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Abstract: This paper uses a system engineering approach based on the Failure Mode and Effect
Analysis (FMEA) methodology to do risk analysis of the power conditioner of a Proton Exchange
Membrane Fuel Cell (PEMFC). Critical components with high risk, common cause failures and effects
are identified for the power conditioner system as one of the crucial parts of the PEMFCs used for
backup power applications in the telecommunication industry. The results of this paper indicate
that the highest risk corresponds to three failure modes including high leakage current due to the
substrate interface of the metal oxide semiconductor field effect transistor (MOSFET), current and
electrolytic evaporation of capacitor, and thereby short circuit, loss of gate control, and increased
leakage current due to gate oxide of the MOSFET. The MOSFETs, capacitors, chokes, and transformers
are critical components of the power stage, which should be carefully considered in the development
of the design production and implementation stage. Finally, Bayesian networks (BNs) are used to
identify the most critical failure causes in the MOSFET and capacitor as they are classified from the
FMEA as key items based on their Risk Priority Numbers (RPNs). As a result of BNs analyses, high
temperature and overvoltage are distinguished as the most crucial failure causes. Consequently, it is
recommended for designers to pay more attention to the design of MOSFETs’ failure due to high
leakage current owing to substrate interface, which is caused by high temperature. The results are
emphasizing design improvement in the material in order to be more resistant from high temperature.

Keywords: bayesian network; failure mode and effect analysis; proton exchange membrane fuel cell;
power conditioner; risk analysis

1. Introduction

Global climate changes caused by conventional energy resources such as fossil fuels are one
of the dominant motivations that engineers are trying to employ renewable energies. Also, fossil
fuel resources are limited, and they will eventually be depleted with the rapid growth of energy
consumption. The environmental damages in the world caused by non-renewable energies ends up
to be approximately five trillion dollars per year [1]. Renewable energies, such as wind turbines,
solar cells and fuel cell systems are proposed as solutions to solve these global problems. A fuel
cell works as a source generating energy along with unique properties, which are being developed
rapidly. In the global sustainable development perspective, fuel cells are suitable as they provide high
energy conversion efficiency, various usages being a compact and environmental friendliness system.
These are the foremost reason that fuel cell systems are used in energy systems; that is why they are
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considered as one of the main sources of energy. The first fuel cell was demonstrated by a Welsh
scientist and barrister William Grove in 1839. One type of fuel cells was improved by General Electric
in the beginning of 1960s [2] which was the Proton-Exchange Membrane Fuel Cells (PEMFC) which are
a kind of fuel cells, which are being developed mainly for transportation and portable applications and
even in hybrid energy systems such as wind-fuel cell systems. High energy efficiency, less pollution,
and high reliability are significant properties of the PEMFC systems [3]. The telecommunication
industry has applied fuel cell systems for backup power [4]. Under this circumstance, availability and
reliability, as well as risk, are important issues, which should be assessed carefully for them. PEMFC
technology has been developed to overcome the instability and environmental concerns compared
with conventional energy sources since the 1990s. Fuel cells are relatively expensive, having a higher
cost, one ought to identify the high risk components to spend more money on their design to minimize
the cost of failures. Failure Mode and Effect Analysis (FMEA), an organized technique for failure
analysis, is applied to identify critical failure modes, failure causes, and effects of the items of interest,
which can be applied for power electronics.

The risk is a measure of the potential expected loss occurring due to natural or non-natural
activities [5]. Risk analysis has two facets: Quantitative and qualitative. In order to assess probabilities
to make decisions, the quantitative risk analysis endeavor to estimate the risk in the form of probability
(frequency) of a loss. Quantitative risk analysis is frequently a preferred approach when adequate
field data, test data, and other evidence are available to estimate the likelihood and magnitude of the
losses [6–9]. Qualitative risk analysis is the most widely used since it is quick and straightforward to
perform. For this type, the potential loss is qualitatively estimated using linguistic scales such as low,
medium, and high. Since this type of analysis barely needs to rely on actual data and its probabilistic
treatment, the analysis is much simpler and easier to use and understand; however, it may be rather
subjective [10].

FMEA is a structured and logical methodology for identifying, analyzing and ranking estimated
risk having various potential failure modes. Furthermore, it is suggested to improve the methodology;
for instance, changes in the design or control tests, which can assist engineers to prevent the failure or
reduce its effects [11]. FMEA is a vital reliability tool to identify critical failure modes, failure causes,
and failure mechanisms that can be used to diagnose probable failure and dissatisfactions of functions
for any items in a system before they occur, aiming to reduce their risks [12].

The FMEA method is based on discovering, arranging, and decreasing the failures or faults;
moreover, it has been used in multiple kinds of industry [13]. For instance, FMEA can be used
for energy production systems such as wind turbines consisting of a complex system of electrical,
mechanical and structural components [14]. Three risk factors, including Occurrence (O), Detectability
(D), and Severity (S) are used in the FMEA. O designates the rate of the risks, D point to the likelihood
of risks prediction earlier than their occurrence, and S is the significance of the risk to the system. The
yield factor indicated as the Risk Priority Number (RPN) is the creation of the three input parameters
grade the failure state which are scored by a 10-point scale. As a matter of fact, RPN is a quantitative
and qualitative risk analysis in the form of numerical ranking of risk of each potential failure mode. It
is constitued of the product of the three qualitative factors, S of the effect, likelihood of O of the cause,
and likelihood of D of the cause in the robustness method [15]. Many standards are used to classify
different faults, which occur in the PEMFC. In this paper, scales are extracted from the Automotive
Industry Action Group (AIAG). Afterwards, by multiplying these input factors, their corresponding
RPNs are recognized [16].

The reliability and availability of the PEMFC system, especially power conditioner, are vital in the
condition of power grid outage used in the telecommunication stations backup power. Owing to that
factor, risk assessment and failure effect analysis of the critical components are mandatory. There are
several research studies available, which perform the FMEA for fuel cell systems with the emphasis on
the fuel cell stack [17]. However, the means to implement the FMEA is not given or provided; thus, it is
not given how this procedure is implemented by using either brain-storming or a system engineering
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approach. In this paper, two aspects are combined to fulfill the gap in the existing literature. First,
instead of focusing on the fuel cell stack, the power conditioner is comprehensively investigated, which
are studied in terms of the critical power electronics components. Second, the FMEA is implemented
based on system engineering approach having the given detailed implementation procedure.

Furthermore, Bayesian Network (BN) is utilized to analyze the most critical failure causes
among more important items identified from FMEA. BN is a graphical model that containing nodes,
symbolizing variables, and directed links between them standing for casual relationships. The
relationships between variables are as if X causes Y, X is a parent of Y, and Y is a child of X. The
probabilities are given as conditional probability distributions for each node, depending on the parents.
When evidence is received for a node, the joint distribution can be updated using Bayes rule, and
posterior marginal distributions can be found [18]. This will help designers to pay more attention on
the development of the design for instance, material properties to avoid failures from obtained results
by this method. For example, anion-deficient perovskites, as materials with high ionic conductivity
and a wide range of temperature stability, are very suitable for fuel cell membranes [19]. Moreover,
magneto dielectrics such as hexaferrites: are the materials that are promising for the production
of capacitors, which are very necessary for their stable operation [20]. For the stable and steady
operation of modern power plants and uninterruptible power systems, it is necessary to provide for
their protection against unwanted external electromagnetic radiation. Such an electromagnetic effect
can easily cause the collapse of the entire modern energy system. To prevent this, electromagnetic
shields must be used [21,22].

To sum up, by using the FMEA for the PEMFC system, potential failure modes and risk of
components are identified, and critical components are also classified. Furthermore, the potential
of the risk priority number is assigned to any failure. The FMEA results offer which component is
critical to have high RPNs. Moreover, some recommended solutions are suggested to create better
conditions to reduce their risk. Therefore, damage to the entire system due to failure modes and causes
is decreased. Finally, by implementing BN the impact of each failure cause is studied, to find which
failure causes have the most effects among other failure causes in the MOSFET.

2. Description of PEMFC and Power Conditioner

2.1. PEMFC System

A PEMFC is an electrochemical system, which changes the chemical energy through the reaction
of hydrogen and oxygen to electrical power. There are a variety of PEMFC applications such as mobile
power generation systems and stations, automotive, aerospace and marine industries [23].

A typical configuration of the PEMFC system is shown in Figure 1, which consists of the Balance of
Plant (BoP), the PEMFC stack, and the power conditioner. [7,8]. The BoP is a monitoring system having
auxiliary parts, which serve to regulate the supply and balance hydrogen, air, water and thermal
condition for the PEMFC stack. The PEMFC stack is an assembly of several single cells (output less
than 1 V), bipolar plates, cooling plates, end plates, bolts, and gaskets, which converts the chemical
energy into the electricity [23]. A power conditioner is composed of active and passive electrical
components, enabling to regulate the fixed output from the PEMFC stack [24].

2.2. Power Conditioner Sub-System

This section presents the detailed configuration of the power conditioner sub-system for a PEMFC
system in a backup power application. The block diagram of the power conditioner sub-system having
1 kW output power is shown in Figure 2, where five parts, are included which are the power stage,
auxiliary power supply, gate driver, controller, and PCB, which can be further sub-divided [25]. The
power stage consists of an isolated DC/DC converter. This part contains plenty of components (such as
MOSFETs, capacitors, inductors, transformer, and other related components). The input voltage range
is 30–65 V, while the output voltage is 48 V. As a result, a power converter that can work both in step-up
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and step-down modes is preferred. Moreover, the isolation from primary-side and secondary-side is
required according to the industry standard. Some of the functions of the subsystems are switching
the electrical current at the desired time interval, rectifying current in the desired time interval and
control, regulating and rectifying the electrical current and voltage level change.
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Figure 2. Block diagram of power conditioner (DC/DC converter).

In the power stage, eight primary and eight secondary MOSFETs are used as active switches
having the function to control the electrical current in the system. Also, eight primaries and eight
secondary diodes are applied in the converter. Moreover, two transformers are used to provide
isolation between primary and secondary side. Besides, here are eight electrolytic capacitors having a
capacity of 680 µF and 63 V in the primary and six electrolytic capacitors having the capacity of 390 µF
and 100 V in the secondary side as a storage for the electrical energy and stabilization of the dc voltage.
The overall objective of the power conditioner is that in the case of a step-up mode, the primary-side
inductor is charged by the activation of all transistors; while it is discharged by the parallel connection
of the two transformers. Alternatively, in the case of the step-down mode, the primary-side inductor is
charged by the parallel connection of the transformers, while it is discharged by the series connection of
the transformers [26]. The structure of the power converter used in this study is presented in Figure 3.
Due to the variable output voltage of the fuel cell stack, a dc/dc power converter is required to match
the voltage in telecom applications. A topology using galvanic isolation is shown in Figure 3, where
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the rated power of the converter is 1 kW, and six 1 kW converters are connected in parallel for a 5 kW
power stage to obtain the redundancy. Moreover, a synchronous rectification is adopted to achieve
low conduction losses in the situation of low-voltage and high-current at the secondary-side of the
transformer [26]. All the components in the power conditioner can be categorized of four levels of the
PEMFC system as it is demonstrated in Figure 4.
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3. System Engineering Approach Based FMEA of Power Conditioner

3.1. Boundary Diagram and FMEA Interface Matrix

In order to make a visible scope of the FMEA analysis, an FMEA block diagram (FMEA boundary
diagram) is used to visualize the interfaces between the various sub-systems and components. The
boundary diagram shows the physical and logical relationships among the main sub-systems of the
PEMFC system, such as physical connection, material exchange, energy transfer, and data exchange.
Besides, their inputs and outputs are also identified [3] (Figures 1 and 2 illustrate an overview of
boundary diagram for the PEMFC system and the power conditioner sub-system). Moreover, the
FMEA interface matrix is a chart on the vertical and horizontal axes interfaces, which ought to be
considered in the examination of this kind of interface. As aforementioned, the physical connection,
material exchange, energy transfer, and data exchange are four primary types of interfaces. Up to
50% or more of the total failures are normally seem in the interfaces. As a result, it is important that
any FMEA considerately study the interfaces between the sub-systems and components besides their
content. On top of the FMEA boundary diagram, as a complementary to it, the FMEA interface matrix
is presented. The FMEA interface matrix for the PEMFC system is listed in Table 1 in connection with
Figure 1; and the FMEA interface matrix for the power conditioner is listed in Table 2 and is related to
Figure 2.

Table 1. FMEA interface matrix for three main systems of PEMFC.

PEMFC Balance of Plant PEMFC Stack Power Conditioner

Balance of plant PMED1
PEMFC stack PMED1 PE1

Power conditioner PE1

Interface Type: Physical (P), Material Exchange (M), Energy Transfer (E), Data Exchange (D); Functional Necessity:
Must be present (1), Must not be present (2).

Table 2. FMEA interface matrix for the power conditioner.

Power Conditioner Auxiliary Power
Supply Power Stage Controller Gate Driver PCB

Auxiliary Power Supply PED1 PD1 PED1 P1
Power Stage PED1 PED1 P1
Controller PD1 PD1 P1

Gate Driver PED1 PED1 PD1 P1
PCB P1 P1 P1 P1

3.2. Function Block Diagram and Parameter Diagram

Another visual tool to describe the operation, interrelationships and interdependencies of the
system functions is Function Block Diagram (FBD). Moreover, the Parameter diagram (P-diagram) is a
functional tool to document input signals, noise factors, control factors, error states, and ideal response.
It is more practical once the item under analysis is a complicated system where it is a time-consuming
analysis; however, it can provide significant value in comprehending and controlling the system and
recognizing the input to the FMEA techniques. Any of these tools are used for better detection of the
FMEA of the four levels of classifications of the PEMFC system [27]. FBD of the PEMFC system is
shown in Figure 5. Furthermore, the P–Diagram (PD) of the PEMFC is illustrated in Figure 6, which
takes the inputs from a system and link those inputs to the desired outputs. In addition, it considers
non-controllable influences from outside.
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3.3. Relationship of Functions and Failure Modes

As mentioned before, it is important that a FMEA precisely investigates the connective links
among the sub-systems and components as well as their content. As shown in Figure 7, four levels
of the PEMFC system are used to describe the power stage, which contains four critical components:
MOSFETs, electrolytic capacitors, transformers and inductors (chokes). Generally, any failure mode is
a failure cause for the power stage (Level 3). Similarly, failure modes of the power stage (Level 3) are
failure causes of the power conditioner (Level 4). Figure 7 demonstrates the hierarchical impact of
the failure of the PEMFC and interfaces among system, sub-system, and principal components. Two
primary functions (F) and failure modes (FM) of the power conditioner and their relations with three
levels are shown in Figures 8 and 9.
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3.4. FMEA Results

In this paper, a new estimation of the PEMFC system using FMEA is presented by focusing on
power electronics components in the power conditioner. The analysis investigates numerous potential
failure modes according to the API 580 (American Petroleum Institute), JEDEC (Joint Electron Device
Engineering Council), NDI (Non-Destructive Inspection), and normal cause and failure for the industry
affections. Specifically, parts of each level may have some failure modes and many failure causes. The
failure modes of each level, in fact, are failure causes of the higher level. In the power conditioner, the
power stage is identified as the most critical subsystem, and four critical components have the highest
risk of failure and damage. Furthermore, the highest RPN is for the MOSFETs and capacitors are
respectively having a result of 448, 392 with the failure mode of ‘high leakage current due to substrate
interface’ and ‘electrolyte evaporation’. High leakage current failure mode having two main causes,
‘high current density’ and ‘over-voltage’ has the highest risk number for the MOSFETs. Moreover,
electrolytic evaporation by the deterioration of sealant material leads to insufficient sealing for the
capacitors having the highest risk number in passive components. The FMEA of all the components
and calculated RPNs for the power stage are illustrated in Table 3.
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Table 3. FMEA table for critical sub-components of the power stage.

ID Item Function Failure Mode Failure Causes Failure Effects S O D
R
P
N

1.1.2.1 MOSFET

Switch electrical
current at desired time

interval

Short circuit, loss of gate control, and
increased leakage current due to gate

oxide

High temperature
Time dependent dielectric

breakdown
9 7 5 315High electric field

Over-voltage

Control electrical
current

High power dissipation, loss of gate
control and device burn-out due to

silicon die

High electric field
Latch-up, Increased forward

voltage 8 7 5 280Over-voltage

Ionizing radiation

Rectify current at
desired time interval

High leakage current due to substrate
interface

High temperature

Hot electrons 8 7 8 448
High current

Over-voltage

High current density

Protection and
regulation

Open circuit due to bond wire and die
attach

High temperature Bond-wire cracking, lift-off;
delamination of die attach

7 4 6 168
High current density

1.1.2.2 Capacitor

Store the electrical
power Short circuit between electrodes Excessive applied

voltage Unable to store 9 4 6 216

Stabilize the DC voltage Open circuit

Mechanical stress
Breakdown of terminal leads

and corrosion
8 4 8 256Use of

adhesive/coating
material

Filtering and tuning
circuit Current and electrolyte evaporation Deterioration of

sealant material Insufficient sealing 7 7 8 392

Control and provide
safety in operation

Capacitance reduction

Excessive ripple
current

Electrolyte reduction, anode
foil capacitance reduction,
cathode foil capacitance

reduction and deterioration of
oxide film

7 7 6 294
High temperature

Excessive applied
voltage

Reverse voltage
applied
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Table 3. Cont.

ID Item Function Failure Mode Failure Causes Failure Effects S O D
R
P
N

1.1.2.3 Transformer

Increase or decrease
power from one voltage

level to another level

Short circuit between windings and
core, besides short circuit between
primary and secondary windings

High temperature
Impaired/improper operation

9 4 6 216
Electrical overstress

Poor isolation
Impaired/improper operation

Low dielectric
withstanding voltage

Connection between
windings and core for
induction and keeping

frequency the same

Open circuit between windings and
core High Temperature Does not connect 8 4 6 192

Provide electrical
isolation between

source and load where
it is connected

Leakage inductance
Faulty design and

manufacturing
techniques

Impaired/improper operation 5 3 7 105

Store electromagnetism
energy for

reinforcement and
boost-buck in circuit

Corona discharge and current losses Poor design High heat dissipation 4 4 7 112

1.1.2.4 Choke

Store of energy in
magnetic field in the

coil

Short circuit between windings and
core

Nicks and kink in
the wire Does not connect 9 3 7 189

High temperature

Resist changes of the
flowing current

Open circuit between windings and
core

Thermal overstress Limited or not operation 8 4 6 192
Wear-out of winding

insulation

Smoothing or filtering
the outputs from the

rectifying circuits

Measured value is not the specified
value

Manufacturing
defect

Improper operation 7 3 7 147
Improper

assembly/soldering

Faulty layout and
mounting of
components

Use boost-buck circuit
and provide a high

initial voltage

Inductance leakage and does not
properly work

Overload and
overstress Does not function properly 6 4 7 168
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According to Table 3, the highest RPNs are seen and depicted clearly in Figure 10. Furthermore, by
analyzing the output of the FMEA, the top failure modes are distinguished depending on the severity,
concurrency, and detection rate. It is valuable to point out that the uppermost of risk priorities of
failure modes requiring the severity parameter as well as occurrence rate refers to the short circuit in
each of the four main components having an overstressed mechanism. Moreover, all leakages in the
components such as leakage current in MOSFETs, electrolyte evaporation in capacitors and leakage
inductance in inductors as well as transformers have the highest risk priorities of failure modes. This
issue should be considered in order to reduce the risk by improving the design.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 18 
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4. Risk Analysis

Risk analysis is one of the most rational methods to identify failure modes in fuel cell systems.
The risk analysis using FMEA is an approach to prioritize the potential risk according to the failure
causes [28]. In this risk analysis, the MOSFET having four main failure modes, and at least two causes
for each one and average RPN = 303 in the power stage have the highest risk. Additionally, the
capacitor item having four main failure modes and more than ten causes and average RPN = 274 is
more critical compared to the inductor item having four main failure modes and six different causes
and average RPN = 176. Finally, the transformer having four main failure modes, and six main causes
has an average of RPN = 163.

Figure 10 illustrates three areas of critically failure modes for the crucial components of the power
stage. The black color is considered for above 300 RPNs, and below 150 RPNs are colored with white.
Most failure modes are in the medium range of risk, and they are shown with gray color. Extensive
simulation studies, preventive control, use of diagnostic methods, predictive deployment technologies,
employing visual management techniques, using sensors to distinguish failures, using preventive
maintenance and developing inspection methods to identify hidden failures in the redundant items
are among the recommended implementations for any of the components in the PEMFC system.
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5. Bayesian Network

In a Bayesian analysis, the probability P(A) of the event A is formulated as a degree of belief that
A will occur [29].

Bayesian network (BN) refers to Bayes rule, given the event ‘B’, the probability of event ‘A’ is
[P(A|B)]

P(A|B) =
1

P(B)
P(B|A)P(A), (1)

where P(A) is a prior estimate, P(B|A) is a likelihood of A given B, and P(B) is the marginal probability
of B [30].

In order to build a BN based on the available FMEA, following BN is suggested:
In Figure 11, it is shown in an illustrative way how BN is built from the FMEA (Table 3) [31].

Finally, by merging common nodes, the BN for MOSFET is created as shown in Figure 12. The reason
to choose the MOSFET is because of the results obtained from RPN. As shown in Figure 10, the first
failure mode has the most significant influence on the system. The aim is to find, which failure cause
has the most impact. Hugin as a tool is used for building the BN. It is considered that each node has
two states, true and false.
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Figure 12. BN for the MOSFET.

The aim is to find the most significant failure cause in the failure of MOSFET by BN. From FMEA
and Figure 10, high leakage current due to substrate interface is identified having the highest RPN
which is one of the failure modes of MOSFET. Hence, MOSFET is analyzed to recognize the most
important failure cause.
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The process of making the BN is as follows:

1. BN is built based on Figure 11. from the FMEA in Table 3;
2. Joint failure modes and causes are merged;
3. For all failure causes two states are defined with equal probability of failure for their states: false

and true;
4. Conditional probability tables (CPTs) are built. The maximum entropy theory is used to specify

each probability of failure. Figure 13 shows two examples of conditional probability tables (CPTs).
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The importance analysis is carried out by assigning each failure cause as false or fail to find the
probability of failure of the MOSFET. Figure 14 shows high temperature as an example of one of the
failure causes.
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Effect of each failure cause to MOSFET is calculated by the proposed BN. Table 4 compares failure
causes in the MOSFET.

Table 4. Comparison of failure causes in the MOSFET.

Failure Cause MOSFET Probability of Failure (%)

High Temperature 82.97
Over Voltage 79.78

High Current Density 77.00
High Electric Field 73.93
Ionizing Radiation 68.67

Comparing all failure causes effects on MOSFET failure shows that high temperature and
overvoltage are the most important failure causes in MOSFET.

6. Conclusions

This study proposes a system engineering approach using FMEA for the risk analysis of the
power conditioner in a PEMFC system. The highest RPNs correspond to the failure modes in three
components, including high leakage current due to the substrate interface of the MOSFET, current
and electrolytic evaporation of capacitor, and thereby short circuit, loss of gate control, and increased
leakage current due to gate oxide of the MOSFET. Electronic components have a wide range of failure
modes. The MOSFETs, capacitors, chokes, and transformers are the critical components of the power
stage, which should be carefully considered in the development and implementation stage. In general,
short circuit, open circuit, and leakage current are considered as the most important failure modes in
the power supply system. Consequently, using a comprehensive FMEA analysis especially by using an
extensive P-diagram, failure analysis, and its effects is studied in order to have a better understanding
of the system in comparison with the available literature. Finally, BN is used to analyze the most critical
failure causes among more important items identified from the FMEA, MOSFET and capacitor. The
reason to use BN is that it was difficult to find RPNs of each failure cause, so the BN is implemented
by two states of true and false or in other words failure and success to find the most critical failure
cause. High temperature and overvoltage are ascertained utilizing BN. Knowing this fact will help
designers to pay more attention on material properties to avoid failure causing by high temperature
and overvoltage.
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