A Practical Model For Rating Software Security

Haiyun Xu*, Jeroen Heijmans*, Joost Visser*!
*Software Improvement Group, Amstelplein 1, 1096 HA Amsterdam, The Netherlands
TRadboud University Nijmegen, P.O. Box 9102, 6500 HC Nijmegen, The Netherlands
{h.xu, j.heijmans, j.visser}@sig.eu

I. INTRODUCTION

To bring software security to a higher level, international
standards and models have been developed to address security
issues for software product quality. Well-known models are the
Common Criteria [1] and the OWASP Application Security
Verification Standard [2]. Application of the former model
typically involves a major effort over a protracted time period,
while the latter is limited in scope to web applications.

In 2011 ISO issued the updated standard for software
product quality ISO/IEC 25010 [3]. One important change
in ISO 25010 is that Security appeared as one of the main
software product quality characteristics. Although ISO 25010
defines software product quality characteristics, ISO has not
yet provided concrete models and measurements to evaluate
software product security.

We propose a new security product quality model that makes
ISO 25010 operational. We specify four requirements for the
model: (1) the model shall be applicable for all types of
software products; (2) the model shall be applicable from the
early development phase; (3) the model shall be lightweight,
concrete and repeatable; (4) the model shall lead to ratings
that allow for comparison between software products.

Heitlager et al. [4] provide a practical model for measuring
software product Maintainability, which is one quality char-
acteristic defined in the ISO 25010 software quality model.
This security model will provide a broader operational solution
based on ISO 25010.

II. SECURITY QUALITY MODEL

A. Software Product Security in I1SO 25010

ISO 25010 defines eight quality characteristics in its product
quality model: functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability
and portability. The security characteristic is defined as “the
degree to which a product or system protects information and
data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of
authorization”. The security characteristic is composed of five
subcharacteristics:

« Confidentiality: ensures that data are accessible only to
those authorized.

« Integrity: prevents unauthorized access or modifications.

« Non-repudiation: actions or events can be proven to have
taken place.

o Accountability: actions of an entity can be traced
uniquely to the entity.

o Authenticity: the identity of a subject or resource can be
proved to be the one claimed.

B. System properties

To rate the software product security we define eleven
system properties, which reflect how a typical software product
addresses the desired security subcharacteristics. Their map-
ping to ISO 25010 is presented in Figure 1. In our model,
we combine the characteristics Confidentiality and Integrity,
Non-repudiation and Accountability since they share many
attributes in their definitions in ISO 25010. In practice, they
are addressed together during software development.

1) Confidentiality and Integrity: In order to ensure that data
is only accessed by authorized users, most systems provide
a form of protection for data flowing into or out of the
system. If data is stored by the system, the data store is
also protected. For every attempt to access data within the
system, it should be verified that the user is authorized. The
authorization mechanism itself must be robust and impossible
to circumvent. Finally, in order to prevent data going in to
or out of the system from harming either the system or its
users, only desired content should be allowed. This typical
approach is reflected in the five system properties secure data
transport, secure data storage, authorised data access, secure
authorisation and input and output verification.

2) Non-repudiation and Accountability: In order to make it
impossible to repudiate actions, most systems employ a way to
obtain ‘proof” of that action. As part of this proof, information
should be logged to be able to connect the evidence with
the action. Furthermore, it should be possible to uniquely
trace back proof to a particular user. This typical approach
is reflected in the system properties strength of proof, logging
completeness and unique identification.

3) Authenticity: Most systems provide access management:
a user has to authenticate prior to access. After gaining access,
it is typically not required to fully re-authenticate for every
subsequent action: a user session is started within which access
is granted. To know which users are allowed to enter and
what their credentials are, user management is necessary. This
typical approach is reflected in the system properties access
management strength, session management strength and secure
user management.

Proceedings of the 2013 IEEE Seventh International Conference on Software Security and Reliability Companion


Rob van der Veer
Proceedings of the 2013 IEEE Seventh International Conference on Software Security and Reliability Companion


S,
S 8
) & 4 <, e, S &)
% %, “, % % s, %, % % % %,
% %, °0¢ < “%, % ’oo % o %, %, .
%, o o %, % % [ % 2% 2%, V6.
491' % %y %, %, ? o O@o %, ‘9@") % %,
. 9% %
%, S, s, % % ©,, %y Ze % %, 2%,
S, %5, e, R V. %, ®, . S, f e,
2o, (&) =N % %, % ) %, % S, %,
o © i) 2 K4 s K4 <, () )
s %, 2 Y
% %
Confidentiality % X X X
Integrity
Non-repudiation
. X X X
Accountability
Authenticity X X X

Fig. 1. Mapping eleven system properties to ISO/IEC 25010 security subcharacteristics.

C. Rating and Aggregation

To determine if a system possesses all the desired system
properties, we break it down into logical parts. For example,
to determine secure data storage, we need to determine all
the places where and what data is stored in the system. This
covers items such as databases, files, logs, configuration and
binaries. With the system broken into logical parts, we need to
determine if these parts possess the desired properties. To do
so, we have decomposed all of the eleven system properties
into subproperties. As with the properties themselves, these
are based on best-practice approaches in typical systems.
For example, access management strength is broken down
into three subproperties. Access management is achieved by
picking one (or more) authentication methods. Such a method
has an inherent strength (authentication method strength),
but also depends on correct implementation (authentication
method implementation) and prevention of circumvention (au-
thentication enforcement).

For each of the relevant items, a trained evaluator will assign
ratings to the subproperties by following a set of detailed
evaluation guidelines. For example, a biometric authentication
method could be scored strong (rating 3) on authentication
method strength since it is intrinsically strong, medium (rating
2) on authentication method implementation since the false
acceptance rate is not low enough, weak (rating 1) on au-
thentication enforcement since the login screen can easily be
circumvented.

These ratings are then aggregated, from items to sub-
properties, then to property level, to subcharacteristic, and
finally to the security characteristic level. A typical aggregation
approach is to use the arithmetic mean, but that does not reflect
the weakest link principle. Using the minimum function for
aggregation would reflect this principle, but it would not be
very distinctive, as every system with a single serious flaw
would be rated equally. This makes the minimum unsuitable
for comparing multiple systems. We have therefore chosen the
Power Mean [5] (with parameter p = —2) as the aggregation
method. This function weighs lower values more heavily, but
does not entirely discard the higher scores.

III. DISCUSSION

We apply this model to assess software product security
quality. The use of ISO 25010 as frame of reference implies

that the model is grounded in a consensual terminology for
software product quality. The eleven system properties provide
broad coverage to identify software security vulnerabilities.

In ISO 25010, the security principle Availability is catego-
rized as one of the sub-characteristics of Reliability. Currently,
we are working on a model to assess software product reli-
ability quality. Therefore, although Availability is one of the
classic CIA principles (Confidentiality, Integrity, Availability),
we do not include it in our model in order to remain consistent
with ISO 25010.

The rating that comes out of the model provides input for
security risk assessments and allows for progress monitoring
and comparison between software products. From our software
assessment experiences, a rating can effectively draw attention
to security and put it in the agenda of decision makers.
Subsequently, the technical findings can be used for effective
product security improvement.

I'V. CONCLUSIONS AND FUTURE WORK

This paper presents a security quality model based on ISO
25010 that fulfills several practical requirements. The model
targets at assisting evaluators assessing the security quality
of a software product. The model can be applied to different
types of software products and for assessments from the early
development phase. We tested the model on several software
systems and the assessments took several days on average. The
ratings we obtained matched intuition of system experts and
concrete vulnerabilities were identified in the process.

Our future work will focus on model validation and partially
automatizing the assessment. Furthermore, since the security
quality ratings allow for comparison between software prod-
ucts, we will work on model calibration based on benchmark
data.

REFERENCES
(1]
[2]

“Common Criteria - Common Methodology for Information Technology
Security Evaluation,” 2009.

OWASP, “OWASP Application Security Verification Standard 2009 - Web
Application Standard,” 2009.

ISO, “ISO/IEC 25010:2011 Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models,” 2011.

1. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
maintainability,” in 6th Int. Conf. on the Quality of Information and
Communications Technology (QUATIC 2007), 2007, pp. 30-39.

[5] P. Bullen, Handbook of Means and Their Inequalities. Springer, 2010.

(3]

[4]

Proceedings of the 2013 IEEE Seventh International Conference on Software Security and Reliability Companion


Rob van der Veer
Proceedings of the 2013 IEEE Seventh International Conference on Software Security and Reliability Companion


