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ABSTRACT 

Measuring the performance, reliability or quality of a software simply describes the sequence 

of actions taken detecting bugs in a software product. The Bugs found during the 

development of software has made researchers develop different methods of bug prediction 

models. However, predicting the bugs in a concurrent software product reduces development 

time and cost. In this paper, experiments were conducted on public available bug prediction 

dataset which is a repository for most open source software. The Genetic algorithm was used 

to extract relevant features from the acquired datasets to eliminate the possibility of over-

fitting. The extracted features are classified to defective or non-defective using random forest, 

decision tree and artificial neural network classification technique. Furthermore, the 

techniques were evaluated using accuracy, precision, recall and f-score. In completion of the 

conducted experiments, the random forest performs best among the algorithms in terms of 

accuracy, precision, and f-score with average score of 83.40%, 53.18%, and 52.04% 

respectively. Also, the results showed that neural network performs best in terms of recall 

with average score of 60% among the algorithms. Hence, the system helped software 

developers when developing a good quality software in order to check if the software system 

has a little or no defects before delivery to customers.  

 

Keywords:-Random Forest, Decision Tree, Artificial Neural Network, Software Defect 

Prediction, Software metrics, Genetic Algorithm. 

 

INTRODUCTION 

A software defect is defined as a flaw, 

fault or failure in a computer system or 

program that gives an unexpected or 

incorrect result [9]. It gives either an 

incorrect, or unexpected result, and 

behaves in unintended ways. The 

unexpected result is identified during 

software testing and marked as a defect. 

The Software defect prediction approaches 

are much more cost effective to detect 

software defects as compared to software 

testing and reviews. According to recent 

studies, it is reported that the probability of 

detection of software bug prediction 

models may be higher than probability of 

detection of currently software reviews 

used in relating methods [8].Consequently, 

timely identification of software bugs 

facilitates the testing resources allocation 

in an efficient manner and enables 

developers to improve the architectural 

structure of a system by identifying the 

high-risk segments of the system [8]. It is 

relevant to identify fault-prone code at 

each stage of software testing and 

prediction of defects in the software 

product enhances good quality software. 

The Feature selection is a method for 

handling large metric sets, to identify 
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which metrics contribute to the software 

defect prediction performance. By using 

the feature selection, redundant and hence, 

non-independent attributes are removed 

from the dataset [5].  

 

In this paper the genetic algorithm was 

used for extracting relevant features from 

the raw datasets. Two approaches can be 

used to build a software defect prediction 

model like supervised learning and 

unsupervised learning. However, the 

Supervised learning has the problem that 

to train the software defect prediction 

model need the historical data or some 

known results. 

 

There are many techniques or learning 

algorithm to select a vast variety of 

software metrics. However, The Random 

Forest, Decision Tree and Artificial Neural 

Network techniques were used in this 

paper for the prediction model with 

minimum set of metrics that can achieve 

the acceptable result. The performance of 

the techniques is evaluated using the 

accuracy, precision, recall and f-score. The 

accuracy is described as the number of the 

correctly classified instances. The 

precision measures the proportion of the 

identified files, classified as faulty and are 

actually faulty while recall measures the 

proportion of faulty files which are 

correctly identified as faulty.faulty.  

 

RELATED WORK  

Menzies et al. [7] make use of OneR, a 

classification rule algorithm to test 

thresholds of single attributes. They 

concluded that OneR is outperformed by 

the J48 decision tree most of times. Shafi 

et al. [10] used in addition to OneR 

another classification rule technique called 

ZeroR and was outperformed by OneR. 

ZeroR predicts the value of the majority 

class. Arisholm et al. has in two different 

studies [2] and [3], used the meta-learners 

Decorate and AdaBoost together with J48 

decision tree. They assert that Decorate 

outperformed AdaBoost on small datasets 

and performed comparably well on large 

datasets. However, they did not disclose 

their definition of small and large datasets. 

 
Grishma and Anjali investigated root cause 
for fault prediction by applying clustering 
techniques and identifies the defects 
occurs in various phases of SDLC. In this 
research they used COQUALMO 
prediction system to predict the defect in a 
software and applied various clustering 
algorithms like k-means, agglomerative 
clustering, density-based scan, COBWEB, 
expectation maximization and farthest 
first. The Implementation was done using 
WEKA tool. Finally, it was concluded that 
k-means technique works better when 
compared with other algorithms [4].  
 
The studies in [11,6] both analyzed the 
applicability of various ML methods for 
fault prediction. Sharma and Chandra [11] 
then added to their study the most 
important previous researches about each 
ML techniques and the current trends in 
software bug prediction using machine 
learning. This study can be used as ground 
or step to prepare for future work in 
software defect prediction.  
 
Agasta and Ramachandran [1] In 
Predicting the fault-proneness of program 
modules when the fault labels for modules 
are unavailable is a challenging task 
frequently raised in the software industry. 
They attempted to predict the fault–
proneness of a program modules when 
fault labels for modules are not present. 
Supervised techniques like Genetic 
algorithm-based software defect prediction 
approach for classification has been 
proposed. 
 
Yu et al. [12] then developed a model with 
a combination of derived metric sets to 
make better prediction of defect in 
concurrent software programs using deep 
learning technique which was named 
ConPredictor.  
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METHODOLOGY 
Data Collection 
The datasets were acquired from bug 
prediction dataset which is publicly 
available for use. This dataset is a 
repository for defect prediction for most 
open source software. In this paper, 
weighted entropy dataset codenamed 
“weighted-ent” was used out of the files in 
each repository. The Weighted entropy is 
the measure of information supplied by a 
probabilistic test whose elementary events 
are characterized by both their objective 
and qualitative weights. 

 

Feature Selection 

The Feature selection which may be 

referred to as attribute selection is simply 

the process of selecting subset of relevant 

features which is then used for the 

prediction model. However, this stage was 

achieved by using the genetic algorithm 

which was used to extract the features that 

most affect the outputs that is the number 

of bugs in a software product. In this 

paper, a typical genetic algorithm 

flowchart is represented in the Figure 1 

below.

 

 

 
Fig.1:-The Flowchart of a Typical Genetic Algorithm 

 

Machine Learning Algorithms 

The Machine learning algorithms learn to 

predict outputs based on previous 

examples. However, in this paper as the 
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experiment was conducted to test the 

extracted features, the learning algorithms 

were used with their standard settings in 

the MATLAB environment using 

statistical toolkit. The learning algorithms 

used in building the defect prediction 

model in this paper are Random Forest 

(RF), Decision Tree (DT) and Artificial 

Neural Network (ANN). 

 

Random Forest 

The premise of this techniques is building 

small decision tree with few features 

which is therefore computationally cheap. 

However, RF is an ensemble learning 

algorithm. Considering weak and small 

decision trees in parallel, the tress can then 

be combined in order to form a strong and 

single learner by taking the majority vote. 

Furthermore, random forests are often 

found to be the most accurate learning 

algorithms. Hence, the pseudocode used in 

this paper is given below in algorithm 1. 

Thus, building many more trees using the 

random forest learning algorithm is not 

only an option but these trees will also be 

less correlated which enables this 

algorithm to have good performance. 

 
Algorithm 1: Pseudocode of Random Forest 

Precondition: A training set   (     )   (     )  features  , and number of trees in forest   

FunctionRandomForest(   ) 
      

For         do 

 ( )    Abootstrap sample   

    Randomized Treelearn ( ( )  ) 
      *  + 
End for 

Return   

End function 

Function Randomized Treelearn(   ) 
At each node: 

    very small subset of   

Split on best feature in   

Return the learned tree 

End function 

 

Decision Tree 

A decision tree can be described as one of 

the supervised learning algorithm that is 

widely used for classification and 

regression task). The cognitive procedure 

of acquiring knowledge and classification 

measure of decision tree are not complex. 

In this work, after the conducted 

experiments a decision tree was generated 

from the training samples and the defects 

were classified as represented in algorithm 

2 below. 

 
Algorithm 2: Pseudocode of Decision Tree Learning  

Tree-Learning (TR, Target, Attr) 

TR: training examples 

Target: target attribute 

Attr: set of descriptive attributes 

{ 

Generate a Root node for the tree. 

If TR have the same target attribute value     
Then Return the single-node tree, that is. Root, with target attribute =    
IfAttr = empty (simply means no expressive attributes present), 

Then Return the single-node tree, i.e. Root, with most common value of Target in TR 

Otherwise 

{ 
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Select attribute A from Attr that classifies better TR depending on an entropy-based measure 

Set A the attribute for Root 

For each legal value of A,     do 

{ 

Add a branch below Root, corresponding to A =    
Let    be the subset of TR that have  A =    
If    is empty, 

Then add a leaf node beneath the branch with target value = most common value of  

Target in TR 

Else below the branch, add the subtree learned by Tree-Learning(       Target, Attr-{A}) 

} 

} 

Return (Root) 

} 

 

where 

   = the value of the target attribute and  

   the value of descriptive attributes 

 

Neural Network 

Neural networks (NN) is simply an 

important tool for classification. The 

recent wide research activities in neural 

classification having existed that NN are a 

promising alternative to various 

conventional classification methods. In the 

classification stage, neural network is 

capable of producing an intended result 

with the use of labeled training segments. 

However, an Artificial Neural Network 

(ANN) is a structure built on the 

performance of biological neural networks. 

ANN is a learning algorithm based on a 

model that can simply be used for 

classification. Furthermore, some 

algorithms are in existence used in training 

neural network like Newton Method, 

Gradient Descent, Levenberg-Marquardt 

(LM) e. t. c. In this paper, LM was adopted 

which is used for training the ANN. 

Algorithm 3 shows the pseudocode of 

Levenberg-Marquardt used for the defects 

classification.

 
Algorithm 3: Pseudocode of Levenberg-Marquardt  

Initialize Weights; 

While not stop Criterion do 

Calculates   ( )for each pattern 

    ∑       ( )   ( )

 

 

 

Calculates   ( )for each pattern 

Repeat 

Calculates    

    ∑     (    )   (    )

 

 

 

If     then 

        

End If 

Until      

       

        

End while 

where 

  ( ) is the Jacobian matrix of the error 

vector 

  ( ) is evaluated in   

  is the specification matrix.  

Hence, the parameter   is increased or 

decreased at each step. 
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Classification Stage 
In the classification stage, the extracted 
features were classified to defect or non-
defect using random forest, neural network 
and decision tree as highlighted in the 
previous section. Four times 4-fold cross-
validation was performed when evaluating 
the prediction model. The datasets are 
separated into four equal parts. Three parts 
out of four are used for the extraction 
process and as training data while the forth 
part is used for testing. In order for every 
part of the datasets to be used as training 
and testing, this procedure was repeated 
four times. Cross validation was adopted 
since the number of data is limited and it 
has a merit over the existing technique 
called holdout method. In the holdout 
method, one part of the datasets is used for 
training and the other for testing. However, 
the solution to the bias idea was adopted 
using cross validation where all the 
instances were used one time for testing 
and training. This simply means that, 
instead of conducting four folds, a total of 
16 folds is generated and the error estimate 
is therefore more reliable. 
 

Performance Evaluation 
The performance measures of the software 
defect prediction were achieved by this 
classification model with the availability 
and effectiveness of the metrics. True-
Positive, False-Positive, False-Negative 
and True-Negative prediction outcomes 
was considered. Thereafter, the defect 
prediction performance was based on the 
following; 
         

 
                            

                                                             

                            (1) 

This gives the quantitative relation of 

prediction that are correct. 

           
            

                             
(2) 

        
             

                             
 (3) 

           
   (                 )

                 

     (4) 

By collecting these performance 

measurements, future predictions on 

unseen files can be estimated. The block 

diagram of the defect prediction model is 

presented in Figure 2. 

 

 

 

            

            

            

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2:-Proposed Architecture. 
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RESULTS AND DISCUSSION 
The results achieved with the extracted 
feature set from the raw datasets are 
compared. Three techniques are then used 
for the defect prediction with cross 
validation. Cross validation tests exist in 
different ways but the method adopted in 
this paper is to divide the training data into 
a number of folds. The classifiers are 
evaluated by their classification using the 
accuracy, precision, recall and f-score, on 
one fold after having learned from the 
other folds. This procedure is then 
repeated until all the folds take part in the 
evaluation. The tables below show the 
performance evaluation of the techniques 

using the accuracy, precision, recall and f-
score as highlighted in section 3 of this 
paper. 
 
Accuracy 
Table 1 represents the accuracy of the 
techniques for the set of data used in 
this paper. The average of the accuracy 
for each learning algorithms were 
calculated and the values are described 
in percentage. In table 1, one can see 
that the random forest algorithm 
outperformed the other classifiers. In 
summary, the random forest is the best 
algorithm for the overall datasets 
evaluated by accuracy. 

 

Table 1:-The algorithm performance per dataset rated by accuracy 
Datasets Artificial Neural Network Random Forest Decision Tree 

ECLIPSE JDT CORE 86.93% 83.92% 75.88% 

ECLIPSE PDE UI 83.28% 83.61% 81.81% 

EQUINOX FRAMEWORK 70.77% 76.92% 73.85% 

LUCENE 91.3% 89.13% 89.86% 

AVERAGE 83.07% 83.40% 80.3% 

 

Precision 

The Precision is another performance 

evaluation which estimates how well the 

prediction model classifies faulty files that 

are actually faulty. Table 2 represents the 

individual score of all the learning 

algorithm per dataset as well as measuring 

the average of each classifier. In summary, 

the random forest is the best algorithm for 

the overall datasets rated by precision 

having average score of 53.18% followed 

by the ANN with 44.11%.

 

Table 2:-The algorithm performance per dataset rated by precision 
Datasets Artificial Neural Network Random Forest Decision Tree 

ECLIPSE JDT CORE 53.49% 76.74% 4.65% 

ECLIPSE PDE UI 31.91% 34.04% 6.38% 

EQUINOX FRAMEWORK 57.69% 76.92% 76.92% 

LUCENE 33.33% 25% 0% 

AVERAGE 44.11% 53.18% 21.99% 

 

Recall 

The Recall estimates how many of the faulty 

files the prediction model finds. As 

represented in Table 3 below, decision tree 

still estimates the dataset LUCENE at 0% 

recall. Also, the best algorithm is artificial 

neural network for the overall datasets rated 

by recall which is quiet a big gap to the other 

classifiers. 

 

Table 3:-The algorithm performance per dataset rated by recall 
Datasets Artificial Neural Network Random Forest Decision Tree 

ECLIPSE JDT CORE 79.31% 60% 22.22% 

ECLIPSE PDE UI 45.45% 47.06% 21.43% 

EQUINOX FRAMEWORK 65.22% 68.97% 64.52% 

LUCENE 50% 33.33% 0% 

AVERAGE 60% 52.34% 27.04% 
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F-Score 

F-Score is the last performance measure as 

highlighted in the section III above. This is 

a combination of recall and precision. 

Table 4 contains the values for all the 

datasets and the overall average value for 

each learning algorithms. Decision tree 

value for dataset LUCENE still stays at 

0% f-score. However, the best algorithm is 

the random forest for overall rated by f-

scorewith 52.04%.  

 

Table 4:-The algorithm performance per dataset rated by f-score 
Datasets Artificial Neural Network Random Forest Decision Tree 

ECLIPSE JDT CORE 63.89% 67.35% 7.69% 

ECLIPSE PDE UI 37.5% 39.5% 9.83% 

EQUINOX FRAMEWORK 61.22% 72.73% 70.18% 

LUCENE 40% 28.57% 0% 

AVERAGE 50.65% 52.04% 21.93% 

 

CONCLUSION 

The increase in software development 

process gives rise to different defect 

prediction techniques and models which 

are useful in producing reliable and quality 

software. Experiments were carried out on 

publicly available bug prediction datasets 

in this paper, by extracting relevant 

features from the original sets so as to 

avoid overfitting and results reveal the 

performance evaluation measure of the 

techniques per datasets. However, the best 

algorithm overall is random forest which is 

clearly seen on the tables represented in 

section IV above. Also, it is observed that 

the use of decision tree technique does not 

provide better prediction performance as 

shown in the overall average of each 

performance measures. Furthermore, the 

results in this paper are compared and in 

some cases and better when compared to 

other same software defect prediction 

models. 
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