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ABSTRACT
A sparse representation of 1D signals is proposed based on
time-frequency analysis using Generalized Rational Discrete
Short Time Fourier Transform (RDSTFT). First, the signal is
decomposed into a set of frequency sub-bands using poles and
coefficients of the RDSTFT spectra. Then, the sparsity is ob-
tained by applying the Basis Pursuit (BP) algorithm on these
frequency sub-bands. Finally, the total energy of each sub-
band was used to extract features for offline patient-specific
sleep stage classification of single channel EEG records. In
classification of over 670 hours sleep Electroencephalogra-
phy of 39 subjects, the overall accuracy of 92.50% on the test
set is achieved using random forests (RF) classifier trained
on 25% of each sleep record. A comparison with the results
of other state-of-art methods demonstrates the effectiveness
of the proposed sparse decomposition method in EEG signal
analysis.

Index Terms— Sleep stage classification, sleep-EDF,
sparsity, rational functions, basis pursuit.

1. INTRODUCTION

Sleep deprivation or several sleep disorders such as in-
somnia and sleep apena can cause disruption of normal day-
time activities [1]. One of the main objective measure for
sleep stage classification is the so-called polysomnogram
(PSG) which contains biological signals of non-intrusive sen-
sors such as electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG). The clinical diagnosis
of sleep staging is currently performed using the universal
standard developed by Rechtschaffen and Kales (R&K) [2].
Basically, it provides six distinct sleep stages: awake, four
different non-rapid (NREM) and one rapid eye movement
(REM) where the latter is associated with dreaming. Each
sleep stage can be characterized by a specific EEG activity.
For instance, the dominant EEG activities are discharges and
spikes in stage I (drowsiness), K-complexes in stage II (light
sleep) and delta waves in stages III and IV (deep/very deep
sleep).

Generally, sleep quality assessment is usually performed

manually by medical experts. In order to improve the diagno-
sis several automated sleep classification systems have been
proposed over the last decade. Many of these algorithms
utilize time-frequency analysis of the EEG signal to extract
discriminative features for sleep scoring. Decomposition of
sleep EEG signal into primary frequency sub-bands via 8 lev-
els Wavelet transform (WT) was first introduced in [3]. In
this case, 13 features are extracted based on the energy of each
sub-band which was used to train a feed forward artificial neu-
ral network (ANN) using back-propagation algorithm. An-
other decomposition technique was proposed in [4] based on
the Hilbert-Huang Transform (HHT) which uses Emperical
Mode Decomposition (EMD) to decompose the EEG signal
into 7 sub-bands. Similarly, features were extracted based on
the energy of the sub-bands.

In [5], we showed that one can improve the seizure clas-
sification accuracy of the classical DSTFT methods by rep-
resenting the EEG with only a few rational functions. The
reconstruction error was minimized via hyperbolic particle
swarm optimization (HPSO) [6] which results in an optimal
pole a0. Note that the classical DSTFT uses trigonometric
basis without any free parameters. In case of RDSTFT the
base functions are specific rational functions Φk that can be
adapted to the signal via HPSO. Moreover, the MT rational
system possesses the advantages of the classical DSTFT [5],
such as orthogonality, FFT implementation and the perfect
reconstruction is also possible [7]. In our former work [5],
we considered only binary classification of epileptic seizures.
In this study, we instead use RDSTFT to perform sleep stage
classification, which is a more complex problem. Addition-
ally, in order to increase the efficiency of the basic RDSTFT,
we introduce a signal decomposition technique based on the
MT rational system. In this method, an input signal is de-
composed into multiple frequency sub-bands. For this pur-
pose, MT rational coefficients of the signal are divided into
non-overlapping subsets. Each frequency sub-band is then
constructed using only one sub-set of the coefficients. Fur-
thermore, in order to obtain the most compact representation
of the sub-bands in time domain, the Basis Pursuit (BP) al-
gorithm [8] is utilized to induce the sparsity on the proposed
decomposition technique, which can provide more discrimi-
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natory power for low-level features. Here, the feature vector
is constructed by using the total energy of each sparse fre-
quency sub-band. The performance of the proposed method
is evaluated using 39 subjects of Sleep-EDF dataset [9]. A
comparative study with the results of other state-of-art meth-
ods reported in the literature for the same classification prob-
lem and the same dataset, shows that the proposed method
outperforms them with the overall accuracy of 92.50% and
the overall F-1 score of 92.39% on the test set using Random
Forest (RF) classifier trained individually on the 25% of each
sleep record.

The rest of the paper is organized as follows. Section 2
briefly summarizes the related work on the RDSTFT spectra.
Then, Section 3 introduces the sparse RDSTFT decomposi-
tion. Section 4 describes the sleep staging problem and the
dataset, it discusses the experimental results as well. Finally,
Section 5 concludes the paper.

2. RELATED WORK

In our former work [5], the Generalized Rational Discrete
Short Time Fourier Transform was proposed using different
types of rational orthogonal basis functions: φk where 0 ≤
k ≤ N − 1 and N is the number of coefficients. In fact,
similar to a windowed Fourier transform, the rational DSTFT
of the signal f can be defined as:

RφFgf [n, k] =

M−1∑
m=0

f [n−m]g[m]φk[m] , (1)

where φk[m] = Φk(e−2π m
M ) is a specific type of rational

basis, g[m] is a window function with length M . Based
on the functions Φ, different rational systems can be in-
troduced. Now, let us consider the sequence of inverse poles
a0, . . . , aN−1 which lie inside the open unit disk D. Then, the
so-called Malmquist–Takenaka (MT) system can be defined
as:

Φk(z) =

√
1− |ak|2

1− akz

k−1∏
j=0

Baj (z) ,

with 0 ≤ k ≤ N − 1 , where Ba(z) is a Blaschke function:

Ba(z) :=
z − a
1− az

(z ∈ C \ { 1/a }) .

Note that, in our model we used only one pole a0 with
multiplicity m0 = N. Namely, a0 = a1 = . . . = aN−1.
Furthermore, the flexibility of the rational DSTFT is due to
the fact that the location of the pole a0 ∈ D and the num-
ber of its multiplicity N , can be estimated according to the
shape of the input signal. On one hand, perfect reconstruc-
tion requires N = M and the non-uniform discretization of

the signal [7]. On the other hand, the inverse transform of the
rational DSTFT for N < M can be approximated as

f [n−m] ≈ 1

g[m]

N−1∑
k=0

RφFgf [n, k]φk[m] . (2)

3. SPARSE RATIONAL DSTFT DECOMPOSITION

3.1. Decomposition of EEGs using rational components

In the previous section, the EEG signal f is divided
into shorter segments which are represented by a number
of poles aj and coefficients cnk in the MT rational DSTFT
sense, i.e. cnk := RφFgf [n, k]. Furthermore, the mth sample
of the nth segment f [n − m] can be approximated by us-
ing Eq. (2). Each coefficient of the RDSTFT spectra points
out to a specific frequency range in the t-f domain. More
precisely, coefficients with larger magnitudes indicate the
dominant signal activity in a specific frequency range. In
order to decompose the signal into these sub-bands, we will
use the set of rational components related to the nth segment
Sn = {cnkΦnk : 0 ≤ k ≤ N − 1} . Then, we arrange the co-
efficients in an ascending or descending order of magnitude.
This is followed by partitioning Sn into L number of distinct
subsets which contain the components of the corresponding
sub-bands. Now, the ith sub-band of the nth segment for
i = 0 . . . L− 1 can be defined as

f [n−m]i =
1

g[m]

(i+1)`−1∑
k=i`

cnσ(k)Φ
n
σ(k) , (3)

where ` = N/L and σ(k) denotes the permutation of the in-
dexes corresponding to the rearrangement of the coefficients.
Note that the reconstructed signal in (2) is obtained using the
sum over the sub-bands:

f [n−m] ≈
L−1∑
i=0

f [n−m]i . (4)

3.2. Basis Pursuit

In order to induce the sparsity constraint to the DSTFT
decomposition in (3), we employ the well-known BP algo-
rithm [8]. BP convex optimization problem is as follows:

min
x
‖x‖1 subject to Ax = b , (5)

where b is an univariate signal, A is an over-complete dic-
tionary and x is the coefficient vector of the transform. Ad-
ditionally, the Basis Pursuit Denoising (BPD) as a variant of
the original BP problem can be obtained as:

min
x

1

2
‖b−Ax‖22 + λ · ‖x‖1 . (6)

where λ > 0 is the so-called regularization parameter.

23rd European Signal Processing Conference (EUSIPCO)

1906



In case of RDSTFT, A is the matrix whose columns are
the synthesis functions Φk of the transform, x contains the co-
efficients cnk corresponding to the nth segment of the EEG sig-
nal which is equal to b. The optimization problem in (6) can
be solved by using the iterative shrinkage/thresholding (IST)
algorithm [10]. Here, we applied the split augmented La-
grangian shrinkage algorithm (SALSA), which was proven to
converge faster than IST or other alternative algorithms [11].

4. SLEEP STAGE CLASSIFICATION IN SINGLE
CHANNEL EEG

4.1. The Experimental Data

The public sleep-EDF database is used as the experimen-
tal data for sleep stage detection task. The database is a part
of the PhysioNet data bank [12]. Sleep records were obtained
from two different groups of subjects. First group contains 79
healthy Caucasians subjects aged 25-101, without any sleep-
related medication. The second group of subjects had sleep
difficulty and were under influence of temazepam medication
during the recording. In this study we only consider the first
group of subjects. Each sleep record was obtained using dif-
ferent modalities including: one horizontal Electrooculogra-
phy (EOG), two EEG channels (Fpz-Cz and Pz-Oz), submen-
tal Electromyogram (EMG) envelope, oronasal airflow, and
rectal body temperature. EEG and EOG signals were sampled
at 100 Hz. Additionally, we used single channel (Fpz-Cz) of
the EEG record in this study to detect sleep stages.

4.2. Feature Extraction

Following the basic algorithm in [5], we segment the EEG
signal into epochs with 1s duration. Furthermore, we com-
pute the optimal RDSTFT with N = 64 MT coefficients via
HPSO. The sparse decomposition defined in Section 3 is ap-
plied in the next step. Namely, the coefficients are arranged in
an ascending or descending order of magnitude followed by
the partition of L = 8 distinct subsets. Then, each sub-band
is reconstructed using the pole and one of the coefficients’
subsets. Finally, the sparse representation of the frequency
sub-bands is achieved by solving the optimization problem
introduced in Eq. (6). Fig. 1 shows the result of the pro-
posed decomposition technique on an EEG signal. As it can
be seen, the reconstructed signal after inducing the sparsity
to the frequency-bands, possesses the underlying shape of the
original signal. The total energy of each frequency sub-band
is extracted as the feature for discrimination between differ-
ent sleep stages. Since the shortest sleep stage event in the
dataset lasts for 30s, the extracted features are averaged in a
sliding window with 30s duration in order to represent fea-
tures of 30s epochs. In fact, RDSTFT results in a finer time-
frequency resolution for shorter epochs and due to this the
feature extraction method was first applied on epochs with 1s
duration.
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Fig. 1. Results of the proposed decomposition technique ap-
plied on one epoch of an EEG signal, a) original signal and
its frequency sub-bands, b) reconstructed signal and sparse
representation of the frequency sub-bands.

4.3. Classification

In this section, we use the features extracted from sparse
representation of rational frequency sub-bands for supervised
sleep-stage classification of EEGs. Three different classifiers
which have been been widely used in the literature are em-
ployed for this purpose. These classifiers are namely: 1) Mul-
tilayer Perceptron (MLP): the MLP architecture consists of 3
layers with 8 neurons in the input layer, 4 neurons in the hid-
den layer and 4 neurons in the output layer; 2) Support Vector
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Sleep Stage

Classifier
Wake Stage 1 + REM Stage 2 Stage 3&4 Overall

recall % recall % recall % recall % Accuracy% F1%

Lin-SVM 97.71 50.33 79.73 39.30 88.26 86.43
MLP 97.53 69.75 82.55 75.89 91.63 91.46
RF 98.26 73.51 82.69 77.17 92.50 92.39

Table 1. Overall classification results obtained for all 39 patients using different classifiers
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Fig. 2. Detailed classification results obtained for each subject in the dataset using RF classifier (highlighted IDs indicate
subjects used in [13]).

Machines (SVMs) with linear kernel; 3) Random forest (RF):
RF is an ensemble decision tree classifier, which does not re-
quire pruning compared to single conventional decision trees.
In this paper, 4 different states of sleep stage discrimination
are used for classification of sleep records. The 4 sleep states
are namely: 1) wake, 2) stage 1 + REM, 3) stage 2, 4) slow
wave sleep (SWS) consisting of stages 3 & 4. All the classi-
fiers are individually trained for each subject using 25% of its
sleep record, which is randomly picked, and tested on the rest
of the sleep-record.

In all experiments, the performance of the proposed
method is evaluated using 3 measures: 1) Recall or true-
positive-rate which indicates the number of truly detected
epochs per class and per patient; 2) overall accuracy of the
classifier for all patients; 3) F1 score which is the harmonic
mean of both precision and recall. The sleep records are
highly imbalanced due to the presence of large number of
wake epochs. Hence, it is essential to simultaneously obtain
high accuracy and F1 score.

The overall results obtained using each classifier are listed
in Table 1. As it can be seen, RF classifier can outperform
the other two classifiers. However, the difference between
the performance of the MLP and RF classifiers is not signifi-
cant. The detailed results of each subject using RF classifier
can be seen in Fig. 2. The lowest recall rates for SWS and
stage 1+REM states are obtained for subjects SC4101E0 and
SC4111E0, respectively. This is due to the limited number of
epochs belonging to those states which makes the classifier

incapable of learning those patterns. The comparison of the
proposed method with the results of other state-of-art meth-
ods reported in the literature for the same dataset and the same
classification problem can be seen in Table 2. We note that the
other methods have been only evaluated using a limited num-
ber of subjects in the dataset. In spite of that, the proposed
method outperforms the others in terms of the classification
accuracy. Note that only in [13] IDs of the subjects have been
reported and thus the performance of the proposed method for
those subjects is also included in Table 2.

Author(s) # of subjects Accuracy (%)

Zhu et al. (2012) [13]∗ 4 83.19
Proposed method∗ 4 93.35

Phan et al. (2013) [14] 4 86.30
Liu et al. (2010) [4] 7 89.3

Ebrahimi et al. (2008) [15] 7 93.00
Li et al. (2009) [16] 8 81.73
Proposed method 39 92.50

Table 2. The comparison of the proposed algorithm with
other state-of-the-art methods for the 4-class sleep scoring
performed on the Sleep-EDF dataset

5. CONCLUSIONS AND FUTURE WORK

In this paper, the sparse decomposition of EGG signals
was proposed using rational DSTFT and BP algorithm. We
showed that, common low-level feature extraction methods
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can then be applied on the sparse representation of the fre-
quency sub-bands. High classification results are obtained
using the proposed decomposition method and the total en-
ergy of each sub-band as the only single statistical feature.
As it was justified by the experiments, the proposed method
can achieve high accuracy rate and F1 score in supervised
sleep staging problem. Moreover, we demonstrated that the
proposed feature extraction method can represent the EEG
signal in such a way that higher discrimination performance
is obtained among sleep states. Thus, a better classification
performance than the competing methods is achieved. While
the proposed sparse representation can improve feature ex-
traction and classification results, it can further be used for
the analysis of other signals in this domain such as EEG in-
verse imaging and mapping, feature selection and component
analysis. As our future study, we are aiming at the classifica-
tion of multi-channel and multi-modal physiological data by
using the proposed method. In addition, we will investigate
decomposition of the signal using multiple poles and sub-sets
of coefficients with overlaps.
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