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Introduction

m This

m The

work is part of the European project CORTEX:

Core Monitoring Techniques & Experimental
Validation and Demonstration for Improved Safety.

strategic objectives are:

To develop simulation tools to model the stationary fluctuations effect
in power reactors with a high level of fidelity.

Validation of the simulation tools using reactor experiments
specifically designed for neutron noise analysis applications.

To develop machine learning methodologies for recovering the anomaly
responsible for the observed fluctuations.

To combine the modelling capabilities and the signal analysis techniques
into tools that can be directly used for core diagnostics.
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m Concept of CORTEX project.
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CORTEX Project

m Subtask 1.2.2: Development of a new time-domain FEM kinetic code.
It must solve the neutron distribution inside a nuclear reactor with
vibrating fuel assemblies.

m The oscillation of an assembly has an amplitude between 0.3 and 5
mm and a frequency from 0.8 to 25 Hz. Best case estimates are
computed for 1 mm amplitude and 1 Hz.

G. Verdid Simulation of assembly vibrations 5 /32



Spatial scales of the problem

m Different scales of the problem
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Time dependent diffusion equation

m The neutron diffusion equation in the two energy groups approximation
is considered
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Finite Element Method Discretization

m A high order finite element method for reactors with any type of
geometry is developed.

m We obtain a discrete version of the neutron diffusion equation.
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Time dependent system

m The time dependent problem is reduced to solve the system
Np
Tn+1qN)n+l — an)n + Z)\pef)\pAtXClr;’
p=1

where

Tn-‘rl — Ait[";—l] + Ln+1 _ §Mn+1,
1
R =[],
Np
5=1-6+ 5 (1—e*ApAf).
p=1

m The neutron precursors term is integrated with an explicit scheme:
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Time discretization

m This system of equations is large and sparse and has to be solved for
each new time step.

m The BICGSTAB method with an incomplete LU preconditioner is
chosen to solve this linear system.

m To improve the ILU preconditioner calculation an inverse Cuthill-Mckee
reordering is used.
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Numerical Results: 1D benchmark

m To test the numerical tools developed a simple one dimensional
benchmark is defined.

m We consider an oscillation of 1 mm at 1 Hz.

25 cm 225 cm 25 cm

m The oscillation is treated as a movement of an homogeneous material
inside the next assemblies.

m The oscillation is defined as
bi(t) = bjo + Asin(wpt)
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Total neutron power

m Total neutron power along 10 periods.
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Multiplicative factor

m Multiplicative factor along one period.

1.04+1.2e-9 A
1.0+1.0e-9 1
1.0+0.8e-9 1
- —— Uniform: 17600 cells
3 1.0+0.6e-9 1 === Local: 47 cells
------ Local: 94 cells
1.0-+0.4e-9 1
1.0+0.2e-9 A1
1.04-0.0e-9 1
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

G. Verdi Simulation of assembly vibrations 13 /32



Wrong results

m A spatial discretization not fine enough leads to wrong results.
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Total power evolution

m Total neutron power evolution for different oscillation amplitudes.
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Neu Noise Oscillations

m Spatial-dependence of neutron noise oscillations:
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Frequency-domain neutron noise equation

m To compare spatial results, the noise theory in the frequency domain
is utilized. CORE SIM code is used in this way.

@ Demaziere C. (2011), CORE SIM: A multi-purpose neutronic tool for research
and education, Annals of Nuclear Energy, (38) 2698-2718.

m Time dependent parameters are split into mean values and fluctuations

¢(X7 t) = ¢0(X) + 5¢(X7 t)v
Y(x, t) = Xo(x) + 0X(x, t).

m Fluctuations are assumed to be small compared to mean values:
do(x, t) < do(x)

and stationary
(00(x; t)) = do(x)
m CORE SIM only allows 1 precursors group.
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Frequency-domain neutron noise equation

m Performing a Fourier transform and neglecting second-order terms, the
neutron noise diffusion equation reads as

S 5, 0%, Svx
(VDY + Zayn) ( 5;@;) = ¢, %12 + ¢ ( 52;) + or ( 5522) :

where
-7 viIpmll-—- % ¢
Y gyn = 5., Ez<az . :;5\ fr> : oy = <—¢1>1) )
(8 8). wm () el )

m The Fourier transform of the temporal flux noise have been defined

5(x, w) = F[og(x, t)]

m First order noise theory considers that the neutron noise is
monochromatic against monochromatic cross sections perturbations.
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Vibrating fuel assemblies model

m A vibrating assembly is described with two in-phase moving

interfaces.
Asin(wpt)
b(t) = bo+ Asin(wpt)
region |
21

region II
ZII

»
’

b z

m The cross section at the interface x = b(t) are described as
T = (1= H(x — b()))ZL + H(x — b(t))E!

m Using one-term Taylor expansion:

1.
OTalx,w) = =5 (z{x - zg) X 8(x — bo)d(w — wp)
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Vibrating fuel assemblies model

m Since in CORE SIM the perturbation is introduced node-wise, one
could assume that perturbed region is X 6 [bo — DX, by + DX] with a

perturbation value of 6%, (x,w) = 2_] DX (=l —=).
m To check the validity of the first order approximation a numerical FFT

of time domain cross section is performed.
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Noise Amplitude Comparison

m Comparison of amplitudes
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Phase comparison

m Comparison of phase
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m We use a classic 2D-BIBLIS benchmark, where assembly (x) is
selected to vibrate in x direction.

m Now we discuss a 2D benchmark
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m Also, a detector (o) is assumed to be at x
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Noise amplitude

m Noise amplitude with FEMFFUSION
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2D Amplitude Comparison

m Comparison of amplitudes at y = 150.2969 cm.
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2D Phase Comparison

m Comparison of phase at y = 150.2969 cm
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2D Vibration Amplitude Analysis

m Neutron noise result for different vibration amplitudes
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2D Vibration Amplitude Analysis

m Vibration amplitude and noise at the detector (x = 104, y = 150) cm
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2D Vibration Frequency Analysis

m Neutron noise result for different vibration frequencies
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2D Vibration Frequency Analysis

Fast Flux Noise Amplitude

m Vibration frequency and noise at the detector (x = 104, y = 150) cm
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Conclusion

m The current research is an attempt to understand the coupling
mechanism between the mechanical vibration of fuel assemblies and
the generated neutron noise.

m The problem combines different spatial scales. This implies that we
need to work with a very high precision.

m Numerical results show two different effects:

m A slow variation of the power due to a change in the criticality of the

system is observed. This effect is small and will be compensated by the
thermal-hydraulic coupling.

m A same frequency oscillation of the neutron flux as the FA vibration.

m The time-domain solution is compared with the frequency-domain
solution obtaining a close match. The frequency domain analysis takes
much less computational load than the time domain analysis.

m Experimental results in the framework of the CORTEX project are
expected validate the simulations in on going works.

This project has received funding from the Euratom research and training programme 2014-2018
under grant agreement No 754316. The content in this presentation reflects only the views of the authors
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