GPU APPLICATION in juno

WUMING LUO on behalf of THE JUNO COLLABORATION CHEP 2019, adelaide, australia

OUTLINE

Introduction to JUNO **** GPU vs CPU** Applications Vertex Reconstruction Muon Simulation Deep Learning* Summary

juno

Jiangmen Underground Neutrino Observatory(JUNO):

- Determine the neutrino mass hierarchy
- Measure three neutrino oscillation parameters precisely
- SuperNova, Solar, Atm. Geo. etc

DETECTOR

 ϕ : 43.5 m

5

Depth: 44 m

Depth: 44

m

gpu vs cpu

5

Large Cache

Optimized for serial operations

Wuming Luo

Many cores

Built for parallel operations

case 1: vertex reconstruction

Parameters to reconstruct: *x, y, z*, *t0* Algorithm: -lnℒ = -∑ ln *fres*(*ti,res*) = -∑ ln *fres*(*ti - ti,tof - t0*) ti : first hit time of ith PMT \ast t_{tof}: time of flight ****** t₀: event start time fres : pdf of residual time Scan 4D grid to minimize the NLL **Event Vertex P0(x, y, z)** ith PM P_i \leftarrow **jth PMT Pj**

parallelization on gpu

 $\lceil \text{for}(t) \rceil$ for(x){ for(y) $\{$ $for(z)$ for(ith PMT){ calc. NLLi }

} **ON CPU**

4D Grid Search Number of loops: x-dim*ydim*z-dim*tdim*n_fired_PMTs = $3*3*3*9*1200/MeV =$ 3*105/MeV Parallelize the calculations on GPU

Wuming Luo

…

performance

discussion

Memory allocation and free, Synchronization etc… take up most of the time, room for future optimization Potential improvement with multiple GPUs **Instead of Grid Search,** divide the detector ROI to tiny units and parallelize with GPU(s)

CASE 2: MUON SIMULATION

11

Simulate the number of photons (nPE) and the corresponding hit time({ti}) collected by each PMT for a traversing Muon Voxel: segments along the muon track \mathscr{C} For fixed (R, θ) , sampling nPE and {ti}

from templates

computation flow

computation flow

Switch the Voxel loop and PMT loop levels Parallelize the PMT loop with GPU

performance

CASE 3: DEEP LEARNING

*see Yury Malyshkin's talk

GPU is widely used for DL Try Vertex Reconstruction with CNN in JUNO **Example:** hit time $\{t_i\}$, number of photoelectrons $\{nPE_i\}$ **WOutput: event vertex (x, 1** Color means the PMT id $\begin{array}{ccc} \textbf{1} & \textbf{1}$ **Internation** Projection of nPE $\frac{1}{2}$ including $\frac{1}{2}$ including $\frac{1}{2}$ including $\frac{1}{2}$ including $\frac{1}{2}$ in $\frac{1}{2}$ i

 40

- 30

 -20

 -10

 \cdots **Output** (x, y, z) 9

photoelectron)

• **Output the (x, y, z) values.**

JUNO has ~O(105) PMTs, perfectly suitable for utilizing GPU Showed a few applications of GPU in JUNO Vertex reconstruction/Muon simulation/Deep Learning* Room for further improvements Could be used in other aspects of JUNO Huge potential for experiments with lots of PMTs

backup

validation Validation of GPU-based Rec. Alg. \sim 4 \sim $\overline{}$ • likelihood values of two set of parameters are the same

GPU Rec was able to reproduce the CPU Rec results Tiny difference, negligible w.r.t. vertex resolution (60mm) ³⁰ Amy anter ence, negar \sim

validation

GPU Sim was able to reproduce the CPU Sim results Negligible difference

PMT WAVEFORM REC

 $\mathbf{m}(t) = s(t) + n(t) = r(t)^* u(t) + n(t)$ **We need to reconstruct {t_j} and {charge;} or ideally** $\{nPE_i\}$ **Standard process in the frequency domain**

DL FOR WAVEFORM REC?

FADC raw waveform —> Time series We know roughly what the feature looks like —> sPE response template W e want to know $\{t_j, Q_j(nPE_j)\}$ for all pulses We have PMT testing data —> real waveform Issue: unsupervised, real labels unknown Analogies? Voice recognition? Suggestions? Try to answer simpler questions: Q1: what is the first hit time? [‰] Q 2: classify waveform to [0, 1, ≥2]PE three categories

DISCUSSION FOR DL

**** Pros:**

fast speed, energy independent avoid the complex optical model **. Cons:** rely heavily on GOOD Monte Carlo simulation ***Training samples MC: large statistics, might be different w.r.t. real data Calibration data: close to real data, limited stats. Possible solutions?

*** CUDA** Thrust *** TensorFlow

