

HBRP Publication Page 1-9 2019. All Rights Reserved Page 1

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

Software Defect Prediction System using Machine Learning based

Algorithms

Sanusi B. A.
1
, Olabiyisi S. O.

 2
, Olowoye A. O

3
, Olatunji B. L.

4
.

Department of Computer Science

Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Corresponding Author

E-mail Id:-
1
sanusibashiradewale90@gmail.com

2
soolabiyisi@lautech.edu.ng

3
aoolowoye@pgschool.lautech.edu.ng

4
olatunji_tunde@yahoo.com

ABSTRACT

Measuring the performance, reliability or quality of a software simply describes the sequence

of actions taken detecting bugs in a software product. The Bugs found during the

development of software has made researchers develop different methods of bug prediction

models. However, predicting the bugs in a concurrent software product reduces development

time and cost. In this paper, experiments were conducted on public available bug prediction

dataset which is a repository for most open source software. The Genetic algorithm was used

to extract relevant features from the acquired datasets to eliminate the possibility of over-

fitting. The extracted features are classified to defective or non-defective using random forest,

decision tree and artificial neural network classification technique. Furthermore, the

techniques were evaluated using accuracy, precision, recall and f-score. In completion of the

conducted experiments, the random forest performs best among the algorithms in terms of

accuracy, precision, and f-score with average score of 83.40%, 53.18%, and 52.04%

respectively. Also, the results showed that neural network performs best in terms of recall

with average score of 60% among the algorithms. Hence, the system helped software

developers when developing a good quality software in order to check if the software system

has a little or no defects before delivery to customers.

Keywords:-Random Forest, Decision Tree, Artificial Neural Network, Software Defect

Prediction, Software metrics, Genetic Algorithm.

INTRODUCTION

A software defect is defined as a flaw,

fault or failure in a computer system or

program that gives an unexpected or

incorrect result [9]. It gives either an

incorrect, or unexpected result, and

behaves in unintended ways. The

unexpected result is identified during

software testing and marked as a defect.

The Software defect prediction approaches

are much more cost effective to detect

software defects as compared to software

testing and reviews. According to recent

studies, it is reported that the probability of

detection of software bug prediction

models may be higher than probability of

detection of currently software reviews

used in relating methods [8].Consequently,

timely identification of software bugs

facilitates the testing resources allocation

in an efficient manner and enables

developers to improve the architectural

structure of a system by identifying the

high-risk segments of the system [8]. It is

relevant to identify fault-prone code at

each stage of software testing and

prediction of defects in the software

product enhances good quality software.

The Feature selection is a method for

handling large metric sets, to identify

mailto:sanusibashiradewale90@gmail.com

HBRP Publication Page 1-9 2019. All Rights Reserved Page 2

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

which metrics contribute to the software

defect prediction performance. By using

the feature selection, redundant and hence,

non-independent attributes are removed

from the dataset [5].

In this paper the genetic algorithm was

used for extracting relevant features from

the raw datasets. Two approaches can be

used to build a software defect prediction

model like supervised learning and

unsupervised learning. However, the

Supervised learning has the problem that

to train the software defect prediction

model need the historical data or some

known results.

There are many techniques or learning

algorithm to select a vast variety of

software metrics. However, The Random

Forest, Decision Tree and Artificial Neural

Network techniques were used in this

paper for the prediction model with

minimum set of metrics that can achieve

the acceptable result. The performance of

the techniques is evaluated using the

accuracy, precision, recall and f-score. The

accuracy is described as the number of the

correctly classified instances. The

precision measures the proportion of the

identified files, classified as faulty and are

actually faulty while recall measures the

proportion of faulty files which are

correctly identified as faulty.faulty.

RELATED WORK

Menzies et al. [7] make use of OneR, a

classification rule algorithm to test

thresholds of single attributes. They

concluded that OneR is outperformed by

the J48 decision tree most of times. Shafi

et al. [10] used in addition to OneR

another classification rule technique called

ZeroR and was outperformed by OneR.

ZeroR predicts the value of the majority

class. Arisholm et al. has in two different

studies [2] and [3], used the meta-learners

Decorate and AdaBoost together with J48

decision tree. They assert that Decorate

outperformed AdaBoost on small datasets

and performed comparably well on large

datasets. However, they did not disclose

their definition of small and large datasets.

Grishma and Anjali investigated root cause
for fault prediction by applying clustering
techniques and identifies the defects
occurs in various phases of SDLC. In this
research they used COQUALMO
prediction system to predict the defect in a
software and applied various clustering
algorithms like k-means, agglomerative
clustering, density-based scan, COBWEB,
expectation maximization and farthest
first. The Implementation was done using
WEKA tool. Finally, it was concluded that
k-means technique works better when
compared with other algorithms [4].

The studies in [11,6] both analyzed the
applicability of various ML methods for
fault prediction. Sharma and Chandra [11]
then added to their study the most
important previous researches about each
ML techniques and the current trends in
software bug prediction using machine
learning. This study can be used as ground
or step to prepare for future work in
software defect prediction.

Agasta and Ramachandran [1] In
Predicting the fault-proneness of program
modules when the fault labels for modules
are unavailable is a challenging task
frequently raised in the software industry.
They attempted to predict the fault–
proneness of a program modules when
fault labels for modules are not present.
Supervised techniques like Genetic
algorithm-based software defect prediction
approach for classification has been
proposed.

Yu et al. [12] then developed a model with
a combination of derived metric sets to
make better prediction of defect in
concurrent software programs using deep
learning technique which was named
ConPredictor.

HBRP Publication Page 1-9 2019. All Rights Reserved Page 3

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

METHODOLOGY
Data Collection
The datasets were acquired from bug
prediction dataset which is publicly
available for use. This dataset is a
repository for defect prediction for most
open source software. In this paper,
weighted entropy dataset codenamed
“weighted-ent” was used out of the files in
each repository. The Weighted entropy is
the measure of information supplied by a
probabilistic test whose elementary events
are characterized by both their objective
and qualitative weights.

Feature Selection

The Feature selection which may be

referred to as attribute selection is simply

the process of selecting subset of relevant

features which is then used for the

prediction model. However, this stage was

achieved by using the genetic algorithm

which was used to extract the features that

most affect the outputs that is the number

of bugs in a software product. In this

paper, a typical genetic algorithm

flowchart is represented in the Figure 1

below.

Fig.1:-The Flowchart of a Typical Genetic Algorithm

Machine Learning Algorithms

The Machine learning algorithms learn to

predict outputs based on previous

examples. However, in this paper as the

HBRP Publication Page 1-9 2019. All Rights Reserved Page 4

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

experiment was conducted to test the

extracted features, the learning algorithms

were used with their standard settings in

the MATLAB environment using

statistical toolkit. The learning algorithms

used in building the defect prediction

model in this paper are Random Forest

(RF), Decision Tree (DT) and Artificial

Neural Network (ANN).

Random Forest

The premise of this techniques is building

small decision tree with few features

which is therefore computationally cheap.

However, RF is an ensemble learning

algorithm. Considering weak and small

decision trees in parallel, the tress can then

be combined in order to form a strong and

single learner by taking the majority vote.

Furthermore, random forests are often

found to be the most accurate learning

algorithms. Hence, the pseudocode used in

this paper is given below in algorithm 1.

Thus, building many more trees using the

random forest learning algorithm is not

only an option but these trees will also be

less correlated which enables this

algorithm to have good performance.

Algorithm 1: Pseudocode of Random Forest

Precondition: A training set () () features , and number of trees in forest

FunctionRandomForest()

For do

 () Abootstrap sample

 Randomized Treelearn (())
 * +
End for

Return

End function

Function Randomized Treelearn()
At each node:

 very small subset of

Split on best feature in

Return the learned tree

End function

Decision Tree

A decision tree can be described as one of

the supervised learning algorithm that is

widely used for classification and

regression task). The cognitive procedure

of acquiring knowledge and classification

measure of decision tree are not complex.

In this work, after the conducted

experiments a decision tree was generated

from the training samples and the defects

were classified as represented in algorithm

2 below.

Algorithm 2: Pseudocode of Decision Tree Learning

Tree-Learning (TR, Target, Attr)

TR: training examples

Target: target attribute

Attr: set of descriptive attributes

{

Generate a Root node for the tree.

If TR have the same target attribute value
Then Return the single-node tree, that is. Root, with target attribute =
IfAttr = empty (simply means no expressive attributes present),

Then Return the single-node tree, i.e. Root, with most common value of Target in TR

Otherwise

{

HBRP Publication Page 1-9 2019. All Rights Reserved Page 5

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

Select attribute A from Attr that classifies better TR depending on an entropy-based measure

Set A the attribute for Root

For each legal value of A, do

{

Add a branch below Root, corresponding to A =
Let be the subset of TR that have A =
If is empty,

Then add a leaf node beneath the branch with target value = most common value of

Target in TR

Else below the branch, add the subtree learned by Tree-Learning(Target, Attr-{A})

}

}

Return (Root)

}

where

 = the value of the target attribute and

 the value of descriptive attributes

Neural Network

Neural networks (NN) is simply an

important tool for classification. The

recent wide research activities in neural

classification having existed that NN are a

promising alternative to various

conventional classification methods. In the

classification stage, neural network is

capable of producing an intended result

with the use of labeled training segments.

However, an Artificial Neural Network

(ANN) is a structure built on the

performance of biological neural networks.

ANN is a learning algorithm based on a

model that can simply be used for

classification. Furthermore, some

algorithms are in existence used in training

neural network like Newton Method,

Gradient Descent, Levenberg-Marquardt

(LM) e. t. c. In this paper, LM was adopted

which is used for training the ANN.

Algorithm 3 shows the pseudocode of

Levenberg-Marquardt used for the defects

classification.

Algorithm 3: Pseudocode of Levenberg-Marquardt

Initialize Weights;

While not stop Criterion do

Calculates ()for each pattern

 ∑ () ()

Calculates ()for each pattern

Repeat

Calculates

 ∑ () ()

If then

End If

Until

End while

where

 () is the Jacobian matrix of the error

vector

 () is evaluated in

 is the specification matrix.

Hence, the parameter is increased or

decreased at each step.

HBRP Publication Page 1-9 2019. All Rights Reserved Page 6

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

Classification Stage
In the classification stage, the extracted
features were classified to defect or non-
defect using random forest, neural network
and decision tree as highlighted in the
previous section. Four times 4-fold cross-
validation was performed when evaluating
the prediction model. The datasets are
separated into four equal parts. Three parts
out of four are used for the extraction
process and as training data while the forth
part is used for testing. In order for every
part of the datasets to be used as training
and testing, this procedure was repeated
four times. Cross validation was adopted
since the number of data is limited and it
has a merit over the existing technique
called holdout method. In the holdout
method, one part of the datasets is used for
training and the other for testing. However,
the solution to the bias idea was adopted
using cross validation where all the
instances were used one time for testing
and training. This simply means that,
instead of conducting four folds, a total of
16 folds is generated and the error estimate
is therefore more reliable.

Performance Evaluation
The performance measures of the software
defect prediction were achieved by this
classification model with the availability
and effectiveness of the metrics. True-
Positive, False-Positive, False-Negative
and True-Negative prediction outcomes
was considered. Thereafter, the defect
prediction performance was based on the
following;

 (1)

This gives the quantitative relation of

prediction that are correct.

(2)

 (3)

 ()

 (4)

By collecting these performance

measurements, future predictions on

unseen files can be estimated. The block

diagram of the defect prediction model is

presented in Figure 2.

Fig.2:-Proposed Architecture.

Data Collection

Extraction

Process

Module Selection

Relevant Data

Training and Test

Data

Software

Metrics

Random Forest, Decision Tree and

Neural Network Classifier

Classification

HBRP Publication Page 1-9 2019. All Rights Reserved Page 7

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

RESULTS AND DISCUSSION
The results achieved with the extracted
feature set from the raw datasets are
compared. Three techniques are then used
for the defect prediction with cross
validation. Cross validation tests exist in
different ways but the method adopted in
this paper is to divide the training data into
a number of folds. The classifiers are
evaluated by their classification using the
accuracy, precision, recall and f-score, on
one fold after having learned from the
other folds. This procedure is then
repeated until all the folds take part in the
evaluation. The tables below show the
performance evaluation of the techniques

using the accuracy, precision, recall and f-
score as highlighted in section 3 of this
paper.

Accuracy
Table 1 represents the accuracy of the
techniques for the set of data used in
this paper. The average of the accuracy
for each learning algorithms were
calculated and the values are described
in percentage. In table 1, one can see
that the random forest algorithm
outperformed the other classifiers. In
summary, the random forest is the best
algorithm for the overall datasets
evaluated by accuracy.

Table 1:-The algorithm performance per dataset rated by accuracy
Datasets Artificial Neural Network Random Forest Decision Tree

ECLIPSE JDT CORE 86.93% 83.92% 75.88%

ECLIPSE PDE UI 83.28% 83.61% 81.81%

EQUINOX FRAMEWORK 70.77% 76.92% 73.85%

LUCENE 91.3% 89.13% 89.86%

AVERAGE 83.07% 83.40% 80.3%

Precision

The Precision is another performance

evaluation which estimates how well the

prediction model classifies faulty files that

are actually faulty. Table 2 represents the

individual score of all the learning

algorithm per dataset as well as measuring

the average of each classifier. In summary,

the random forest is the best algorithm for

the overall datasets rated by precision

having average score of 53.18% followed

by the ANN with 44.11%.

Table 2:-The algorithm performance per dataset rated by precision
Datasets Artificial Neural Network Random Forest Decision Tree

ECLIPSE JDT CORE 53.49% 76.74% 4.65%

ECLIPSE PDE UI 31.91% 34.04% 6.38%

EQUINOX FRAMEWORK 57.69% 76.92% 76.92%

LUCENE 33.33% 25% 0%

AVERAGE 44.11% 53.18% 21.99%

Recall

The Recall estimates how many of the faulty

files the prediction model finds. As

represented in Table 3 below, decision tree

still estimates the dataset LUCENE at 0%

recall. Also, the best algorithm is artificial

neural network for the overall datasets rated

by recall which is quiet a big gap to the other

classifiers.

Table 3:-The algorithm performance per dataset rated by recall
Datasets Artificial Neural Network Random Forest Decision Tree

ECLIPSE JDT CORE 79.31% 60% 22.22%

ECLIPSE PDE UI 45.45% 47.06% 21.43%

EQUINOX FRAMEWORK 65.22% 68.97% 64.52%

LUCENE 50% 33.33% 0%

AVERAGE 60% 52.34% 27.04%

HBRP Publication Page 1-9 2019. All Rights Reserved Page 8

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

F-Score

F-Score is the last performance measure as

highlighted in the section III above. This is

a combination of recall and precision.

Table 4 contains the values for all the

datasets and the overall average value for

each learning algorithms. Decision tree

value for dataset LUCENE still stays at

0% f-score. However, the best algorithm is

the random forest for overall rated by f-

scorewith 52.04%.

Table 4:-The algorithm performance per dataset rated by f-score
Datasets Artificial Neural Network Random Forest Decision Tree

ECLIPSE JDT CORE 63.89% 67.35% 7.69%

ECLIPSE PDE UI 37.5% 39.5% 9.83%

EQUINOX FRAMEWORK 61.22% 72.73% 70.18%

LUCENE 40% 28.57% 0%

AVERAGE 50.65% 52.04% 21.93%

CONCLUSION

The increase in software development

process gives rise to different defect

prediction techniques and models which

are useful in producing reliable and quality

software. Experiments were carried out on

publicly available bug prediction datasets

in this paper, by extracting relevant

features from the original sets so as to

avoid overfitting and results reveal the

performance evaluation measure of the

techniques per datasets. However, the best

algorithm overall is random forest which is

clearly seen on the tables represented in

section IV above. Also, it is observed that

the use of decision tree technique does not

provide better prediction performance as

shown in the overall average of each

performance measures. Furthermore, the

results in this paper are compared and in

some cases and better when compared to

other same software defect prediction

models.

REFERENCES

1. Agasta, A. and Ramachandran, M.

(2014). Predicting the Software Fault

Using Genetic Algorithm technique.

The International Journal of Advanced

Research in Electrical, Electronics and

Instrumentation

Engineering.2014.3(2):390-398p.

2. Arisholm, E., Lionel, C. B and

Magnus, F. (2007). Data Mining

Techniques for Building Fault-

proneness Systems in Telecom Java

Software. In the 18
th

 International

Symposium on Software Reliability

(ISSRE’07), 2007.215–224p.

3. Arisholm, E., Lionel, C. B. and

Eivind, B. (2010). A Comprehensive

and Systematic Investigation of

Methods to Build and Evaluate Fault

Prediction models. Journal of Systems

and Software, 83(1):2–17p.

4. Grishma, B. R., and Anjali, C. (2015).

Software root cause prediction using

clustering methods: A review.

Communication Technologies

(GCCT), 2015 Global Conference

on.IEEE.

5. Eibe F., Ian H. W., and Mark A. H.

(2011). The Data Mining: Practical

Machine Learning Tools and

Methods, Third Edition (The Morgan

Kaufmann Series in Data Management

Systems). Morgan Kaufmann.2011.

6. Malhotra, R. (2014). Comparative

analysis of statistical and machine

learning techniques For predicting

buggy modules. Applied Soft

Computing. 2014.21:286-297p.

7. Menzies, T., Greenwald, J. and Frank,

A. (2007). The Data mining static

code features to learnbug predictors.

IEEE Trans. Softw. Eng. 2007.33:2–

13p.

8. Menzies, T., Milton, Z., Turhan, B.,

HBRP Publication Page 1-9 2019. All Rights Reserved Page 9

Journal of Advances in Computational Intelligence Theory

Volume 1 Issue 3

Cukic, B., Jiang, Y., and Bener, A.

(2010). Bug prediction from static

code attributes: current results,

limitations, new techniques. The

Automated Software

Engineering.2010.17(4):375–407p.

9. Parameswari, A. (2015). Comparing

Data Mining Techniques for the

Software Defect Prediction.

10. Shafi, S., Syed, M. H., Afsah, A.,

Malik, J. K. and Shafay, S. (2008).

The Software Quality Prediction

Techniques: A Comparative Analysis.

In 2008 4
th

 International Conference

on Emerging Technologies.2008:242–

246p.

11. Sharma, D. and Chandra, P. (2018).

Software Fault Prediction Using

Machine-Learning Techniques".

Smart Computing and

Informatics.Springer,

Singapore.2018:541-549p.

12. Yu, T., Wen, W., Han, X. and Hayes,

J. (2018). The Conpredictor model:

The Concurrency Defect Prediction in

Real-World Applications. In the

International Conference on Software

Testing, Verification and

Validation.2018:168-179p.

