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ABSTRACT

Partial-response signaling is known as correlative level
coding wherein the constraint on waveforms is relaxed
so as to allow a controlled amount of ISI. In this paper,
the Lagrange multiplier approach, which is easy to in-
corporate both time- and frequency-domain constraints
by minimizing a quadratic measure of the error in the
design bands, 1s applied to design a large class of such
digital filters for communication in this paper. Also, the
iterative Lagrange multiplier approach combining the
Lagrange multiplier approach and a tree search algo-
rithm is proposed for designing discrete coefficient pulse
shaping FIR digital filters. System experiments such as
an SSB radio system using partial response signaling are
demonstrated to present the usefulness of the proposed
algorithm.

1 INTRODUCTION

In communication systems, the channel is always ban-
dlimited. A bandlimited channel disperses a pulse wave-
form passing through it. When the channel bandwidth is
close to the signal bandwidth, the spreading will exceed
a symbol duration and cause signal pulses to overlapping
is called intersymbol interference (ISI) [1,2]. Like any
other source of interference, ISI cause system degrada-
tion. In practice, the characteristic is usually specified,
and the problem remained is to determine a transmit-
ting filter and a receiving filter, such that the ISI of
the pulses are minimized at the output of the receiving
filter. To design such filters, some constraints in both
time- and frequency-domains must be considered.

In this paper, the Lagrange multiplier approach is
applied to design such digital filters for communica-
tion, which 1s proposed by minimizing a quadratic mea-
sure of the error in the design bands. Among several
quadratic programming methods, the Lagrange multi-
plier approach is easy to incorporate both time- and
frequency-domain constraints [3]. In this paper, several
digital filters for communication will be designed such as
Nyquist filters, M-th band filters, and partial response
filters. In Section II; we will use the Lagrange multiplier
approach to design communication filters.

Multiplication, in particular, is extremely time con-
suming. So if a multiplication operation could be re-
placed by only a few shift operations, then the complex-
ity of the entire system could be reduced dramatically,
such that a fast real-time system becomes feasible. In
Section II, a new method is also proposed for the de-
sign of pulse shaping filters. The method bases on the
iterative procedures combining the Lagrange multiplier
approach and a tree search algorithm. For each branch,
the conventional Lagrange multiplier approach is used
to optimize the remaining unquantized coefficients of
the designed filter in the least-squares sense when one
or more of the coefficients takes on discrete values. And
for each node, one more appropriate coefficient is cho-
sen to quantize. These procedures are repeated until all
filter coefficients are quantized.

Moreover, the designed pulse shaping filters are ap-
plied in radio systems such as SSB radio systems. The
simulations are based on LabVIEW software package,
which provides excellent visibility of the designed fil-
ters in communication systems. Through several exper-
iments, good performances of filtering and ISI elimina-
tion can be obtained.

2 DESIGN OF PULSE SHAPING FIR
FILTERS AND SYSTEM SIMULA-
TIONS

A typical FIR digital filter can be characterized by the
transfer function

H(z) = Z_: h(n)z=" (1)

where N is the filter length of the impulse response h(n),
and its frequency response is represented by

Lm_ N-—1
2

B (2)

H(e?Y) = H(w)ell

where H(w) is the amplitude response which is a real-
valued function and L is equal to 0 or 1. According to
the symmetric properties of the impulse response and
the filter length, there are four cases to be considered

[4].



The least-squares approach to linear-phase filter de-
signs 18 to formulate an objective error function as below

E :/RW((.J)[D(W) — H(w)]*dw (3)

where D(w) is the desired amplitude response, W(w) is
the weighting function and the design bands Ris [0, {7]U
(47> 7). It is general that the amplitude response H (w)
can be represented in vector product form as below :

H(w) = A'C(w) = C'(w)A (4)

where ¢t denotes the transpose operation, A is the coef-
ficient vector and C is the kernel vector. Substituting
Eq.(4) into Eq.(3)

E = s+P'A+A'QA (5)

where
s = /RW(w)DZ(w)dw, (6)
P = /I%—QW(w)D(w)C(w)dw (7)

and
Q:/I%W(w)C(w)Ct(w)dw. (8)

For designing pulse shaping filters, it is general
to incorporate certain time-domain and/or frequency-
domain constraints. It is noted that some of the fil-
ter coefficients are fixed which can be represented in
a constrained equation. For example, the coefficients
a(0),a(2) and a(4) in A are required to fix in %, 0 and
0 respectively, the constrained equation is given by

1 00 0000 i
B'A=|0 0 1 0 0 0 0 A=]01|.(9
0000 10 0 0

Hence, the design of pulse shaping filters can be for-
mulated as a quadratic programming problem :

Minimize F =s4+P'A+ A'QA

subject to BfA = G. (10)

So, the Lagrange multiplier approach can be applied to
design arbitrary pulse shaping filters, and the closed-
form solution is given by [3]

A = Q'BB'Q'B)'G
+ Q7 BE'QE)BQ TP (1)

where I 1s an identity matrix with proper dimensions.
In this paper, we only take the design of Class 4 pulse
shaping filters as examples.
The desired amplitude response of Class 4 pulse shap-
ing filters are :

[ sin(Mw), |w|<%,
Daw) = { 0, otherwise, (12)

where M is the intersymbol duration, so we can use
Case 3 linear-phase FIR filters to design such filters.
For Case 3 design,

A=[a(l) a(2) a3) aM5h 10 (13)
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and
C(w) = [sin(w) sin(2w)
sin(3w) .. .sin(——w)],  (14)
where
a(n) = 2h(¥ —-n), n= 1,2,...,%. (15)

For eliminating ISI, the following constraints should
be considered :

a(M) =+,
{ aEi]W)) :J\g, > 2, (16)

and the corresponding constrained equation is same as
Eq.(9), where for example M =4,

[l aalall =N el
O, OO o oo oo

B= (17)
L 4 FEx | SR
and .
G = [ _ﬁ 00 - ]Lfg;/fljxl. (18)

So, the Lagrange multiplier approach can be applied to
design such filters.

Before designing a finite-precision filters, an infinite-
precision coefficient prototype should be obtained in ad-
vance. In this paper, the prototype is designed by the
Lagrange multiplier approach in the previous section
which is given by Eq.(11) with coefficient constraints
as

B'A = G. (19)

Once the continuous coefficient filter is obtained, the
key operation in the discrete optimization algorithm is
to optimize the unquantized coefficients, except the con-
strained coefficients, when some of the coefficients take
on discrete values. Notice that the constraints of some
coefficients to discrete values can be represented in ma-
trix form likes Eq.(19). For example, the coefficients
a(2),a(5) and a(3) should be constrained to discrete



values a4(2), a4(5) and a4(3) respectively, which can be
represented by the constrained equation

BA=G (20)
or
BY G
0010 0 00 A | a2
0000 0 10 | aa(p)
0001 0 00 aq(3
(21)

where the B and G are the extensions of B and G,
respectively.

So the Lagrange multiplier approach can be ap-
plied iteratively as an effective discrete optimiza-
tion algorithm [5,6].

For demonstration, when N = 43, M = 4,
W(w) = 1 for w € R, the amplitude responses
of the obtained continuous and discrete coeflicient
Class 4 partial response filters are shown in Fig.1
(a) and (b), respectively. In Fig.2 the block dia-
gram of an experimental system is illustrated, and
the corresponding block diagram in LabVIEW is
shown in Fig.3.

3 CONCLUSIONS

In this paper, an effective method has been pro-
posed for designing infinite-wordlength and finite-
wordlength Nyquist filters, M-th band filters and
partial response filters with additional time- or
frequency-domain constraints. The method as-
sociates successfully the Lagrange multiplier ap-
proach and a tree search algorithm.
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Figure 1: The amplitude response of Class 4 partial
response filters. (a) Continuous coefficient version.
(b) Discrete coefficient version.
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Figure 2: Block diagram of an SSB radio system using partial response signaling
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Figure 3: Block diagram of an SSB radio system in LabVIEW using partial response signaling



