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ABSTRACT 
In this research, we apply the time independent Schroedinger equation for a 
particle moving in one dimensional potential barrier of finite width and height. 
We study the two cases which corresponds to the particle energies being 
respectively larger and smaller than the potential barrier. Then, we calculate 
transmission coefficient (T) as a function of particle energy (E) for a potential 
barrier by changing the barrier height (V0) and width (L) using Propagation 
Matrix Method. If we keep the barrier width constant and varying the height, 
we see that the passing limit is shifting towards the higher energies when 
barrier height is increased. If we keep the barrier height constant and change 
the barrier width, we see significance change in oscillations. 
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INTRODUCTION 
A differential equation for the wave function Ψ actually for the variation of 
wave function with space and time is called Schroedinger equation which 
describes the behavior of particles like electron, proton, neutron etc. We apply 
the Schroedinger equation for a particle moving in one dimensional potential 
barrier of finite width and height V0. We consider a beam of particles of mass m 
along the x-axis from left to right on a potential barrier. According to classical 
physics, if a beam of particles with energy E < V0 is incident on the potential 
barrier, it will be reflected. It cannot go through the potential barrier[1]. 
However, according to quantum mechanics there is finite probability that a 
particle with energy less than the height of potential barrier can penetrate it. 
 

Tunneling phenomena are common at the microscopic scale; 
they occur within nuclei, within atoms and within solids. In 
nuclear physics, for instance, there are nuclei that decay into 
an α particle and daughter nucleus[4]. The barrier 
penetration effect has important applications in various 
branches of modern physics ranging from particle and 
nuclear physics to semiconductor devices. For instance, 
radioactive decays and charge transport in electronic devices 
are typical examples of the tunneling effect[5]. 
 
The Rectangular Potential Barrier  
We consider a one dimensional potential barrier of finite 
width and height. The potential energy V (x) given by Eq.(1) 
is called the potential barrier which has a height of 0V  and a 

width of L .  
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We consider particle of mass m incident on the barrier from 
the left with energy E. As mentioned therein, according to 
classical mechanics, the particle would be reflected back if E 
< V0 and would always be transmitted if E > V0. We will show 
that, quantum mechanically, both reflection and 

transmission occur with finite probability for all values of E 
except in some special cases. We consider the following two 
cases which correspond to the particle energies being 
respectively larger and smaller than the potential barrier. 
 
A. Case I (E > V0) 
We divide the whole space into three regions: Region I (x < 
0), Region II (0 < x < L) and Region III (x > L). In region I and 
III the particle is free[2]. According to classical physics, if a 
beam of particles with energy E > V0 approaches the 
potential barrier from the left, all of the particles in the beam 
will go over the barrier to region III.. The time independent 
Schroedinger equation for each region is  
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The solutions of the Schroedinger equation in the three 
regions are 
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where 2
1 2 mEk  and 2

02 )(2 VEmk  . The 

potential barrier and propagation directions of the incident, 
reflected and transmitted waves are shown in Fig.(1) for E > 
V0 . The wave function will display an oscillatory pattern in 
all three regions; its amplitude reduces every time the 
particle enters a new region. The constants B, C, D and F can 
be obtained in terms of A from the boundary conditions. The 
wave functions and their first derivatives must have 
continuous values[3]. Solving for F, we obtain 
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Fig.1 the potential barrier and the energy E  
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The probability of transmission is given by the transmission 
coefficient T. 
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B. Case II (E < V0) 
According to classical physics, every particle that arrives at 
the barrier (x = 0) will be reflected back; no particle can 
penetrate the barrier. However, the quantum mechanical 
predictions differ sharply from their classical counterparts, 
for the wave functions is not zero beyond the barrier. In 
region I (x < 0), and region III (x > L), the Schroedinger 
equation and its solution remain the same as in case I. In 
region II (0 < x < L) the Schroedinger equation is  
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The solutions of the Schroedinger equation in the three 
regions are 
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where 22
1 2 mEk  and 2

0
2
2 )(2 EVmk  . The 

potential barrier and propagation directions of the incident, 
reflected and transmitted waves are shown in Fig.(2) for E < 
V0. The wave function has an exponential form in the 
forbidden region inside the barrier. But there is also an 
oscillator wave to the right of barrier. To find transmission 

coefficients 
2

2

A

F
T   we need only to calculate F in terms 

of A. The wave functions and their first derivatives must 
have continuous values. Solving equation for F / A, we obtain  
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Fig (2) The potential barrier and the energy E . 
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Since )(sinh1)(cosh 2
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We note that T is finite. This means that the probability for 
the transmission of the particles into the region Lx 0  
is not zero as expected from classical physics. This is a purely 
quantum mechanical effect which is due to the wave aspect 
of microscopic objects; it is known as the tunneling effect: 
quantum mechanical objects can tunnel through classically 
impenetrable barriers.  
 
The Propagation Matrix Method 
The Propagation Matrix  
A method is needed a method for finding solutions to 
complicated potential structures for which analytic 
expressions are unmanageable. The transmission coefficient 
is calculated at the first potential step for a particle of energy 
E incident from the left. We then imagines the transmitted 
particle propagating to the next potential step, where it 
again has a probability of being transmitted or reflected. 
Associated with every potential step and free propagation 
region to the next potential step is a 2×2 matrix which 
carries wave function amplitude. The total one dimensional 
propagation probability for a potential consisting of a 
number of potential steps may be calculated by multiplying 
together each 2×2 matrix associated with transmission and 
reflection at each potential step. Therefore, the wave 
function coefficients for a particle traversing a one 
dimensional potential consisting of a number of such regions 
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may be calculated by multiplying together the appropriate 2×2 matrices. We can solve for a particle moving in an arbitrary 
potential by dividing the potential into a number of potential energy steps. The following four basic parts are needed. We may 
use the propagation matrix method to calculate the probability of the electron emerging on the right-hand side of the barrier. 
The method is best approached by dividing it into small, easy-to-understand, logical parts.  
 
The Step Propagation Matrix  
We calculate the propagation matrix pstep for transmission and reflection of the wave function representing a particle of energy 
E incident on a single potential step. The potential step we consider is at position xj+1 in Fig.(3).  

 
Fig.3 Approximation of a smoothly varying one dimensional potential V(x) with a series of potential steps 

 
In this approach, the potential between position xj and xj+1 in region j is approximated by a value Vj. Associated with the 
potential step at xj and free propagation distance Lj = xj+1 - xj is a 2×2 matrix which carries all of the amplitude and phase 
information on the particle. Fig.(4) shows detail of the potential step at position index j +1. The coefficients A and C correspond 
to waves traveling left to right in region j and j +1, respectively.  
  

 
Fig.4 A one dimensional potential step. In region j the potential energy is Vj and in region j+1 the potential energy is Vj+1. 

 
The transition between region 1 and region 2 occurs at position x = xj +1. The electron (or particle) has wave vector 
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Following the convention we have adopted in this paper, A and C are coefficients for the wave function traveling left-to-right in 
regions j and j+1, respectively, and B and D are the corresponding right-to-left traveling-wave coefficients. The two wave 
functions given by Eq.(13) and (14) are related to each other by the constraint that ψ and dΨ/dx must be continuous. This 
means that at the potential step that occurs at the boundary between regions j and j+1 we require  



International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD     |     Unique Paper ID – IJTSRD26813     |     Volume – 3 | Issue – 5     |     July - August 2019 Page 1894 

1
1

1 





j
j

xxjxxj             (15) 

and 

11

1

 






jj xx

j

xx

j

xd

d

xd

d 
         (16) 

Substituting Eq.(13) and (14) into Eq.(15) and (16) gives two equations 
 

xki
j

xki
j

xki
j

xki
j

jjjj eDeCeBeA 11

11
 


         (17) 

xki
j

j

jxki
j

j

jxki
j

xki
j

jjjj eD
k

k
eC

k

k
eBeA 11

1
1

1
1  





         (18) 

 
By organizing into rows and columns the terms that contain left to right traveling waves of the form eikx and right-to-left 
traveling waves of the form e−ikx, we may write Eq.(17) and (18) for a potential step at position xj+1= 0 as a matrix equation: 
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We would much prefer a simple equation of the type 
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where pjstep is the 2×2 matrix describing wave propagation at a potential step. To obtain this expression, we need to eliminate 
the 2×2 matrix on the left-hand side of Eq.(19). We simply use from basic linear algebra that the inverse of a 2×2 matrix 
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where the step matrix is 




























j

j

j

j

j

j

j

j

stepj

k

k

k

k
k

k

k

k

p
11

11

11

11

2

1           (22)  

 

This is our result for the step potential that will be used later. We continue the development of the matrix method by 
considering the propagation between steps. 
 
The Propagation between Steps 
We calculate the propagation matrix pfree for propagation of the wave function between steps. The free propagation we 
consider is between positions xj and xj+1 in Fig.(3). The distance of this free propagation is Lj. Propagation between potential 

steps separated by distance Lj carries phase information only so that 1 j
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The Propagation Matrix Pj for the j-th Region  
We calculate the propagation matrix for the j-th region in Fig.(3). This is achieved if we multiply pstep and pfree to obtain the 
propagation matrix Pj for the j-th region of the discretized potential. To find the combined effect of pfree and pjstep we simply 
multiply the two matrices together. Hence, propagation across the complete j-th element consisting of a free propagation region 
and a step is 
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When we multiply out the matrices pjfree pjstep given by Eq.(25) and (22), respectively, it gives us the propagation matrix for the 
j-th region: 
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Propagation through an Arbitrary Series of Step Potentials 
We calculate the total propagation matrix P for the complete potential by multiplying together the propagation matrices for 
each region of the discretized potential. For the general case of N potential steps, we write down the propagation matrix for 
each region and multiply out to obtain the total propagation matrix, 
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The total propagation matrix P satisfies continuity in Ψ and dΨ /dx between adjacent regions. Since the particle is introduced 
from the left, we know that A = 1, and if there is no reflection at the far right then D = 0. We may then rewrite 
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In this case, because 1 = p11 C, the transmission probability 2

C  is simply 
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p
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Eq.(20) is a particularly simple result. We will make use of this when we calculate the transmission probability of a particle 
through an essentially arbitrary one-dimensional potential. 
 
Transmission Probability for a Rectangular Potential Barrier 
Fig.(5) is a sketch of the rectangular potential barrier we will consider. The thickness of the barrier is L. A particle of mass m 
incident from the left of energy E has wave vector k1. In the barrier region, the wave vector is k2. The wave vector k1 and k2 are 

related through 2
0

2
2

2
1 /2 Vmkk  .  

 

 
Fig.5 The potential of a one dimensional rectangular barrier of energy V0 
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A wavy particle incident on the barrier from the left with amplitude A  sees a potential step-up in energy of 0V  at 0x , a 

barrier propagation region of length L , and a potential step-down at Lx  . A particle of energy E , mass m , and charge e  

has wave number 1k  outside the barrier and 2k  in the barrier region Lx 0 . We consider a particle impinging on a step 
change in potential between two regions in which the wave vector changes from k1 to k2 due to the potential step up shown in 
Fig.(3). The corresponding wave function changes from ψ1 to ψ2. Solutions of the Schroedinger equation for a step change in 
potential are 
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Applying the condition that the wave function is continuous at the potential step 
stepstep

ΨΨ 21  and that the derivative 

of the wave function is continuous 
stepstep dx

dΨ

dx

dΨ 21  gives      

2211 k

D

k

C

k

B

k

A
            (34) 

 
21

2

21

2

11 k

D

k

k

k

C

k

k

k

B

k

A
           (35) 

 
Rewritten in matrix form, these equations become 
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To eliminate the 2 × 2 matrix on the left-hand side of this equation, we must find and multiply by its inverse matrix. The 

determinant of the left-hand matrix is 11 2)11( kk  , so the inverse of the left-hand matrix is 
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we may rewrite Eq. (36) as 
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Multiplying out the two square matrices gives the 22  matrix describing propagation at the step-up in potential 
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Since the rectangular potential barrier consists of a step up and a step down, we can make use of this symmetry and 
immediately calculate the 2 × 2 matrix for the step down by simply interchanging k1 and k2. The total propagation matrix for 
the rectangular potential barrier of thickness L consists of the step-up 2 × 2 matrix multiplied by the propagation matrix from 
the barrier thickness L multiplied by the step-down matrix. Hence, our propagation matrix become 
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To find the matrix elements of P, we just multiply out the matrices in Eq.(38). For example 12p becomes 
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The next step we want to take is to calculate the transmission probability for a particle incident on the barrier. We already 

know that the transmission of a particle incident from the left is given by
2

11

1

p
, so that we will be interested in 

obtaining 11p from Eq.(38) 
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The Result and Discussion 
We use the propagation matrix approach to calculate the 
transmission coefficient T of a rectangular potential barrier 
with width L = 1nm and height V0 = 0.3 eV as shown in 
Fig.(5). Matrix technique in transmission calculations means 
that we express every region of barrier as a propagation 
matrix P. The transmission coefficient can be expressed 

2

11

1

p
T  . Using this principle, transmission coefficient T 

dependence on electron energy for a rectangular potential 
barrier was numerically calculated in Fig.(6). We vary 
barrier width while keeping barrier height constant. 
Transmission probabilities T (E) for barrier height V0 = 0.3 
eV and width L = 0.2 nm to 3.2 nm by increasing twice of 
initial value are shown in Fig.(7) to Fig.(11) respectively. 
Fig.(12) shows the transmission probability T (E) for barrier 
height V0 = 0.3 eV and different barrier width. 
 

 
Fig.(6) The transmission coefficient T for a barrier of 

width  L = 1 nm and height V0 = 0.3 eV. 

 
Fig.(7) Numerical calculation of transmission coefficient 
for a barrier of  height V0 = 0.3 eV and width L = 0.2 nm. 

 

 
Fig.(8) Numerical calculation of transmission coefficient 
for a barrier of  height V0 = 0.3 eV and width L = 0.4 nm. 
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Fig.(9) Numerical calculation of transmission coefficient 
for a barrier of  height V0 = 0.3 eV and width L = 0.8 nm. 

 

 
Fig.(10) Numerical calculation of transmission coefficient 
for a barrier of  height V0 = 0.3 eV and width L = 1.6 nm. 

 

 
Fig.(11 ) Numerical calculation of transmission coefficient 

for a barrier of  height V0 = 0.3 eV and width L = 3.2 nm. 
 

 
Fig.(12) Numerical calculation of transmission coefficient 

for a barrier of  height V0 = 0.3 eV and different width. 
 

When a beam of particles of fixed energy is incident on a 
potential barrier, a certain fraction of the incident particles is 
transmitted while the remaining fraction is reflected. This is 
in contrast to classical mechanics. Classically, there must be 
total transmission if the energy of the incident particle is 
more than the height of the barrier, and total reflection if the 
energy of the incident particle is less than the height of the 
barrier. Fig.(12) shows the transmission probability T(E) for 
barrier height V0 = 0.3 eV and different barrier width. If we 
keep the barrier height constant and change the barrier 
width, we see significance change in oscillations. When 
barrier width is narrow, even electron with lower energy can 
pass through the barrier by quantum tunneling. The wider 
the barrier will be the less observable the tunneling is, which 
is expectation from classical approach as well. 
 

Conclusion 
We have found that the transmission coefficient (T) depends 
upon potential barrier height (V0) and barrier width (L). The 
transmission coefficient (T) is a measure of the probability 
that the particle will be transmitted through the barrier. 
Thus, we conclude that there is finite probability of particle 
penetrating the barrier and appearing on the other sides. 
The ability of particle to penetrate the barrier when E < V0 is 
a quantum mechanical result and is known as tunnel effect. 
In nuclear physics, there are nuclei that decay into an α 
particle and daughter nucleus. This α decay process can be 
explained by tunnel effect. 
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