
gpu application
in juno

W u m i n g L u o
o n b e h a l f o f

t h e j u n o c o l l a b o r a t i o n
C H E P 2 0 1 9 ,

 a d e l a i d e , a u s t r a l i a

Wuming Luo

outline

Introduction to JUNO
GPU vs CPU
Applications

Vertex Reconstruction
Muon Simulation
Deep Learning*

Summary

2

Wuming Luo

juno
Jiangmen Underground Neutrino Observatory(JUNO):

Determine the neutrino mass hierarchy
Measure three neutrino oscillation parameters precisely
SuperNova, Solar, Atm. Geo. etc

3

Wuming Luo

detector

4

Liquid Scintillator
20 kton

Central Detector PMT
~18,000 20” PMTs
+ ~25,000 3” PMTs

𝜙: 43.5 m

D
ep

th
: 4

4
m

M. Grassi Neptune 2018

JUNO Challenge (Quantitative)

5

KamLAND 1000 t
D. Chooz 8+22 t
RENO 16 t
Daya Bay 20 t
Borexino 300 t
JUNO 20000 t

6%/√E

8%/√E

5%/√E

DETECTOR
TARGET MASS

ENERGY
RESOLUTION

3%/√E

MUST BE LARGER

MUST BE MORE PRECISE

Need to collect large statistics  
being 50km away from source

Unprecedented light level
1200 pe/MeV

Both features
• are highly expensive (civil engineering + photocathode density)
• result in extreme detector dynamic range

Wuming Luo

gpu vs cpu

5

Large Cache

Optimized for serial operations

Many cores

Built for parallel operations

Wuming Luo

case 1: vertex
reconstruction

Parameters to reconstruct: x, y, z, t0

Algorithm: -lnℒ = -∑ ln fres(ti,res) = -∑ ln fres(ti - ti,tof - t0)
ti : first hit time of ith PMT
ttof : time of flight
t0 : event start time
fres : pdf of residual time

Scan 4D grid to minimize the NLL

6

Event Vertex
P0(x, y, z)

ith PMT
Pi

jth PMT
Pj

Wuming Luo

grid search — 2d

7
The 13th JUNO Collaboration Meeting @ SJTUJan. 17, 2019

GridSearch: Minimizer for vrt. rec.

 16

• Minimization algorithm: GridSearch, a 4-dim search
• Number of grid points:

• 3 x-dim, 3 y-dim, 3 z-dim, 9 t-dim;
• 243 in total;

• For each grid point, calculate prob. of each fired PMT;
• 243⨉nFiredPMT in total

• range from 3⨉105 (1 MeV) to 3⨉106 (10 MeV).

Schematic diagram
for 2-dim search

If minimum
point changes

If minimum point
remains the same

The 13th JUNO Collaboration Meeting @ SJTUJan. 17, 2019

GridSearch: Minimizer for vrt. rec.

 16

• Minimization algorithm: GridSearch, a 4-dim search
• Number of grid points:

• 3 x-dim, 3 y-dim, 3 z-dim, 9 t-dim;
• 243 in total;

• For each grid point, calculate prob. of each fired PMT;
• 243⨉nFiredPMT in total

• range from 3⨉105 (1 MeV) to 3⨉106 (10 MeV).

Schematic diagram
for 2-dim search

If minimum
point changes

If minimum point
remains the same

The 13th JUNO Collaboration Meeting @ SJTUJan. 17, 2019

GridSearch: Minimizer for vrt. rec.

 16

• Minimization algorithm: GridSearch, a 4-dim search
• Number of grid points:

• 3 x-dim, 3 y-dim, 3 z-dim, 9 t-dim;
• 243 in total;

• For each grid point, calculate prob. of each fired PMT;
• 243⨉nFiredPMT in total

• range from 3⨉105 (1 MeV) to 3⨉106 (10 MeV).

Schematic diagram
for 2-dim search

If minimum
point changes

If minimum point
remains the same

if(Center is minimum){
 step /= 1/2
}
else{
 move to NEW center
}

Wuming Luo

parallelization on gpu

4D Grid Search
Number of loops: x-dim*y-
dim*z-dim*t-
dim*n_fired_PMTs =
3*3*3*9*1200/MeV =
3*105/MeV
Parallelize the calculations
on GPU

8

for(t){
 for(x){
 for(y){
 for(z){
 for(ith PMT){
 calc. NLLi

 }
 …
} ON CPU

Wuming Luo

performance

9

CPU GPU Ration: CPU/GPU

Time@1MeV(s) 1.88 0.05 ~40

Time@10MeV(s) 14.19 0.095 ~150

Gradiant 1.37 0.005 —

—CPU
—GPU NVIDIA K40m

Wuming Luo

discussion

Memory allocation and free,
Synchronization etc… take
up most of the time, room for
future optimization
Potential improvement with
multiple GPUs
Instead of Grid Search,
divide the detector ROI to
tiny units and parallelize
with GPU(s)

10

kernel
21%

API Calls
78%

API Calls kernel
data transfer

NVIDIA K40m

Wuming Luo

case 2: muon simulation
Simulate the number of
photons (nPE) and the
corresponding hit
time({ti}) collected by
each PMT for a
traversing Muon
Voxel: segments along
the muon track
For fixed (R, 𝜃),
sampling nPE and {ti}
from templates

11

voxel

Wuming Luo

computation flow

12

for(R){ // Voxel loop
 for(𝜃){ // PMT loop
 for(E){ // E loop
 for(nPE){
 sample ti

 }
 …
} ON CPU

~18,000 PMTs

Wuming Luo

computation flow

13

for(𝜃){ // PMT loop
 for(R){ // Voxel loop
 for(E){ // E loop
 for(nPE){
 sample ti

 }
 …
}

Switch the Voxel loop and PMT loop levels
Parallelize the PMT loop with GPU

Wuming Luo

performance

O(102) improvement with V100
Future optimization: data transfer, more levels, multi-
GPUs,

14

time (ms)

1E+00

1E+01

1E+02

1E+03

1E+04

CPU K40m V100

98021

2156

483
DtoH
17%

kernel
24%

HtoD
59%

HtoD kernel DtoH

NVIDIA V100

Wuming Luo

case 3: deep learning

GPU is widely used for DL
Try Vertex Reconstruction with CNN in JUNO
Input: hit time {ti}, number of photoelectrons {nPEi}
Output: event vertex (x, y, z)

15

• J18v1r1-Pre1

• two	million	e+ events

• without	electronic	simulation

• continuous	in	[1,	10]	MeV

• uniform in space

2D	arrangement	of	the	hits	data
Color	means	the	PMT	id

Train	data

10

Data	used	to	train	the	model

• Use	the	first	hit	time	and	nPE in	each	PMT	as	input	data.

• Use	the	true	vertex	from	simulation	as	label.

• Project	the	hits	data	into	2D	plots.

• Get	a	(230,126,2) size	array	and	feed	into	the	model.

Projection	of	nPE
Color	means	the	number

• Build	a	CNN	model
50	layers,	35m	parameters

• Input	the	hits	distribution	data
including	the	first	hit	time	and	nPE (number	of	

photoelectron)

• Output	the	(x,	y,	z)	values.

Vertex	reconstruction	with	Deep	Learning

9

Input

Output

(x, y, z)

projection of nPE

*see Yury Malyshkin’s talk

Wuming Luo

summary

JUNO has ~O(105) PMTs, perfectly suitable for
utilizing GPU
Showed a few applications of GPU in JUNO

Vertex reconstruction/Muon simulation/Deep Learning*
Room for further improvements

Could be used in other aspects of JUNO
Huge potential for experiments with lots of PMTs

16

backup

Wuming Luo

validation

GPU Rec was able to reproduce the CPU Rec results
Tiny difference, negligible w.r.t. vertex resolution
(60mm)

18

The 13th JUNO Collaboration Meeting @ SJTUJan. 17, 2019

Validation of GPU-based Rec. Alg.

 9
diff_z (GPU-CPU) [mm]

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

100

200

300

400

500 GPUMinusCPU_Z

Entries 1000

Mean -0.001587

RMS 0.08358

diff_x (GPU-CPU) [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500
GPUMinusCPU_X

Entries 1000

Mean -0.01563

RMS 0.1794

diff_y (GPU-CPU) [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500 GPUMinusCPU_Y

Entries 1000

Mean -0.009155

RMS 0.08695

• Comparison between CPURec and GPURec

• Maximum difference: ~0.5 mm

• negligible comparing to the vertex
resolution (~5 cm)

• Difference <- computational accuracy

• likelihood values of two set of
parameters are the same

The 13th JUNO Collaboration Meeting @ SJTUJan. 17, 2019

Validation of GPU-based Rec. Alg.

 9
diff_z (GPU-CPU) [mm]

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

100

200

300

400

500 GPUMinusCPU_Z

Entries 1000

Mean -0.001587

RMS 0.08358

diff_x (GPU-CPU) [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500
GPUMinusCPU_X

Entries 1000

Mean -0.01563

RMS 0.1794

diff_y (GPU-CPU) [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500 GPUMinusCPU_Y

Entries 1000

Mean -0.009155

RMS 0.08695

• Comparison between CPURec and GPURec

• Maximum difference: ~0.5 mm

• negligible comparing to the vertex
resolution (~5 cm)

• Difference <- computational accuracy

• likelihood values of two set of
parameters are the same

Wuming Luo

validation

19

3 3

GPU Sim was able to reproduce the CPU Sim results
Negligible difference

Wuming Luo

pmt waveform rec

m(t) = s(t) + n(t) = r(t)*u(t) + n(t)
We need to reconstruct {tj} and {chargej} or ideally
{nPEj}

20

24

Standard process in the frequency domain

u(t)

r(t)

n(t)
m(t)

Wuming Luo

dl for waveform rec?
FADC raw waveform —> Time series
We know roughly what the feature looks like —>
sPE response template
We want to know {tj , Qj(nPEj)} for all pulses
We have PMT testing data —> real waveform

Issue: unsupervised, real labels unknown
Analogies? Voice recognition? Suggestions?
Try to answer simpler questions:

Q1: what is the first hit time?
Q 2: classify waveform to [0, 1, ≥2]PE three categories

21

Wuming Luo

discussion for dl

Pros:
fast speed, energy independent
avoid the complex optical model

Cons:
rely heavily on GOOD Monte Carlo simulation

Training samples
MC: large statistics, might be different w.r.t. real data
Calibration data: close to real data, limited stats.

Possible solutions?

22

Wuming Luo

tools
CUDA
Thrust
TensorFlow

23

multi-processors CUDA
cores ram(GB)

K40m 15 2880 12

V100 80 5120 32

