FTAG1 1.98 PB DA0D_JETM1 1.97 PB DA0D_EXOTS 1.80 PB	DAOD_FTAG4	3.27 PB
DA0D_HIGG2D1 2.41 PB DA0D_JETM6 2.08 PB DA0D_FTAG1 1.98 PB DA0D_JETM1 1.97 PB DA0D_EXOTS 1.80 PB	DA0D_RPVLL	3.10 PB
DAOD_JETM6 2.08 PB DAOD_FTAG1 1.98 PB DAOD_JETM1 1.97 PB DAOD_EXOTS 1.80 PB	DAOD_HIGG2D1	2.41 PB
DAOD_FTAG1 1.98 PB DAOD_JETM1 1.97 PB DAOD_EXOT5 1.80 PB	DAOD_JETM6	2.08 PB
DAOD_JETM1 1.97 PB DAOD_EXOTS 1.80 PB	DAOD_FTAG1	1.98 PB
DAOD_EXOTS 1.80 PB	DAOD_JETM1	1.97 PB
	DAOD_EXOT5	1.80 PB

General AOD/DAOD content:

- Lots of low level quantities for all physics objects in DAOD to allow calibrations and systematics very late in analysis chain
- Allows very flexible object definitions but increases format sizes significantly

Lots of AOD/DAODs infos:

 Tracks/InDet, MC truth, Trigger dominate size

Lots of samples:

- Only 1-2 replicas possible because of large sample sizes
- Many event duplication from AOD to DAOD

CPU USAGE & ATLAS DISK SPACE PROJECTIONS

- DISK: 223 PB, filled mainly with Analysis formats (AOD/DAOD)
- Only 1-2 replicas possible because of large sample sizes
- In addition TAPE \approx 253 PB used and pledge of 315 PB

Run3: Initial assumption resources will be: 1.5 × (resources in 2018) Consistent with "flat budget"

ATLAS experiment analysis in LHC Run2 and resource usage

Recommendations of ATLAS experiment analysis model study group for Run3 (AMSG-R3)

ATLAS ANALYSIS MODEL STUDY GROUP FOR RUN3 (AMSG-R3) GROUP MANDATE

- Analysis model study group for Run3 (AMSG-R3) formed in summer 2018, delivered set of recommendations for updated ATLAS Analysis/Computing model in June 2019
- Group mandate in essence:

Collect options to save at least 30% disk space overall (for the same data/MC sample), harmonise analysis and give directions for further savings for the HL-LHC.

- Latest "ATLAS Computing Status and Plans: Report to the C-RSG" uses these recommendations
- Now it's time for many ATLAS groups to work on the recommendations

New production workflows and formats

DAOD_PHYS:

50 kB/event, combined single DAOD format (for MC, but also DATA), AOD event data model (EDM)

DAOD_PHYSLITE:

10 kB/event, very condensed and calibrated objects, very important for HL-LHC, AOD or ntuple EDM, ideal for DOMA/XCache

today's DAODs: Significantly reduce number of today's DAODs

AODs: Larger fraction only available on TAPE

SUMMARY OF THE AMSG-R3 RECOMMENDATIONS

Formats	Introduce DAOD_PHYS with ~50 kB/event
	Introduce <code>DAOD_PHYSLITE</code> with ${\sim}10$ kB/event and <code>calibrated objects</code>
	Significantly reduce number DAODs formats by DAOD_PHYS(LITE) in majority of analysis
	Allow exceptions for performance groups, B-physics (separate stream), long lived particle searches, soft QCD
Production	Use a tape carousel model for AOD inputs in parts of the DAOD production
	Increase usage of docker/singularity containers for analysis and group ntuple production
	and more like: changes in DAOD production policies, smarter replica
	placements, global Rucio file redirector
AOD/DAOD content	Significantly reduced track, trigger, truth information,
	use calibrated objects
	Apply lossy compression for most variables in AOD/DAODs
	where feasible and applicable

SIMPLE DISK SPACE MODEL WITH RUN2 NUMBERS

- Simple model of Run2 AOD+DAODs: 132 PB
 - 4 DAOD_PHYS+DAOD_PHYSLITE (MC+DATA) replicas
 - 0.5 AOD replica (aka TAPE buffer)
 - 50% of today's MC+DATA DAOD

	MC				Data			
	AOD	DAOD	DAOD	DAOD	AOD	DAOD	DAOD	DAOD
			PHYS	PHYS			PHYS	PHYS
				LITE				LITE
events	3 · 10 ¹⁰	1 · 10 ¹¹	3 · 10 ¹⁰	3 · 10 ¹⁰	2 · 10 ¹⁰	1 · 10 ¹¹	2 · 10 ¹⁰	2 · 10 ¹⁰
size/event [kB]	600	100	70	10	400	50	40	10
disk space [PB]	18.0	10.0	2.1	0.3	8.0	5.0	0.8	0.2
other versions	1.5	2	2	2	1.5	2	2	2
repl. fac.	0.5	1	4	4	0.5	2	4	4
Sum [PB]	13.5	20.0	16.8	2.4	6.0	20.0	6.4	1.6

- Sum: 85 PB
- Potential saving: 46 PB
 - \rightarrow allows room for more MC event production

STATUS OF IMPLEMENTATIONS: MAIN AMSG-R3 RECOMMENDATIONS

DAOD_PHYS:

target: 50 kB/event prototype ready: 40 kB/event, significantly reduced trigger, MC truth and tracking info

DAOD_PHYSLITE:

target: 10 kB/event, prototype under preparation

Lossy compression:

Reduce precision of float elements by setting some digits of the mantissa to zero, allowing more efficient compression Explore in parallel ROOT 6.18 Float16_t compression/truncation

Data carousel:

On demand reading from tape without pre-staging Uses a rolling disk buffer with a to be tuned size Rucio, FTS, dCache improvements work-in-progress

Containers:

PanDA uses OS containers for production and analysis and support user containers in place

tt MC, blind float to 7 bit mantissa compression:

Format	Compression ratio
AOD	0.72
DAOD_PHYS	0.75
DAOD_PHYSLITE	0.9

data18 reprocessing, Stage 7 PB within 2 weeks: 6 GB/s:

VERY SIMPLE HL-LHC EXTRAPOLATION FOR DISK

	MC			Data			Sum
	AOD	DAOD	DAOD	AOD	DAOD	DAOD	
			PHYSLITE			PHYSLITE	
events (25-28)	6.4 · 10 ¹¹			1.5 · 10 ¹¹			
events / year	2.13 · 10 ¹¹	1.07 · 10 ¹²	2.13 · 10 ¹¹	5.0 · 10 ¹⁰	$2.5 \cdot 10^{11}$	5.0 · 10 ¹⁰	
size/event [kB]	1000	100	10	700	50	10	
disk [PB/year]	213.3	106.7	2.1	35.0	12.5	0.5	369.6

Assumptions:

- DAOD: 5*AOD events, use DAOD_PHYS(LITE) as in AMSG-R3
- no extra versions & no replication this will increase the volume by a factor 2-4
- Average size/event and no pile-up dependence assumed here

 \rightarrow More DAOD_PHYSLITE and less DAOD usage, AOD with tape carousel will reduce disk capacity needs

- ATLAS Run2 analysis model very successful but expensive w.r.t. disk space usage
- For Run3: significant disk usage reduction planned with new formats DAOD_PHYS, DAOD_PHYSLITE and tape carousel
- Without something similar to DAOD_PHYSLITE, analysis at HL-LHC very difficult
- Development work in many ATLAS software, computing and physics areas on-going

BACKUP

CPU USAGE

- 10-20% of analysis share on the Grid/Cloud not HPC mainly single core serial processing payloads
- Very diverse inputs and processing payloads in analysis
- In addition lots of final analysis happens on local batch farm or computers on individual ntuples

PROCESSING INPUT AND OUTPUT VOLUMES PANDA IN PAST 17 MONTHS

- Grid input processing volume \approx 200-250 PB/month 30-50% derivation production, 30-50% analysis
- Copied to worker node files might be accessed multiple times on the worker node (digi-reco)
- Grid output volume: \approx 8-9 PB/month of which 2-5 PB/month derivation production
- TierO batch is not included here and adds to the input/output volumes

- The ATLAS distributed computing system is centered around:
 - Workflow management system: PanDA
 - Data management system: Rucio
 - Many additional components: AGIS, ProdSys, Analytics, ...
 - **Resources**: WLCG grid sites, Tier0, HPCs, Boinc, Cloud
 - **Shifters**: Grid, Expert and Analysis (ADCoS, CRC, DAST)

