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Abstract

Since the initial proposal in the late 80s, spectral gradient methods
continue to receive significant attention, especially due to their excel-
lent numerical performance on various large scale applications. How-
ever, to date, they have not been sufficiently explored in the context
of distributed optimization. In this paper, we consider unconstrained
distributed optimization problems where n nodes constitute an arbi-
trary connected network and collaboratively minimize the sum of their
local convex cost functions. In this setting, building from existing ex-
act distributed gradient methods, we propose a novel exact distributed
gradient method wherein nodes’ step-sizes are designed according to
the novel rules akin to those in spectral gradient methods. We re-
fer to the proposed method as Distributed Spectral Gradient method
(DSG). The method exhibits R-linear convergence under standard as-
sumptions for the nodes’ local costs and safeguarding on the algorithm
step-sizes. We illustrate the method’s performance through simulation
examples.
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1 Introduction

We consider a connected network with n nodes, each of which has access to
a local cost function fi : Rd → R, i = 1, . . . , n. The objective for all nodes is
to minimize the aggregate cost function f : Rd → R, defined by

f(y) =
n∑
i=1

fi(y). (1)

Problems of this form attract a lot of scientific interest as they arise
in many emerging applications like distributed inference in sensor networks
[29, 16, 18, 8], distributed control, [22], distributed learning, e.g., [7], etc.

For example, with distributed supervised learning, a training data set is
partitioned into n blocks which correspond to distinct nodes in the network
(e.g., servers, nodes in a computer cluster, etc.) The goal is then to train a
machine learning model based on the data by all nodes without transferring
data to a single location, due to, e.g., storage limitations or privacy concerns.
In this context, function fi(·) is the empirical loss with respect to the data
available at node i:

fi(x) =
∑
j∈Ji

`i (x, Di,j) +Ri(x),

where Di,j is a data sample at node i, j ∈ Ji, Ji is the indices set of
node i’s data samples, `i(·, ·) is the loss function at node i (e.g., logistic,
quadratic, hinge, etc.), and Ri(·) is the regularization function at node i
(e.g., the quadratic regularization). More concretely, with L2-regularized
logistic losses, we have:

`i (x, Di,j) = ln
(
1 + exp(−bi(a>i x))

)
, Ri(x) =

c

2
‖x‖2.

Here, ‖ · ‖ stands for the 2-norm, Di,j = (ai,j, bi,j), where ai,j ∈ Rd is a
feature vector, bi,j ∈ {−1,+1} is the corresponding class label, and c > 0 is
the regularization tuning parameter; see, e.g., [7].

To solve this and related problems several distributed first order methods,
e.g., [25, 8, 13], and second order methods, e.g., [19, 20, 15], have been
proposed. The methods of this type converge to an approximate solution
of problem (1) if a constant (non-diminishing) step size is used; they can be
interpreted through a penalty-like reformulation of (1); see [14, 19] for details.

2



Convergence to an exact solution can be achieved by using diminishing step-
sizes, but this comes at a price of slower convergence.

More recently, exact distributed first order methods, e.g., [31, 12, 30, 26,
11], and second order methods, e.g., [21, 20], have been proposed, that con-
verge to the exact solution under constant step sizes. The method in [30] uses
two different weight matrices, differently from the standard distributed gra-
dient method that utilizes a single weight matrix. The methods in [26, 23, 24]
implement tracking of the network-wide average gradient and correct the dy-
namics of the standard distributed method [25] by replacing the nodes’ local
gradients with the tracked global average gradient estimates. A unification of
a class of exact first order methods and some further improvements are pre-
sented in [11]. References [31, 23] study exact methods with uncoordinated
step-sizes, while reference [12] proposes exact methods for non-convex prob-
lems. An exact distributed second order method has been developed in [21].
We refer to [11] for a detailed review of other works on exact distributed
methods.

Spectral gradient methods are a popular class of methods in centralized op-
timization due to their simplicity and efficiency. The class originated with the
proposal of the Barzilei-Borwein method [1] and its analysis therein for two-
dimensional convex quadratic functions, while the method has been subse-
quently extended to more general optimization problems, both unconstrained
and constrained, [27, 28, 6]. Spectral gradient methods can be viewed as a
mean to incorporate second-order information in a computationally efficient
manner into gradient descent methods. In practice, they achieve significantly
faster convergence with respect to standard gradient methods while the addi-
tional computational overhead per iteration is very small. Roughly speaking,
the main idea of spectral gradient methods is to approximate the Hessian at
each iteration with a scalar matrix (the leading scalar of the matrix is called
the spectral coefficient) that approximately fits the secant equation. Calcu-
lating the spectral gradient’s scalar matrix is much cheaper than evaluation
of the Newton direction while the convergence speed is usually much better
than that of the gradient method. Spectral methods are characterized by
a non-monotone behaviour which makes them suitable for combination with
non-monotone line search methods, [28]. It was demonstrated in [28] that the
spectral gradient method can be more efficient than the conjugate gradient
method for certain classes of optimization problems. The R-linear conver-
gence rate was established in [9], while extensions to constrained optimization
in the form of Spectral Projected Gradient (SPG) methods are developed in
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[3, 4, 5]. A vast number of applications is available in the literature, and a
comprehensive overview is presented in [6].

The principal aim of this paper is to provide a generalization of spectral
gradient methods to distributed optimization and give preliminary numerical
tests of its efficiency. Extension of spectral gradient methods to a distributed
setting is a highly nontrivial task. We develop an exact method (converg-
ing to the exact solution) that we refer to as Distributed Spectral Gradient
method (DSG). The method utilizes step-sizes that are akin to those of cen-
tralized spectral methods. The spectral-like step-sizes are embedded into the
exact distributed first order method in [26]; see also [23, 24]. We utilize the
primal-dual interpretation of the method in [26] – as provided in [11] (see
also [24]) – and the corresponding form of the error recursion equation. An
analogy with the error recursion of the conventional spectral method stated
in [27] is exploited to define the time-varying, node dependent, algorithm
step-sizes. This analogy also allows for an intuitive interpretation of the
proposed method.

We show that the proposed DSG method exhibits R-linear convergence
rate under appropriate assumptions on the nodes’ local objectives, static,
undirected networks, and appropriate safeguarding of the step-sizes.

The proposed DSG method has several favorable features. Namely, sim-
ulations suggest that DSG converges under a significantly wider range of
admissible step-sizes than existing exact first order methods like [26, 23]. In-
deed, existing methods require for convergence that step-sizes be sufficiently
small, both in theory and in practical implementations. We show by simu-
lation examples that DS converges for step-size ranges which are orders of
magnitude broader than the admissible step-size ranges of [23]. We further
show analytically on a consensus problem-special case, under a special struc-
ture of the underlying weight matrix W , that DSG converges without any a
priory upper bound on the step-sizes and with a lower bound on the step-
sizes, while the method in [26] diverges on the same example for the step-size
larger than two.

Another important feature of the DSG method is that it adaptively
adjusts the step-sizes over iterations such that good convergence speed is
achieved. This eliminates the need to hand-optimize and/or align before-
hand the step-size values across nodes, as it is the case with existing meth-
ods like [26]. This beforehand tuning may be expensive, resource-consuming,
and tedious process, in many scenarios. In contrast, the proposed method
requires only a coarse estimate (to within a factor of 10-100, for example) of
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the nodes’ gradients’ Lipschitz constant beforehand. We compare the per-
formance of DSG by simulation with [26] under a hand-optimized step-size.
While the latter method with hand-optimized step-size may converge faster
than DSG, it may also converge worse than DSG, when the step-size of [26]
is chosen poorly. Therefore, when aligning and hand-tuning of step-sizes is
not feasible beforehand, the proposed method represents a valuable choice.

The paper is organized as follows. Some preliminary considerations and
assumptions are presented in Section 2. The proposed distributed spectral
method (DSG) is introduced in Section 3, while the convergence theory is
developed in Section 4. Initial numerical tests are presented in Section 5, and
some conclusions are drawn in Section 6. Some auxiliary proofs are relegated
to the Appendix.

2 Model and preliminaries

The network and optimization models that we assume are described in Sub-
section 2.1. The proposed method is based on the distributed gradient
method developed in [26] and the centralized spectral gradient method [27]
which are briefly reviewed in Subsection 2.2 and 2.3. The convergence anal-
ysis is based on the Small Gain Theorem which is stated in Subsection 2.4.

2.1 Optimization and network models

We impose a set of standard assumptions on the functions fi in (1) and on
the underlying network.
Assumption A1. Assume that each local function fi : Rd → R, i = 1, . . . , n
is twice continuously differentiable and for all i = 1, . . . , n and all y ∈ Rp,
there holds

µiI � ∇2fi(y) � liI (2)

where li ≥ µi ≥ 0 and µ :=
∑n

i=1 µi > 0.
Here, notation Γ � Υ means that matrix (Υ−Γ) is positive semi-definite.

This implies that the gradients of the fi’s are Lipschitz continuous with con-
stants li and that the full gradient ∇f is Lipschitz continuous with constant

L :=
n∑
i=1

li. (3)
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Moreover, under the Assumption A1, the objective function f is µ-strongly
convex and problem (1) is solvable and has a unique solution, denoted by y∗.
For future reference, let us introduce the function F : Rnd → R, defined by:

F (x) =
n∑
i=1

fi(xi), (4)

where x ∈ Rnd consists of n blocks xi ∈ Rd, i.e., x = ((x1)T , ..., (xn)T )T .
Assumption A1 clearly implies that ∇F is Lipschitz continuous, where a
Lipschitz constant can be taken as maxi=1,...,n li. For the sake of simplicity,
we retain the same Lipschitz constant as for ∇f , i.e., for any y, z ∈ Rnd,
there holds:

‖∇F (y)−∇F (z)‖ ≤ L‖y − z‖, (5)

where L is defined by (3).
We assume that the network of nodes is an undirected network G = (V , E),

where V is the set of nodes and E is the set of edges, i.e., all pairs {i, j}
of nodes which can exchange information through a communication link.
Assumption A2. The network G = (V , E) is connected, undirected and
simple (no self-loops nor multiple links).

Let us denote by Oi the set of nodes that are connected with node i
through a direct link (neighborhood set), and let Ōi = Oi

⋃
{i}. Associate

with G a symmetric, doubly stochastic n × n matrix W. The elements of
W are all nonnegative and both rows and columns sum up to one. More
precisely, the following is assumed.
Assumption A3. The matrix W = W T ∈ Rn×n is doubly stochastic, with
elements wij such that

wij > 0 if {i, j} ∈ E , wij = 0 if {i, j} /∈ E , i 6= j, and wii = 1−
∑
j∈Oi

wij

and there exist constants wmin and wmax such that for i = 1, . . . , n

0 < wmin ≤ wii ≤ wmax < 1.

Denote by λ1 ≥ . . . ≥ λn the eigenvalues of W. It can be shown that
λ1 = 1, and |λi| < 1, i = 2, ..., n.

For future reference, define the n × n matrix J that has all the entries
equal 1/n. We refer to J as the ideal consensus matrix; see, e.g., [17]. Also,
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introduce the (nd)×(nd) matrixW = W⊗I, where ⊗ denotes the Kronecker
product and I is the identity matrix from Rd×d. It can be seen that d×d block
on the (i, j)-th position of the matrixW equals to wij I. By properties of the
Kronecker product, the eigenvalues of W are λ1, ..., λn, each one occurring
with the multiplicity d. We also introduce the (nd)× (nd) matrix J = J⊗I,
where, as before, J is the n × n ideal consensus matrix, and I is the d × d
identity matrix. Also, we denote by I the (nd)× (nd) identity matrix.

2.2 Exact Distributed first order method

Let us now briefly review the distributed first order method in [26]; see
also [23, 24]. These methods serve as a basis for the development of the
proposed distributed spectral gradient method. The method in [26] maintains
over iterations k = 0, 1, ..., at each node i, the solution estimate xki ∈ Rd and
an auxiliary variable zki ∈ Rd. Specifically, the update rule is as follows

xk+1
i =

∑
j∈Ōi

wij x
(k)
j − α zki (6)

zk+1
i =

∑
j∈Ōi

wij z
(k)
j +

(
∇fi(xk+1

i )−∇fi(xki )
)
, k = 0, 1, ... (7)

Here, α > 0 is a constant step-size; the initialization x0
i , i = 1, ..., n, is

arbitrary, while z0
i = ∇fi(x0

i ), i = 1, ..., n. Equation (6) shows that each
node i, as with standard distributed gradient method [25], makes two-fold
progress: 1) by weight-averaging its solution estimate with its’ neighbors;
and 2) by taking a step opposite to the estimated gradient direction. The
standard distributed gradient method in [25] takes a negative step in the
direction of ∇fi(xki ), while the method in [26] makes a step in direction of
zki . This vector serves as a tracker of the network-wide gradient

∑n
i=1∇fi(xki ).

This modification in the update rule enables convergence to the exact solution
under a constant step-size [26].

It is useful to represent method (6)–(7) in vector format. Let xk ∈ Rnd,
zk ∈ Rnd, and recall function F in (4) and matrix W = W ⊗ I. Then, the
method (6)–(7) in the vector form becomes

xk+1 = W x(k) − α zk (8)

zk+1 = W z(k) +
(
∇F (xk+1)−∇F (xk)

)
, k = 0, 1, ..., (9)

with arbitrary x0 and z0 = ∇F (x0).
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The method (8)–(9) allows for a primal-dual interpretation; see [11] and
also [24] for a similar interpretation. The primal-dual interpretation will be
important for the development of the proposed distributed spectral gradient
method. Namely, it is demonstrated in [11] that (8)–(9) is equivalent to the
following update rule

xk+1 = Wxk − α(∇F (xk) + uk) (10)

uk+1 = Wuk + (W − I)∇F (xk), (11)

with variable u0 = 0 ∈ Rdn and arbitrary x0. It can be shown that, under ap-
propriately chosen step-size α, the sequence {xk} converges to x∗ := 1⊗y∗ =
( (y∗)T , ..., (y∗)T )T , and uk converges to−∇F (1⊗y∗) = −(∇f1(y∗)T , ...,∇fn(y∗)T )T .
Here, 1 ∈ Rn is the vector with all components equal to one.

2.3 Centralized spectral gradient method

Let us briefly review the spectral gradient (SG) method in centralized opti-
mization. Consider the unconstrained minimization problem with a generic
objective function φ : Rd → R which is continuously differentiable. Let the
initial solution estimate be arbitrary x0 ∈ Rd. The SG method generates the
sequence of iterates {xk} as follows

xk+1 = xk − σ−1
k ∇φ(xk), k = 0, 1, . . . , (12)

where the initial spectral coefficient σ0 > 0 is arbitrary and σk, k = 1, 2, ...,
is given by

σk = P[σmin,σmax ](σ
′
k), σ′k =

(sk−1)Tyk−1

(sk−1)T sk−1
. (13)

Here, 0 < σmin < σmax < +∞ are given constants, sk−1 = xk − xk−1, yk−1 =
∇φ(xk)−∇φ(xk−1), and P[a,b] stands for the projection of a scalar onto the
interval [a, b]. The projection onto the interval [σmin, σmax] is the safeguarding
that is necessary for convergence. The spectral coefficient σ′k is derived as
follows. Assume that the Hessian approximation in the form Bk = σkI. Then
the approximate secant equation

Bks
k−1 ≈ yk−1 (14)

can be solved in the least square sense. It is easy to show that least squares
solution of (14) yields exactly (13). For future reference, we briefly review the
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result on the evolution of error for the SG method stated in [27]. Consider
the special case of a strongly convex quadratic function φ(x) = 1

2
xTAx+ bTx

for a symmetric positive definite matrix A, and denote by ek := x∗ − xk the
error at iteration k, where x? is the minimizer of φ. Then, it can be shown
that the error evolution can be expressed as [27]:

ek+1 = (I − σ−1
k A)ek. (15)

The above relation will play a key role in the intuitive explanation of the
distributed spectral gradient method proposed in this paper.

2.4 Small gain theorem

Convergence analysis of the proposed method will be based upon the Small
Gain Theorem, e.g. [10]. This technique has been previously used and proved
successful for the analysis of exact distributed gradient methods in, e.g., [23,
24]. We briefly introduce the concept here, while more details are available
in [10, 23].

Denote by a := a1, a2, . . . an infinite sequence of vectors, ak ∈ Rd, k =
0, 1, . . . . For a fixed δ ∈ (0, 1), define

‖a‖δ,K = max
k=0,1,...,K

{ 1

δk
‖ak‖}

‖a‖δ = sup
k≥0
{ 1

δk
‖ak‖}.

Obviously, for any K ′ ≥ K ≥ 0 we have ‖a‖δ,K ≤ ‖a‖δ,K′ ≤ ‖a‖δ. Also,
if ‖a‖δ is finite for some δ ∈ (0, 1) than the sequence a converges to zero
R-linearly. We present the Small Gain Theorem in a simplified form that
involves only two sequences, as this will suffice for our considerations; for
more general forms of the result see [10, 23].

Theorem 2.1. [10, 23]. Consider two infinite sequences a = a0, a1, . . . , b =
b0, b1, . . . , with ak, bk ∈ Rd, k = 0, 1, . . . . Suppose that for some δ ∈ (0, 1)
and for all K = 0, 1, . . . , there holds

‖a‖δ,K ≤ γ1‖b‖δ,K + w1

‖b‖δ,K ≤ γ2‖a‖δ,K + w2,
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where γ1 · γ2 ∈ [0, 1). Then

‖a‖δ ≤ 1

1− γ1γ2

(w1γ2 + w2).

Furthermore, limk→∞ a
k = 0 R-linearly.

Following, for example, the proof of Lemma 6 in [11] (see also [23]), it is
easy to derive the result below.

Lemma 2.1. Consider three infinite sequence a = a0, a1, . . . , b = b0, b1, . . . , c =
c0, c1, . . . with ak, bk, ck ∈ Rd, k = 0, 1, . . . . Suppose that there holds

‖ak+1‖ ≤ c1‖ak‖+ c2‖bk‖+ c3‖ck‖, k = 0, 1, . . .

where c1, c2, c3 ≥ 0. Then, for all K = 0, 1, . . . and 0 ≤ c1 < δ < 1,

‖a‖δ,K ≤ c2

δ − c1

‖b‖δ,K +
c3

δ − c1

‖c‖δ,K +
δ

δ − c1

‖a0‖.

3 Spectral gradient method for distributed

optimization

3.1 The algorithm

Let us now present the proposed Distributed Spectral Gradient, DSG, method.
The method incorporates spectral-like step size policy into (8)–(9). The step-
sizes are locally computed and vary both across nodes and across iterations.
As (8)–(9), the DSG method maintains the sequence of solution estimates
xk ∈ Rnd and an auxiliary sequence zk ∈ Rnd. Specifically, the update rule
is as follows

xk+1 = W xk − Σ−1
k zk (16)

zk+1 = W zk +
(
∇F (xk+1)−∇F (xk)

)
, k = 0, 1, ... (17)

The initial solution estimate x0 is arbitrary, while z0 = ∇F (x0). Here,

Σk = diag
(
σk1 I, . . . , σ

k
n I
)
,

10



is the nd×nd diagonal matrix that collects inverse step-sizes σki at all nodes
i = 1, ..., n. The inverse step-sizes σki are given by:

σki=P[σmin,σmax]

(sk−1
i )Tyk−1

i

(sk−1
i )T sk−1

i

+ σk−1
i

∑
j∈Ōi

wij

(
1−

(sk−1
j )T sk−1

i

(sk−1
i )T sk−1

i

)(18)

sk−1
i = xki − xk−1

i

yk−1
i = ∇fi(xki )−∇fi(xk−1

i ),

where 0 < σmin < σmax < +∞ are, as before, the safeguarding parameters.
Notice that the proposed step-size choice does not incur an additional

communication overhead; each node i only needs to additionally store in its
memory ukj for all its neighbors j ∈ Oi.

In view of (10)–(11), the method (16)–(17) can be equivalently repre-
sented as follows

xk+1 = Wxk − Σ−1
k (∇F (xk) + uk) (19)

uk+1 = Wuk + (W − I)∇F (xk), k = 0, 1, ..., (20)

with variable u0 = 0 ∈ Rnd.
At the beginning of each iteration k + 1, a node i holds the current

xki ,∇fi(xki ), uki , computes ski = xki − xk−1
i , yk−1

i = ∇fi(xki ) − ∇fi(xk−1
i ) and

computes σki by (18). After that, it updates its’ estimation of xi through
communication with all neighbouoring nodes j ∈ Oi as

xk+1
i =

∑
j∈Ōi

wijx
k
j − (σki )−1

(
∇fi(xki ) + uki

)
uki =

∑
j∈Ōi

wiju
k
j +

∑
j∈Ōi

wij∇fj(xkj )−∇fi(xki ).

Therefore, the iteration is fully distributed and each node interchanges mes-
sages only locally, with immediate neighbors.

We next comment on the safeguarding parameters in (18). In practice, the
safeguarding upper bound σmax can be set to a large number, e.g., σmax = 108;
the safeguarding lower bound can be set to σmin = L

c
, with c ∈ [10, 100]. This

in particular means that the proposed algorithm (19)–(20) can take step-
sizes 1

σk
i

that are much larger than the maximal allowed step-sizes with [26].

In other words, as shown in Section 5 by simulations, σmin can be chosen such

11



that the method in [26] with step-size α = 1/σmin diverges, while the novel
method (19)–(20) with time-varying step sizes and the safeguard lower bound
σmin (hence potentially taking step-size values close or equal to 1/σmin) still
converges.

3.2 Step-size derivation

We now provide a derivation and a justification of the step-size choice (18).
For notational simplicity, assume for the rest of this Subsection that d = 1
and thus W = W and J = J . Let each fi be a strongly convex quadratic
function, i.e.,

fi(xi) =
1

2
hi(xi − bi)2,

and H = diag(h1, . . . , hn), hi > 0, for all i. Then, for the primal error
ek := xk − x∗ and the dual error ũk := uk +∇F (x∗), one can show that the
following recursion holds:[

ek+1

ũk+1

]
=

[
W − Σ−1

k H −Σ−1
k

(W − I)H W − J

]
·
[
ek

ũk

]
(21)

We now make a parallel identification between the error dynamics of the cen-
tralized SG method for a strongly convex quadratic cost with leading matrix
A given in (15) and the error dynamics of the proposed distributed method
in (21). Consider first the centralized SG method. The error dynamics matrix
is given by I−σ−1

k A, while the (new) spectral coefficient is sought to fit the se-
cant equation with least mean square deviation: σk(x

k−xk−1) = A(xk−xk−1).
That is, the error dynamics matrix I − σ−1

k A is made small by letting σk I
be a scalar matrix approximation for matrix A, i.e., solving

min
σ>0
‖σsk − yk‖2 = min

σ>0
‖σsk − Ask‖2.

Now, consider the error dynamics of the proposed distributed method in (21),
and specifically focus on the update for the primal error:

ek+1 =
(
W − Σ−1

k H
)
ek + Σ−1

k ũk

=
(
I − Σ−1

k [Σk (I −W ) +H]
)
ek + Σ−1

k ũk. (22)

Notice that the second error equation in (21) does not depend on Σk. Com-
paring (15) with (22), we first see that both the primal and the dual error
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play a role in (22). The effect of the dual error ũk can be controlled by mak-
ing Σ−1

k small enough. This motivates the safeguarding of Σk from below
by σmin. Regarding the effect of the primal error ek, one can see that it influ-
ences the error through the matrix I − Σ−1

k [Σk (I −W ) +H]. Analogously
to the centralized SG case, this matrix can be made small by the following
identification

A ≡ Σk (I −W ) +H, and σk ≡ Σk.

Therefore, we seek Σk+1 as the least mean squares error fit to the following
equation

Σk+1

(
xk+1 − xk

)
= (Σk(I −W ) +H)

(
xk+1 − xk

)
. (23)

For generic (non-quadratic) cost functions, this translates into the following:

Σk+1

(
xk+1 − xk

)
= ( Σk(I −W ) )

(
xk+1 − xk

)
+
(
∇F (xk+1)−∇F (xk)

)
.

(24)
The rationale behind the generalization from (23) to (24) is as follows.

For quadratic functions, the term
(
∇F (xk+1)−∇F (xk)

)
equals precisely

H
(
xk+1 − xk

)
. Therefore, for quadratic functions, equations (23) and (24)

are identical. This motivates the argument that (24) can be viewed as a
generalization of (23). It is worth noting that a similar argument is used
in [27] for motivating the spectral step-size choice for centralized gradient
methods.

The (intermediate) inverse step-size matrix Σ′k+1 is now obtained by min-
imizing∥∥Σk+1

(
xk+1 − xk

)
− ( Σk(I −W ) )

(
xk+1 − xk

)
−
(
∇F (xk+1)−∇F (xk)

)∥∥2
.

(25)
This leads to the step-size choice in (18). Finally, to ensure strictly positive

step-sizes on the one hand, and a bounded effect of the dual error on the
other hand, Σ′k+1 is projected entry-wise onto the interval [σmin, σmax ].

4 Convergence analysis

In Subsection 4.1, we prove that the proposed DSG method, (19)-(20), con-
verges to the solution of problem (1) provided that the spectral coefficients σki
are uniformly bounded with properly chosen constants. In Subsection 4.2,
we then prove that the method converges without any a priori upper bound
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on the step-sizes and with a lower bound on the step-sizes, for a special case
of the assumed setting.

4.1 Analysis for the generic case in the presence of
safeguarding

For the sake of simplicity, we will restrict our attention to one dimensional
case, i.e., d = 1, while the general case is proved analogously. Hence, we have
W = W and J = J in this Section. The following notation and relations
are used. Recall that x∗ = 1 ⊗ y∗ where y∗ is the solution of (1). Define
x̃k = xk − Jxk and x̄k = 1Txk/n. Then

x̃k = xk − 1

n
11Txk = xk − 1⊗ x̄k.

Also, for ek = xk − x∗,

(I − J)ek = (I − J)xk − (I − J)x∗ = x̃k − x∗ + 1⊗ y∗ = x̃k.

Moreover, notice that J2 = J and therefore J(I − J) = 0, which further
implies Jx̃k = 0. Now, for W̃ = W − J we obtain

W̃ x̃k = (W − J)(I − J)xk = Wx̃k − Jx̃k = Wx̃k

and
(I − J)Wek = W (I − J)ek = Wx̃k = W̃ x̃k. (26)

Define ēk = x̄k − y∗. So, the following equalities hold

ek = xk − 1⊗ x̄k + 1⊗ x̄k − 1⊗ y∗ = x̃k + 1⊗ ēk. (27)

Given that W is doubly stochastic, there follows Wx∗ = x∗, 1TW = 1T

and 1T (W − I) = 0. So, multiplying (20) from the left with 1T , we obtain
ūk+1 = ūk, where ūk = 1Tuk/n. Since uk = 0, we conclude that

ūk = 0, k = 0, 1, ... (28)

See Lemma 8 in [11] that applies here as well, since the update (20) is a
special case of update (16) in [11], with B = 0 defined therein. Moreover,
define ũk = ∇F (x∗) + uk. Using the fact that 1T∇F (x∗) = 0 we obtain

Jũk =
1

n
1⊗ (1Tuk + 1T∇F (x∗)) = Juk = 1⊗ ūk = 0 (29)
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Now, Assumption A1 together with the Mean value theorem implies that for
all i = 1, 2, ..., n and k = 1, 2, ..., there exists θki such that

∇fi(xki )−∇fi(y∗) = ∇2fi(θ
k
i )(x

k
i − y∗).

Therefore, there exists a diagonal matrix Hk such that

∇F (xk)−∇F (x∗) = Hk(x
k − x∗) = Hke

k, 0 � Hk � LI. (30)

The following standard lemma in the convex optimization theory, [2] will
be used in the proof.

Lemma 4.1. Let f be µ-strongly convex and ∇f be L- Lipschitz. For 0 <
α < 2

L
, we have

‖x− α∇f(x)− y∗‖ ≤ τ‖x− y∗‖, (31)

where τ = max{|1− µα|, |1− Lα|} and y∗ is the unique minimizer of f .

The R-linear convergence result for the DSG method is stated in the fol-
lowing theorem. The Theorem corresponds to a worst case analysis that does
not take into account the specific form of σki in (18) but only utilizes informa-
tion on the safeguarding parameters σmin and σmax. Hence, the Theorem may
be seen as an extension of Theorem 2 in [23] that assumes node-varying but
time-invariant step-sizes (here step-sizes are both node- and time-varying),
though we follow here a somewhat different proof path.

Theorem 4.1. Suppose that the assumptions A1-A3 hold. There exist 0 <
σmin < σmax such that the sequence {xk}k∈N generated by DSG method con-
verges R-linearly to the solution of problem (1).

Proof. Let us first introduce the notation σ−1
min = dmax and σ−1

max =
dmin, ∆ = dmax − dmin. Choose dmin, dmax such that

dmax

dmin

< 1 +
µ

L
(32)

and

0 < dmin < dmax <
1− λ2

µ+ L
. (33)

Define δ = δ(dmin, dmax) such that δ > 0 and

1 > δ > 1− dminµ+ ∆L. (34)
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As 1− dminµ+ ∆L < 1 due to (32), δ(dmin, dmax) is well defined. To simplify
notation from now we will write δ to denote δ(dmin, dmax). Due to (33) we
have

1− dminµ+ ∆L > λ2 + dmaxL > λ2

and hence

0 < δ − (1− dminµ+ ∆L) < δ − (λ2 + dmaxL) < δ − λ2. (35)

Notice further that δ− (1− dminµ+ ∆L) is a decreasing function of dmax and
∆ and therefore decreasing dmax,∆ if needed does not violate 35 if (32-33) are
satisfied. In fact one can take dmax,∆ arbitrary small with the corresponding
dmin without violating (32)-(35).

Denote Dk = Σ−1
k and dki = (σki )−1 and notice that dki ≥ dmin. Subtracting

x∗ from both sides of (19) and using the fact that Wx∗ = x∗ we obtain

ek+1 = Wek−Dk(∇F (xk)+uk±∇F (x∗)) = Wek−Dk(∇F (xk)−∇F (x∗))−Dkũ
k.

From (30) we obtain

ek+1 = (W −DkHk)e
k −Dkũ

k. (36)

Now, adding ∇F (x∗) on both sides of (20) we obtain

ũk+1 = Wuk + (W − I)∇F (xk) +∇F (x∗)±W∇F (x∗)

= Wũk + (W − I)(∇F (xk)−∇F (x∗)). (37)

Using (29) and (30) we get

ũk+1 = (W − J)ũk + (W − I)Hke
k. (38)

Taking the norm and using (27), we obtain

‖ũk+1‖ ≤ λ2‖ũk‖+ (1− λn)L(‖x̃k‖+
√
n|ēk|). (39)

Lemma 2.1 with c1 = λ2, c2 = c3 = (1− λn)L yields

‖ũ‖δ,K ≤ c2

δ − c1

(‖x̃‖δ,K + |
√
nē|δ,K) +

δ

δ − c1

‖ũ0‖, (40)

with δ − c1 > 0 due to (35). Define γ1 := c2/(δ − c1).
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Multiplying both sides of (19) from the left with 1
n
1T and using 1TW =

1T , (28) and 1T∇F (x∗) = 0 we obtain

x̄k+1 = x̄k − 1

n

n∑
i=1

dki∇fi(xki )−
1

n

n∑
i=1

dki u
k
i ±

1

n

n∑
i=1

dmin∇fi(x̄k) +
1

n

n∑
i=1

dminu
k
i

= x̄k − dmin

n

n∑
i=1

∇fi(x̄k) +
dmin

n

n∑
i=1

∇fi(x̄k)−
1

n

n∑
i=1

dki∇fi(xki )

+
1

n

n∑
i=1

(dmin − dki )uki

(41)

So, after subtracting y∗ from both sides, we obtain

ēk+1 = ēk − dmin

n

n∑
i=1

∇fi(x̄k) +
1

n

n∑
i=1

dmin∇fi(x̄k)−
1

n

n∑
i=1

dki∇fi(xki )

+
1

n

n∑
i=1

(dmin − dki )uki

= ēk − dmin

n

n∑
i=1

∇fi(x̄k) +
1

n

n∑
i=1

dmin(∇fi(x̄k)−∇fi(xki ))

− 1

n

n∑
i=1

(dki − dmin)∇fi(xki ) +
1

n

n∑
i=1

(dmin − dki )uki ±
1

n

n∑
i=1

(dki − dmin)∇fi(y∗)

= ēk − dmin

n

n∑
i=1

∇fi(x̄k) +
1

n
dmin

n∑
i=1

(∇fi(x̄k)−∇fi(xki ))

− 1

n

n∑
i=1

(dki − dmin)(∇fi(xki )−∇fi(y∗))

+
1

n

n∑
i=1

(dmin − dki )uki +
1

n

n∑
i=1

(dmin − dki )∇fi(y∗). (42)

Given that ũk = ∇F (x∗) + uk, we have ũki = uki + ∇fi(y∗) and the above
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inequalities imply

ēk+1 = ēk − dmin

n

n∑
i=1

∇fi(x̄k) +
dmin

n

n∑
i=1

(∇fi(x̄k)−∇fi(xki ))

− 1

n

n∑
i=1

(dki − dmin)(∇fi(xki )−∇fi(y∗))

+
1

n

n∑
i=1

(dmin − dki )ũki . (43)

Assumption A1 implies that

‖∇fi(xki )−∇fi(x̄k)‖ ≤ li|x̃ki |. (44)

which further implies

|dmin

n

n∑
i=1

(∇fi(x̄k)−∇fi(xki ))| ≤ ‖x̃k‖1
dmin

n

n∑
i=1

li = ‖x̃k‖1
dmin

n
L. (45)

Similarly we obtain

| 1
n

n∑
i=1

(dki − dmin)(∇fi(xki )−∇fi(y∗))| ≤ ‖ek‖1
∆

n
L (46)

and

| 1
n

n∑
i=1

(dmin − dki )ũki | ≤ ‖ũk‖1
∆

n
(47)

Furthermore, Lemma 4.1 implies

|ēk − dmin

n

n∑
i=1

∇fi(x̄k)| ≤ τ |ēk|

with τ = max{|1− µdmin|, |1− Ldmin|}. Since (32) implies that dmin < 1/L,
we obtain that τ = 1− µdmin. Putting all together we obtain

|ēk+1| ≤ (1− dminµ)|ēk|+ dmin

n
L‖x̃k‖1 +

∆

n
(L‖ek‖1 + ‖ũk‖1).
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Using the norm equivalence ‖ · ‖1 ≤
√
n‖ · ‖2, and multiplying both sides of

the previous inequality with
√
n, we get

√
n|ēk+1| ≤ (1− dminµ)

√
n|ēk|+ dminL‖x̃k‖+ ∆(L‖ek‖+ ‖ũk‖).

Furthermore, taking (27) into account, the previous inequality becomes

√
n|ēk+1| ≤ (1− dminµ+ ∆L)

√
n|ēk|+ (dmin + ∆)L‖x̃k‖+ ∆‖ũk‖. (48)

Lemma 2.1 with c̃1 = 1− dminµ+ ∆L, c̃2 = dmaxL, c̃3 = ∆ implies

|
√
nē|δ,K ≤ 1

δ − c̃1

(c̃2‖x̃‖δ,K + c̃3‖ũ‖δ,K + δ|
√
nē0|), (49)

for δ ∈ (c̃1, 1). Notice that (35) implies that δ − c̃1 > 0. Define

θ2 =
c̃3

δ − c̃1

, γ2 =
c̃2

δ − c̃1

.

Incorporating (40) into (49) and rearranging, we obtain

|
√
nē|δ,K ≤ γ2 + θ2γ1

1− θ2γ1

‖x̃‖δ,K +
θ2δ‖ũ0‖

(δ − c1)(1− θ2γ1)
+

δ|
√
nē0|

(δ − c̃1)(1− θ2γ1)
, (50)

provided that θ2γ1 < 1. This condition reads

∆

δ − (1− dminµ+ ∆L)

(1− λn)L

δ − λ2

< 1. (51)

Clearly, there exists δ, dmin, dmax such that for dmax,∆ small enough (51) holds
as the left-hand side expression in (51) is increasing function of dmax,∆ and
the corresponding dmin satisfies (33).

Now, multiplying (36) from the left with I − J and using (4.1) and (26),
we have

x̃k+1 = W̃ x̃k − (I − J)DkHke
k − (I − J)Dkũ

k.

Furthermore, (27) implies

x̃k+1 = (W̃ − (I − J)DkHk)x̃
k − (I − J)DkHk(1⊗ ēk)− (I − J)Dkũ

k.

The inequality ‖W̃‖ ≤ λ2 yields

‖x̃k+1‖ ≤ (λ2 + dmaxL)‖x̃k‖+ dmaxL
√
n|ēk|+ dmax‖ũk‖.
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Again, Lemma 2.1 with ĉ1 = λ2 + dmaxL, ĉ2 = dmaxL, ĉ3 = dmax, implies

‖x̃‖δ,K ≤ ĉ2

δ − ĉ1

|
√
nē|δ,K +

ĉ3

δ − ĉ1

‖ũ‖δ,K +
δ

δ − ĉ1

‖x̃0‖,

with δ − ĉ1 > 0 due to (35). Define γ3 = ĉ2/(δ − ĉ1) and θ3 = ĉ3/(δ − ĉ1).
Using (40) and rearranging, we obtain

‖x̃‖δ,K ≤ γ3 + θ3

1− θ3γ1

|
√
nē|δ,K+

θ3δ

(δ − c1)(1− θ3γ1)
‖ũ0‖+ δ

(δ − ĉ1)(1− θ3γ1)
‖x̃0‖,

(52)
with θ3γ1 < 1 for dmax small enough, due to the fact that

θ3γ1 =
dmax

δ − (λ2 + dmaxL)

(1− λn)L

δ − λ2

is an increasing function of dmax.
Finally, considering (50), (52) and Theorem 2.1, we conclude that x̃k and

ēk tend to zero R-linearly if

γ2 + θ2γ1

1− θ2γ1

γ3 + θ3

1− θ3γ1

< 1. (53)

The definition of γ2 implies that it can be arbitrary small if dmax is small
enough. As already stated, θ2γ1/(1−θ2γ1) is increasing function of ∆ There-
fore, taking ∆ small enough, with the proper choice of dmin, one can make
the first term in (53) arbitrary small. On the other hand,

θ3 + γ3 =
dmax(L+ 1)

δ − (λ2 + dmaxL)

is again increasing function of dmax as is the function (1 − θ3γ1)−1. So, for
dmax,∆ small enough and dmin such that (32-33) hold, the inequality (52)
holds and the statement is proved. 2

4.2 Analysis for a special case without step-size upper
bounds

Establishing convergence for generic costs in the absence of safeguarding
or under a less restrictive safeguarding is very challenging. We show here that
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DSG achieves convergence without any a priori safeguarding upper bound on
the step-sizes and under an assumed safeguarding lower bound on the step-
sizes, for a special case of the consensus problem and for a special structure
of weight matrix W .

Specifically, we consider fi : R→ R, with:

fi(y) =
1

2
(y − ai)2, (54)

for some a = (a1, . . . , an) ∈ Rn. Note that here the solution to (1) equals
y? = 1

n
1Ta. Denote as before, for future reference, x? = y?1, the n×1 vector

whose entries equal the solution to (1).
Let us further assume that the network is fully connected and that the

matrix W is given by
W = (1− θ)I + θJ, (55)

for some θ ∈ (0, 1), where we recall the n × n ideal consensus matrix J =
(1/n)11T . Note that, while the network is fully connected, the weight matrix
does not equal the ideal consensus matrix J . This example hence corresponds
to a non-trivial distributed optimization scenario where algorithms of type
(7)-(8) or (15)-(17) require an iterative process to correctly diffuse informa-
tion for convergence.

We first need the following Lemma on the method in (7)-(8), proved in
the Appendix. The Lemma shows that, for the special case of consensus,
the admissible size of the step-size α with algorithm (7)-(8), under which
the algorithm is convergent, can be made larger than what standard analysis
for generic costs says [26]. On the other hand, for a sufficiently large α,
algorithm (7)-(8) is divergent.

Lemma 4.2. Consider optimization problem (1) with the fi’s as in (54).
Let the underlying network and weight matrix W satisfy assumptions A2
and A3, and moreover assume that W is positive definite. Consider al-
gorithm (7)-(8) with step-size α > 0, and let the initial iterates satisfy:
1Tx0 = 1Ta,1T z0 = 0.Then, the sequence xk generated by (8)–(9) converges
R-linearly to the solution x? = 1

n
(1Ta)1 if α ≤ 1/2, and it diverges, in the

sense that ‖xk‖ → ∞, when α > 2.
We now state our result on the DSG method.
Proposition 4.3. Consider optimization problem (1) with the fi’s as

in (54) and the weight matrix W as in (55), with θ ∈ [3/4, 1). Further, let
the initial iterates of the DSG method in (15)-(17) be such that: 1Tx0 =
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1Ta,1T z0 = 0. Assume next that σmax ∈ [2, 3], and σmin = 0. Assume
further that the initial step sizes 1/σ0

i are equal across all nodes i = 1, ..., n,
with σ0

i = σ ∈ [σmin, σmax]. Then, the sequence xk generated by the DSG
method (15)-(17) converges R-linearly to the solution x? = 1

n
(1> a)1.

We now prove Proposition 4.3.
Proof. Consider the DSG algorithm in (16)–(18) under the setting of

Proposition 4.3. Note that ∇F (x) = x− a.
Also, the inverse-step size at node i and iteration k becomes:

σk+1
i = P[0,σmax]

1 + σk−1
i

∑
j∈Ōi

wij(1−
sk−1
j

sk−1
i

)

 . (56)

The update rule (16)–(17) simplifies to the following:

xk+1 = Wxk − Σ−1
k zk,

zk+1 = Wzk + xk+1 − xk.

In view of the assumed initialization, we have

x1 = Wx0 − (1/σ)z0, 1T (x1 − x0) = 1T (Wx0 − x0) = 0

and therefore 1T s0 = 0, i.e.,
∑n

i=1 s
0
i = 0. This also means that:

1T z1 = 1TWz0 + 1T (x1 − x0) = 1T z0 + 1T s0 = 0.

We next analyze the step-sizes of the nodes at iteration k = 1. Denote
by σ ∈ [0, σmax] the initial step-size assumed equal at all nodes, and consider
the step-size at node 1 at the next iteration:

σ1
1 = P[0,σmax]

1 + σ0
1

∑
j∈Ō1

w1j(1−
s0
j

s0
1

)


= P[0,σmax]

(
1 + θσ(

n− 1

n
− 1

n

∑
j 6=1

s0
j

s0
1

)

)
= P[0,σmax](1 + σθ)

= min{1 + σθ, σmax}.
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Here, we used the fact that
∑n

i=1 s
0
i = 0, and so s0

1 = −
∑

j 6=1 s
0
j . It is easy

to see now, due to symmetry, that we also have σ1
j = σ1

1, j = 2, . . . , n, and so

σ1
1 = σ1

2 = . . . = σ1
n = σ1 := min{1 + σθ, σmax}.

Consider now the second algorithm iteration. Because σ1
i = σ1, for all i =

1, ..., n, and 1T z1 = 0, we have: x2 = Wx1 − 1/(σ1)s1, and 1T (x2 − x1) =
1T (Wx1−σ−1

1 s1−x1) = 1T (x1−x1) = 0, i.e., 1T s1 = 0. This further implies
that 1T z2 = 0, and

σ2
1 = σ2

2 = . . . = σ2
n = min{1 + σ1θ, σmax} = min{1 + θ + σθ2, σmax}.

Now, by induction, it follows that, across all iterations k, all nodes employ
the same step-size 1/σk, where

σk = σk1 = . . . σkn = min{1 + θ + . . .+ θk−1 + σθk, σmax}.

Next, because σmax ≤ 3, and θ ≥ 3/4 (as it is assumed in Proposition 4.3),
we can see that, at a certain iteration k = k′, we have that:

1 + θ + . . .+ θk−1 + σθk
′ ≥ σmax,

and so at all nodes i = 1, ..., n, we have:

σk
′
:= σk

′

1 = . . . σk
′

n = σmax.

Furthermore, in view of (56) and the fact that σmax ≤ 3, and θ ≥ 3/4, we
also have that, for all k ≥ k′, there holds:

σk := σk1 = . . . σkn = σmax.

However, this means that, starting from a finite iteration k′ onwards, the
algorithm utilizes a constant step-size α = 1/σmax equal across all nodes
and hence reduces to (8)–(9). Furthermore, because σmax ≥ 2, we have
that α ≤ 1/2, and hence, applying Lemma 4.2, we conclude that the DSG
algorithm converges R-linearly to the solution x?. The proof is complete.

Proposition 4.3 sets the safeguarding lower bound on the step-size 1/σmax ∈
[1/3, 1/2], and the safeguarding step-size upper bound on 1/σmin = +∞. The
proposition hence shows that, under the considered setting, DSG converges
without any a priori upper bound on the step-sizes and with a lower bound
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on the step-sizes. Proposition 4.3 hence provides an example where DSG is
significantly more robust in terms of the step-sizes admissible range than (8)–
(9). The proposition also helps in providing insights as to why DSG converges
under a wider admissible step-sizes range in simulations for more generic and
more practical scenarios (see Section 5).

5 Numerical experiments

This section provides a numerical example to illustrate the performance of
the proposed distributed spectral method.

We consider the problem with strongly convex local quadratic costs; that
is, for each i = 1, ..., n, let fi : Rd → R, fi(x) = 1

2
(x − bi)

TAi(x − bi),
d = 10, where bi ∈ Rd and Ai ∈ Rd×d is a symmetric positive definite matrix.
The data pairs Ai, bi are generated at random, independently across nodes,
as follows. Each bi’s entry is generated mutually independently from the
uniform distribution on [1, 31]. Each Bi is generated as Bi = QiDiQ

T
i ; here,

Qi is the matrix of orthonormal eigenvectors of 1
2
(B̂i + B̂T

i ), and B̂i is a
matrix with independent, identically distributed (i.i.d.) standard Gaussian
entries; Di is a diagonal matrix with the diagonal entries drawn in an i.i.d.
fashion from the uniform distribution on [1, 101].

The network is a n = 30-node instance of the random geometric graph

model with the communication radius r =
√

ln(n)
n

, and it is connected. The

weight matrix W is set as follows: for {i, j} ∈ E, i 6= j, wij = 1
2(1+max{di,dj}) ,

where di is the node i’s degree; for {i, j} /∈ E, i 6= j, wij = 0; and wii =
1−

∑
j 6=iwij, for all i = 1, ..., n.

The proposed DSG method is compared with the method in [26]. This is a
meaningful comparison as the method in [26] is a state-of-the-art distributed
first order method, and the proposed method is based upon it. The compari-
son thus allows to assess the benefits of incorporating spectral-like step-sizes
into distributed first order methods. As an error metric, the relative error
averaged across nodes

1

n

n∑
i=1

‖xi − y∗‖
‖y∗‖

, y∗ 6= 0.

is used.
All parameters for both algorithms are set in the same way, except for

step-sizes. With the method in [26], the step-size is α = 1/(3L), where
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L = maxi=1,...,n µi, and µi is the maximal eigenvalue of Ai. This step-size
corresponds to the maximal possible step-size for the method in [26] as em-
pirically evaluated in [26]. It is worth noting that, with [26], the maximal
possible step-size may not necessarily correspond to the best possible choice.
However, the optimal step-size is dependent on the cost functions’ and net-
work parameters, and it may be very resource-consuming in many applica-
tions. (See ahead Figure 2 for the hand-optimized step-size case.) With the
DSG method, at all nodes the initial step-size value is set to 1/(3L). The
safeguard parameters on the step-sizes are set to 10−8 (lower threshold for
safeguarding), and 10 × 1

3L
(upper threshold for safeguarding). Hence, the

step-sizes in DSG are allowed to reach up to 10 times larger values than the
maximal possible value with the method from [26].

Figure 1 (top) plots the relative error versus number of iterations with the
two methods. One can see that the DSG method significantly improves the
convergence speed. For example, to reach the relative error 0.01, the DSG
method requires about 340 iterations, while the method in [26] takes about
560 iterations for the same target accuracy; this corresponds to savings of
about 40%.

Figure 1 (bottom) repeats the experiment for a n = 100-node connected
random geometric graph, with the remaining data and network parameters
as before. We can see that the DSG method achieves similar gains. For
example, for the 0.01 accuracy, the DSG method needs about 650 iterations,
while the method in [26] needs about 1150, corresponding to decrease of
about 43% in computational costs. We also report that the method in [26]
and step-size equal to 1/σmin = 10/(3L) diverges. This demonstrates that,
on the considered example, DSG exhibits convergence under a significantly
wider set of step-sizes than [26].

Figure 2 plots the error versus iteration number for the DSG method
and the method in [26] with various values of the step-size α. Specifically,
α = 1/(2L) was the maximal possible choice for which the method in [26]
is convergent on the considered example. On the other hand, decreasing
step-size below α = 1/(100L) yields poorer convergence than for the case
α = 1/(100L). We can see that there exist choices of α for which [26]
converges faster than DSG; an optimal value of α is close to 1/(20L) for
the considered example. However, for other choices of α, DSG is faster; this
happens, e.g., for α = 1/(3L) or α = 1/(100L). We can see that DSG
achieves good performance without the need for aligning or hand-tuning of
step-sizes.
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Figure 1: Relative error versus iteration number for the method in [26] (“har-
nessing”, solid line) and the proposed method (dotted line).
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Figure 2: Error versus iteration number for the method in [26] with various
step-size values, and for the proposed DSG method.

6 Conclusion

The method proposed in this paper, DSG, is a distributed version of the
Spectral Gradient method for unconstrained optimization problems. Follow-
ing the approach of exact distributed gradient methods in [23] and [26], at
each iteration the nodes update two quantities – the local approximation of
the solution and the local approximation of the average gradient. The key
novelty developed here is the step size selection which is defined in a spectral-
like manner. Each node approximates the local Hessian by a scalar matrix
thereby incorporating a degree of second order information in the gradient
method. The spectral-like step-size coefficients are derived by exploiting an
analogy with the error dynamics of the classical spectral method for quadratic
functions and embedding this dynamics into a primal-dual framework. This
step-size calculation is computationally cheap and does not incur additional
communication overhead. Under a set of standard assumptions regarding the
objective functions and assuming a connected communication network, the
DSG method generates a sequence of iterates which converges R-linearly to
the exact solution of the aggregate objective function. A distinctive property
of DSG is that it works under a broader range (and hence possibly larger)
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step-sizes than existing exact first order methods like [26]. Moreover, DSG
provides a good automatic tuning of the nodes’ local step sizes, despite the
absence of global coordination and beforehand tuning. The spectral gradient
method is well known for its efficiency in classical, centralized optimization.
Preliminary numerical tests demonstrate similar gains of incorporating spec-
tral step-sizes in the distributed setting as well.

Appendix

Proof of Lemma 4.2. Consider algorithm (8)–(9). For the special case con-
sidered here, the update rule (7)-(8) becomes:

xk+1 = Wxk − α zk, (57)

zk+1 = Wzk + xk+1 − xk. (58)

Denote by ξk the (2n)×1 vector defined by ξk =
(
ek , zk

)
, where ek = xk−x?.

Then, it is easy to show that ξk obeys the following recursion:

ξk+1 = E ξk,

where E is the (2n)× (2n) matrix with the following n× n blocks:1

E11 = W − J, E12 = −α I, E21 = W − I, E22 = W − α I.

Consider the eigenvalue decomposition of matrix W = QΛQT , where Q is
the matrix of orthonormal eigenvectors, and Λ is the matrix of eigenvalues
ordered in a descending order. We have that λ1 = 1, and λi ∈ (0, 1), i 6= 1.
Note that the matrix E can now be decomposed as follows:

E = Q̂ P̂ Λ̂ P̂ T Q̂T .

Here, Q̂ is the (2n) × (2n) orthonormal matrix with the n × n blocks at
positions (1,1) and (2,2) equal to Q, and zero-off diagonal n× n blocks; and

1Lemma 4.3 can be proved similarly, if we work with representation (9)-(10) instead
of (7)-(8). The corresponding error recursion matrix then becomes as in (20), with Σ−1

k =
α I and H = I. The matrix has the same blocks as E up to a permutation, and the results
through the alternative analysis will be equivalent.
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P̂ is an appropriate permutation matrix. Furthermore, Λ̂ is the (2n)× (2n)
block-diagonal matrix with the 2× 2 diagonal blocks D1, ..., Dn, as follows:

D1 =

[
0 −α
0 1− α

]
, Di =

[
λi −α

λi − 1 λi − α

]
, i 6= 1.

It is then clear that the matrix E has the same eigenvalues as the matrix Λ̂,
and hence the two matrices have the same spectral radius. Next, by evaluat-
ing the eigenvalues of the 2×2 matrices Di, i = 1, ..., n, it is straightforward to
verify sufficient conditions on α such that the spectral radius ρ(Λ̂) is strictly

less than one, and such that ρ(Λ̂) is strictly greater than one. Namely, for
i 6= 1, it is easy to show that ρ(Di) < 1 if and only if α ∈ (0, αi), where

αi = (1+λi)
2

2
. On the other hand, for i = 1, we have that ρ(D1) = 1− α < 1.

In view of the fact that λi > 0, i = 2, ..., n, the latter implies that, when
α ≤ 1/2, we have that ρ(Λ̂) < 1; also, ρ(Λ̂) > 1 whenever α > 2. This in
particular implies that xk converges R-linearly to x? if α ≤ 1/2, and that xk

diverges, when α > 2. The proof is complete.
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with local domains: Applications in MPC and network flows, to appear
in IEEE Transactions on Automatic Control, 2015.

[23] Nedic, A., Olshevsky, A., Shi, W., Uribe, C.A., Geometrically con-
vergent distributed optimization with uncoordinated step-sizes, arXiv
preprint, arXiv:1609.05877, 2016.

[24] Nedic, A., Olshevsky, A., Shi, W., Achieving Geometric Convergence
for Distributed Optimization over Time-Varying Graphs, arxiv preprint,
arXiv:1607.03218, 2016.
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