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Abstract 
 
Adaptive sample size re-estimation (SSR) methods have been widely used for designing clinical 

trials, especially during the past two decades. We give a critical review for several commonly used 

two-stage adaptive SSR designs for superiority trials with continuous endpoints. The objective, 

design and some of our suggestions and concerns of each design will be discussed in this paper.  
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Introduction  

 

Sample size determination is a key part of 

designing clinical trials. The objective of a good 

clinical trial design is to achieve the balance 

between efficiently spending resources and 

enrolling enough patients to achieve a desired 

power. At the designing stage of a clinical trial, 

there usually only have limited information 

available about the population, so that the 

sample size calculated at this stage may not be 

sufficient to address the study objective. 

Assumed that the data from two parallel 

treatment groups (e.g. treatment and control 

groups) are normally distributed with mean 

treatment effect 𝜇1 and 𝜇2, and equal within-

group variance 𝜎2. Let the mean difference 

(treatment effect) 1 2  = − . The efficacy of 

the treatment will be evaluated by testing the 

hypothesis. 

𝐻0: 𝛿=0 against 𝐻𝑎: 𝛿>0. 

 

Traditional fixed-size designs or group 

sequential designs calculate the sample size of 

the trial before it starts based on an assumed 
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treatment effect 𝛿𝑎 and within-group variance 

𝜎𝑎
2, or estimate them from historical data. 

However, at the planning stage of the study, we 

may have little information about the 

parameters or the information we have might be 

inaccurate, which can lead to grossly 

overestimation or underestimation of the 

sample size. The underestimation of the sample 

size is especially unfavorable, because it will 

make the trial under-powered and fail to find a 

significant treatment benefit. It will be helpful 

if we can re-estimate the sample size after some 

of the data are observed from the study, so we 

can re-estimate the unknown parameter 

accordingly. Because the re-estimated 

parameter is from the current data, it will 

represent our current population much better 

than the parameter estimated from previous 

information. 

 

There is no doubt that increasing sample size 

will increase test power, but there are also 

problems we need to pay attention to. First, how 

can we control type I error rate? When the re-

estimated sample size is depending on observed 

data, it may bias the final test. Then, how can 

we control the power at a desired level when the 

design changes? Moreover, we want the re-

estimated sample size to be efficient, because 

there is no need for the power to be as high as 

possible, otherwise we can just use the 

maximum affordable sample size at the 

beginning of the trial and it may detect a non-

clinical meaningful difference.  

 

The purpose of this paper is not to promote or 

discourage people to use certain SSR design, 

but to offer some guidance for people who want 

to use SSR designs (especially for the first time) 

about the basic ideas, advantages and 

drawbacks of each design. Many literatures 

with similar purpose have been published to 

summarize and to review the existing SSR 

designs with different focuses. Some old review 

papers with technical details such as [1,2] were 

written at least ten years ago. They cannot 

involve many designs proposed in the 

literatures published recently, and they focus 

more on summarizing the authors’ own works. 

The review paper given by [3] five years ago 

focuses on comparing some commonly used 

unblinded two-stage SSR designs in terms of 

their operating characteristics. More recently, 

the paper published by [4] gives thorough 

review about the development of SSR designs 

since 1945. However, they only use a few 

words to summarize the basic idea of each 

design, which provide little technical detail or 

comments about how they perform. In this 

paper, we focus on reviewing and giving 

comments on the literatures of two-stage 

adaptive SSR designs for both blinded and 

unblinded superiority trials with continuous 

endpoints, especially those published during 

the past two decades. Early stop for efficacy or 

futility will not be discussed here, and here we 

only consider increasing sample size. To re-

estimate sample size based on the information 

observed from the first stage, a variety of 

different techniques proposed in past literatures 

will be summarized in this paper, such as re-

estimating within-group variance or treatment 

effect; adjusting final test statistic, critical value 

or significance level; giving constraints on 

adaptive region; and so on. The objective, 

design details and some of the key suggestions 

and concerns of each design will be given in this 

paper. The common adaptive SSR designs can 

be summarized in the following procedures; it 

can also be simplified by the flowchart in 

Figure 1. 

 

a) At the beginning of the trial, calculate the 

original planned per-group sample size 𝑁0 

based on assumed parameters such as the 

targeted treatment effect 𝛿𝑎 that the experiment 

wants to detect, the within-group variance 𝜎𝑎
2 

or both.  

b) After 𝑛1 = 𝑡 ∗ 𝑁0 (0 < 𝑡 < 1) patients 

per-group (for simplicity, here we only consider 

equal sample size for each group) have been 

enrolled and have had responses, calculate the 

test score and exam whether it satisfies certain 

re-estimation criteria, the criteria can be 

decided by either practical considerations or 

theoretical reasons.  

http://www.raftpubs.com/
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c) If the re-estimation criteria are not satisfied, 

the trial will be finished as its original design. 

Continue to enroll 𝑁0−𝑛1 patients per-group, 

claim superiority if the final test based on the 

cumulated data of two stages rejects 0H  and 

stop.  

d) If the re-estimation criteria are satisfied, re-

estimate the sample size 𝑁∗based on the 

information from the first stage data (such as 

the re-estimated treatment effect, variance, 

etc.). Some of the designs may need to adjust 

test statistic, significance level or critical value 

to protect the operational characteristics of the 

final test. Continue to enroll 𝑁∗ − 𝑛1 patients 

per-group, claim superiority if the final test 

based on the cumulated data of two stages 

rejects 0H  and stop.  

 

 

 
Figure 1: General Procedure for Adaptive SSR Designs. 
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Part One: Blinded SSR (BSSR) Designs  

 

In this section, we discuss some well-known 

blinded SSR designs (BSSR) which do not 

break treatment code before the trial is finished. 

The latest FDA draft guidance Adaptive 

Designs for Clinical Trials of Drugs and 

Biologics [5], refers to these designs as based 

on non-comparative data. BSSR designs have 

the advantage of protecting the confidentiality 

of the treatment effect at the interim study and 

more acceptable regulatory. The original 

planned per-group sample size of the designs in 

this section can be all given by 

 

  

2

2

0 2

2( )
a

a

z z
N

 




+
= ……………… (1) 

where z  and z  are the (1−α)th and (1−β)th 

quantiles of the standard normal distribution. 

Because the treatment result cannot be revealed 

before the trial complete, only within-group 

variance 
2

  is re-estimated after observing 

the first stage data to protect trial power against 

underestimation of the sample size. Two 

sample t-test will be used at the end of the trial 

with cumulated data from two stages. 

 

The BSSR with EM-Algorithm Method  

 

Objective and Design 

 
The design proposed by [6,7] conducts interim 

analysis after part of the original planned data 

(e.g. 𝑁0 samples for the combined two groups 

data) are observed. They re-estimate the per-

group sample size 𝑁∗ with the same formula as 

equation 1, but replace the assumed within-group 

variance  
2

  by the re-estimated value 
2 , 

where 
2  is calculated by EM-algorithm method 

based on the observed first stage data. The sample 

size increases only if the re-estimated sample size 

𝑁∗ is sufficiently larger than the original planned 

sample size 𝑁0, say 𝑁∗/𝑁0 > λ > 1, where λ is a 

pre-decided value. If the sample size modification 

is made, the efficacy of the treatment will be 

claimed with significance level 𝛼 if the final test 

with cumulated data from two stages 𝑇(𝑁∗) >

𝑡2𝑁∗−2,𝛼. Where 𝑇(𝑁∗) is the two-sample t-test 

statistic with 
*N  sample per-group; 2 * 2,Nt −  is 

the (1- 𝛼)th quantile of t-distribution with 2𝑁∗ −
2 degrees of freedom. To protect the treatment 

result, the authors claim, although the EM-

algorithm method gives accurate estimation of 

within-group variance 𝜎2, it does not estimate 

standard treatment effect (𝜇1 − 𝜇2)/𝜎 very well 

[6]. For instance, we can’t get clear evidence from 

the estimation results of (𝜇1 − 𝜇2)/𝜎 about how 

likely the null hypothesis will be rejected, thus 

protecting the blindness of the trial. 

 

Concerns and Weaknesses of the Design  

 
It was pointed out by [8] that with increased 

sample sizes, bias and variability of the EM-

algorithm estimations of 𝜎2 and (𝜇1 − 𝜇2)/
𝜎 both decrease. That means although it was 

claimed by the authors that the estimation of 

standard treatment effect (𝜇1 − 𝜇2)/𝜎 is not 

accurate, it still reveals some information about 

the test result, especially when the sample size 

or the mean difference is pretty large. 

Furthermore, the accuracy of the 
2  estimation 

by EM-algorithm greatly depends on the choice 

of initial values and the procedure sometimes 

may stop before convergence is reached. It’s 

also shown by [8] that when the true treatment 

effect is moderate, EM-algorithm dramatically 

underestimates the within-group variance while 

the sample variance calculated from the 

combined two group data (will be introduced in 

later section of this paper) is much simpler, and 

the overall variance is only slightly larger than 

the true within-group variance. Moreover, even 

though the estimation of 
2 is accurate, to re-

estimate sample size depending on the observed 

first stage data may bias the final test. 

Therefore, it might be problematic to still 

compare the final test with the original planned 

critical value. 
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The BSSR with Significance Level 

Adjustment 

 
Objective and Design 

 

The design given by [9] has flexible choice of 

first stage sample size 𝑛1 = 𝑡 ∗ 𝑁0 (0 < 𝑡 < 1) 

After observing the first stage data, two ways 

were proposed to re-estimate the within-group 

variance. The first estimation is denoted by 𝑆𝑜𝑠
2  

(one-sample variance), which is simply the 

sample variance of the combined data from two 

groups. The second estimation is 

 

       
( )

2 2 21
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It adjusts between group variation by a function 

of the assumed treatment effect. The adjusted 

variance estimation 
2

adjs is unbiased estimation 

of the true within-group variance if a =

Then re-estimate the total per-group sample 

size 𝑁∗ by the same formula as equation 1 but 

replace 
2

a  with 
2

oss  and 
2

adjs . However, after 

the sample size re-estimation, the final two 

sample t-test statistic 𝑇(𝑁∗) no longer follows 

* 22 N
t −  distribution since 𝑁∗ is now a random 

variable. Comparing the final test statistic value 

with the original planned cut off point *2 2,N
t

−

may inflate the type I error rate. To evaluate 

how much re-estimating sample size based on 

the first stage data affects the control of type I 

error rate, [10] gives the exact formula for 

calculating actual type I error rate 𝛼𝑎𝑐𝑡(𝛼,  𝑛1,
𝑁 ) after sample size re-estimation. Their 

calculation is based on numerical integration. 

The unknown parameters in the actual type I 

error rate function 𝛼𝑎𝑐𝑡(𝛼,  𝑛1, 𝑁 ) are 

significance level 𝛼, the first stage sample size 

1n  and the unknown actual required sample 

size 𝑁. The authors show when the difference 

between the true treatment effect 𝛿 and the 

assumed treatment effect a  is moderate, there 

is not practical difference between act  and the 

nominal level 𝛼, thus no adjustment is needed. 

For other situation, for each fixed 1n  and 𝛼, we 

can find a 𝑁 to maximize the actual type I error 

act say max 1( , )n  . Then to control the actual 

type I error rate at 𝛼 level, for each fixed 1n , we 

can find an adjusted significance level 
*  so 

that 𝛼𝑚𝑎𝑥(𝛼∗,  𝑛1) = 𝛼. Then, with each pre-

determined 𝑛1 and 𝛼, using the adjusted 

significance level 
*  for the final test ensures 

the type I error rate won’t exceed 𝛼 for any 

arbitrary 𝑁. After the sample size modification, 

efficacy is claimed at significance level 𝛼 if the 

final test with cumulated data from two stages 

𝑇(𝑁∗) > 𝑡2𝑁∗−2,𝛼∗. 

 
Concerns and Weaknesses of the Design 

 
The advantage of this design is that its type I 

error rate will not exceed the desired level 𝛼. 

However, the calculation of 𝛼𝑎𝑐𝑡 is quite 

complicated. Furthermore, it might not be 

comfortable for some people to accept that the 

final test significance level must be changed to 

maintain the type I error rate only because the 

sample size was re-estimated. If the new 

significance level 𝛼∗ is smaller than the original 

one, it feels like that this design leads to a 

penalty for the final test. 

 

Part Two: Unblinded SSR (UbSSR) Designs 

Based on Nuisance Parameters  

 
Two commonly used unblinded SSR (UbSSR) 

designs with re-estimated within-group 

variance 
2

  are introduced in this section. 

The later one is based on the design of the 

earlier one with some adjustment on the final 

test significance level. Two sample t-test is used 

at the end of the trial with the cumulated data 

from two stages. 
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The Naïve UbSSR  

 
Objective and Design 

 

For some non-clinical experiments and clinical 

designs without blinding requirement, the 

design proposed by [11] and later further 

analyzed by [12] was one of the earliest designs 

that recommended to include the internal pilot 

study data (i.e. the first stage data) in the final 

test. The initial planned per-group sample size 

𝑁0 can again be given by equation 1. 

 

The authors use two-sided test in the original 

paper, without loss of generosity, we can make 

some adjustment to make it a one-sided test. 

They recommend that after the data of 𝑁0/2 

patients are observed as per-group, increasing 

sample size if the pooled sample variance 𝑆2 of 

the two groups based on the first stage data is 

larger than 
2

 . Because the sample sizes in 

their study were small, to make the calculation 

precisely, they use t-distribution rather than its 

normal approximation to compute the re-

estimated sample size after the internal pilot 

study. If 
2 2S  , the re-estimated per-group 

sample size 𝑁∗ can be given by 

 
2

2 2, 2 2,* 2

2

2( )
min{ : }

n n

a

t t
N n n S

 



− −+
=   …..(2) 

Where  2 2,nt − and 2 2,nt − are the (1−α)th and 

(1−β)th quantiles of the central t-distribution 

with degree of freedom 2𝑛−2. If the sample size 

is changed, the final test claims efficacy if the 

test score exceeds 𝑡2𝑁∗−2,𝛼. 
 

Concerns and Weaknesses of the Design 

 

This design greatly improves test power than 

the fixed size design if the variance 
2

  used 

for calculating 𝑁0 is less than the true variance 

𝜎2. However, since the final test is biased 

because of the SSR procedure, simulation 

results shows there is non-negligible type I 

error inflation when sample size is relatively 

small, internal pilot is conducted at around half 

the required sample size and 
2

  is close to the 

true variance 𝜎2. 

 

The UbSSR with Significance Level 

Adjustment  

 
Objective and Design 

 

The design of [13,14] is based on the design of 

[12], but with moderate to large size trial, they 

used the normal approximation of t-distribution 

to calculate the re-estimated sample size, say, 

 𝑁0 is the same as equation 1, and 𝑁∗ is given 

by replacing 
2

  in equation 1 with the pooled 

sample variance 𝑆2 if 2 2S  . Moreover, to 

solve the type I error rate inflation problem, 

they again derived the exact formula of the 

actually type I error rate 𝛼𝑎𝑐𝑡 after sample size 

adjustment, which is similar as they did for the 

BSSR design. The unknown parameters in the 

actual type I error rate function 𝛼𝑎𝑐𝑡 (𝛼, 𝑛1, 𝑁) 

are significance level 𝛼, first stage sample size 

𝑛1 and the unknown actual required sample size 

𝑁. For each fixed 𝑛1 and 𝛼, we can find a 𝑁 to 

maximize the actual type I error, say 𝛼𝑚𝑎𝑥 (𝛼, 

𝑛1). Then to control the type I error rate at 𝛼, for 

each fixed 𝑛1, we can find an adjusted 

significance level 𝛼∗ so that 
*

max 1( , )n  =

. Because this method has negative effect on 

test power if we just use the pooled sample 

variance of the first stage data to re-estimate the 

sample size, the authors also proposed to use 

100(1−𝛾)% Upper Confident Limit (UCL) for 

the variance estimation to have a probability of 

at least 1−𝛾 to achieve a planned power. If the 

sample size is changed, the final test claims 

efficacy if the test score exceeds 𝑡2𝑁∗−2,𝛼∗. 

 

Concerns and Weaknesses of the Design 

 

Same as the BSSR with significant level 

adjustment, after adjusting the final test 

significance level, the design can control the 

type I error of the final test exactly at the desired 
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level. However, the calculation of 𝛼𝑎𝑐𝑡 and 

max is quite complicated. Some people may 

not be comfortable with changing the final test 

significance level. Moreover, the method of 

improving power by inflating estimated 

variance may lead the study to lose efficiency 

depending on the choice of 𝛾.  

 

Part Three: Unblinded SSR (UbSSR) 

Designs Based on Treatment Effect  

 

Three types of unblinded SSR (UbSSR) designs 

based on the re-estimated treatment effect after 

observing the first stage data are introduced in 

this section. Because the within-group variance 

𝜎2 was not re-esitmated in the related 

literatures, here we assume 𝜎2=1 is a known 

value. Thus, the initial assumed per-group 

sample size can be simplified by 

 𝑁0 =
2(𝑧𝛼+𝑧𝛽)2

𝛿𝑎
2        ……………   (3) 

 

The final analysis can simply use z-test since 

the variance is assumed known. 

 

The interim study is conducted at information 

time t after the data of 1 0* (0 1)n t N t=    

patients are observed per-group. Besides 

simply re-estimating sample size 
*N  by re-

estimating 𝛿 based on the first stage data and 

substituting it to equation 3, a new method 

“conditional power function” is widely used in 

UbSSR based on the re-estimated treatment 

effect. The re-estimated total per-group sample 

size 𝑁∗ now can be given by one of the 

following conditional power functions: 
 

𝐶𝑃(𝑁∗, 𝑧𝛼|𝑧1) =

𝑃𝑟(𝑍(𝑁∗) > 𝑧𝛼|𝑍(𝑛1) = 𝑧1, 𝛿 = 𝛿̂) = 1 − 𝛽    (4)      

                                                                      
𝐶𝑃(𝑁∗, 𝑐∗|𝑧1) =

𝑃𝑟(𝑍(𝑁∗) > 𝑐∗|𝑍(𝑛1) = 𝑧1, 𝛿 = 𝛿̂) = 1 − 𝛽      (5)   

Where 
( *)NZ is the two-sample z-statistic with 

sample size 
*N per-group; 𝑧𝛼 is the (1−𝛼)𝑡ℎ 

quantile of the standard normal distribution; 𝑧1 

is the observed first stage z-score;  is the re-

esimated treatment effect based on the first 

stage data; 
*c  is the re-estimated final test 

critical value, which can be solved by 

combining equation 5 with the conditional error 

function in equation 6 

 

  𝑃𝑟0(𝑍(𝑁∗) > 𝑐∗|𝑍(𝑛1) = 𝑧1) =

𝑃𝑟0(𝑍(𝑁0) > 𝑧𝛼|𝑍(𝑛1) = 𝑧1).                 (6)   

 

 

The UbSSR with Re-Designed Final Test 

Statistic 
 

Objective and Design 

 

Since to re-estimate the sample size depending 

on the data observed from the first stage could 

inflate the type I error rate, some of the designs 

control the type I error rate by re-designing the 

final test statistics. The distribution of the re-

designed final test statistic will not be affected 

by the sample size modification under the null 

hypothesis, so we are able to use the original 

planned critical values for the final test. The re-

estimated per-group sample size
*N of the two 

methods below can be calculated by any 

appropriate method (such as equation 3 with 
2

a replaced by estimated value, equation 4, 

etc.) after first stage data are observed without 

inflating the type I error rate.  
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The design in [15] uses the product of 

stochastically independent uniform [0,1] 

distributed p-values from tests before and after 

the preplanned sample size adjustment to 

construct a single global test statistic. 0H  can 

be rejected at significance level 𝛼 at the end of 

the trial if 

𝑝1𝑝2 ≤ 𝑐𝛼 = exp [−
1

2
𝜒4

2(1 − 𝛼)], 

 

where c  is the Fisher’s product criterion; 𝑝1,

𝑝2 are the observed error probabilities (p-value) 

for the tests based on the data observed before 

and after the interim analysis; 𝜒4
2(1 − 𝛼) is the 

(1-𝛼)th quantile of the central chi-squared 

distribution with 4 degrees of freedom. 

 

The design proposed by [16] modifies the 

traditional z-test of two-sample means by 

changing the weights of independent z-score 

from before and after the interim analysis 

(linear summation of z-score from each stage). 

If the sample size modification is made, the 

final test statistic can be given by 

 

* *1 1
1 1 2 2 1 21w

o o

n n
Z W Z W Z Z Z

N N
= + = + − , 

 

where 𝑍1 is the z-score calculated based on the 

first stage data and 
*

2Z  is the z-score calculated 

by the second stage data with re-estimated 

sample size. Note that this approach is 

equivalent to a combination test with inverse 

normal combination function in [17]. The 

sample size modification will not change the 

distribution of the test statistic 𝑍𝑊 under the null 

hypothesis, because 𝑍1 and 
*

2Z  are independent 

and follow standard normal distribution; 

Therefore, as long as the weights 𝑊1 and 𝑊2 are 

pre-specified, satisfy 𝑊1+𝑊2=1, and remain 

unchanged when the sample size changes, then 

𝑍𝑊 is also following standard normal 

distribution. Thus, the rejection criterion 𝑍𝑊>𝑧𝛼 

results in a level-α test. 

 

Concerns and Weaknesses of the Design  

 

Since the distribution of these re-designed test 

statistics will not be changed by the sample size 

modification, the type I error probability will be 

preserved exactly at desired level, its generality 

and simplicity greatly facilitate the application 

of these methods. However, the authors of [15] 

claim their method has a very small loss of 

power compared to the optimal test in the whole 

sample. It is not a surprise as it’s generally a 

nonparametric method, which may lead to 

power loss compared to parametric methods 

when the distribution information is known. 

Moreover, it is well known that the method of 

[16] unequally weighted the patients enrolled 

before and after the interim study if a decision 

of increasing sample size is made, which 

violates the one patient one vote principle [18]. 

also mentioned that the modified test statistic 

will cause efficiency loss since it is not a 

sufficient statistic for mean difference. 

 

The UbSSR with Adjusted Final Critical 

Value 

 
Objective and Design 

 

The designs proposed by [18-22] may have 

different representations, but eventually are 

based on similar idea. Their methods control the 

type I error rate by using the re-estimated final 

test critical value *c  (or significance level) 

calculated based on the conditional error 

function in equation 6 combined with any of the 

sample size re-estimation function based on re-

estimated treatment effect we have introduced 

in this paper (e.g. equation 3 with 𝛿𝑎
2 replaced 

by estimated value, equation 4 or equation 5). 

0H  can be rejected at significance level 𝛼 at the 

end of the trial if 𝑍(𝑁∗) > 𝑐∗. 
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Concerns and Weaknesses of the Design 

 

With the re-estimated sample size 𝑁* and re-

estimated critical value 𝑐∗ calculated by the 

combined solution of equation 6 and some 

sample size re-estimation functions, the type I 

error rate and the conditional power of the final 

test will be preserved at the desired level. 

However, the methods of [19-21] provided no 

constraint or didn’t give clear criteria about 

how to find the constraint on the range of 

conditional power that allows SSR. The 

numerical example in [23] suggests that no 

lower boundary of the adaptive region or no 

upper boundary of the sample size increase will 

cause design inefficiencies if a very small value 

of conditional power is obtained at the interim 

analysis which is equivalent to having a very 

large re-estimated critical value *c  at the final 

test. On the other hand, although the designs in 

[18,22] provide constraint on the range of 

adaptive region, similar as [19-21], re-

estimating sample size with their proposed 

region may lead the final test to be compared 

with a critical value larger than the original 

planned critical value z  . As it was mentioned 

in previous sections, it might be hard for design 

users to accept the critical value for the final test 

to be changed only because the sample size is 

changed. It is especially difficult when we need 

a larger critical value 𝑐∗ than the original 

critical value z  , it’s like giving a penalty for 

the final test [18]. Moreover, it was proved in 

[18] that even though 𝑍(𝑁∗) > 𝑐∗ appear to use 

the sufficient statistic 
( *)NZ  for the final 

analysis, it is actually functionally equivalent to 

the test wZ z  discussed by Cui, Hung and 

Wang, and the first stage data are hidden in the 

re-estimated critical value *c . Thus, the 

problem of violate the one patient one vote 

principle is equally applicable for UbSSR with 

adjusted final critical value method. 

Furthermore, it’s also problematic that the 

critical value for the final test cannot be decided 

before completing the first stage studies. 

 

The (Constrained) Promising Zone 

UbSSR 

 
Objective and Design 

 

Because changing the final test critical value 

due to SSR may not be easily accepted, the 

designs proposed by [24-26] control the type I 

error by giving a constraint on the range of 

conditional power (given by in equation 7) that 

allows SSR. This constraint is the so called 

“promising zone”. 

 

𝐶𝑃(𝑁0, 𝑧𝛼|𝑧1) =

𝑃𝑟(𝑍(𝑁0) > 𝑧𝛼|𝑍(𝑛1) = 𝑧1, 𝛿 = 𝛿) ……… (7)              

 

They claim that if we only increase sample size 

when the conditional power with original 

planned sample size 0N  falls in the promising 

zone, comparing the final test with the original 

planned critical value z   will not inflate the 

type I error rate. Thus, no matter whether the 

sample size is modified after the first stage, 0H  

can be rejected at the end of the trial if the final 

test score exceeds the original planned critical 

value z  . 

Two procedures are proposed and compared by 

[24]. The first procedure allows increasing 

sample size if 𝐶𝑃(𝑁0, 𝑧𝛼|𝑧1) ∈ (0.5, 𝛷(𝑧𝛽/

√1 − 𝑡)) and the re-estimated sample size is 

calculate by replacing 
2

a with 𝛿2 in equation 

3. The second procedure allows increasing 

sample size if 0 1( , |z )CP N z  is between 0.5 

and 1−𝛽, its new sample size can be given by 

equation 4. It was proved that both procedures 

control the type I error rate, but the simulation 

results in their paper show that the second 

procedure is more powerful than the first 

procedure. 

 

The designs given by [18,25,26] were proved to 

have a wider promising zone than the design of 

[24]. More specifically, their “Promising Zone” 

includes all the value of 0 1( , |z )CP N z  that 
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*c z  Their new sample size *N and *c are 

calculated by solving equation 5 and 6 together. 

The lower bound of their promising zone is 

always lower than 0.5 while their upper bound 

is also at 1−𝛽. 

 

The promising zone UbSSR design was further 

developed in [27] by setting additional 

constraints on the range of the “Promising 

Zone”, which considering the balance between 

increasing conditional power and the cost for 

increasing sample size. Later, [28] also 

proposed to constrain the range of the 

“Promising Zone” with the information of 

maximum allowed sample size and the range of 

the conditional power achieved with the 

maximum allowed sample size evaluated at the 

smallest clinical meaningful treatment benefit. 

 

Concerns and Weaknesses of the Design 

 

The lower boundary of the promising zone of 

[24] is set fixed at 0 1( , |z )CP N z  =0.5 which 

might be too narrow and do not power the final 

test to the extent we want. On the other hand, 

the design of [18,25,26] uses equation 5 to re-

estimate the total sample size to guarantee a 

conditional power of the final test with the re-

estimated critical value *c to achieve the 

desired level 1-𝛽, but at the end of the trial, they 

actually compare the final test with the original 

critical value z  (always larger than *c in the 

promising zone). It is conservative, because the 

re-estimated total sample size does not actually 

power the test enough to the critical value it 

compared with at the final test, even in terms of 

the conditional power. It may result in loss of 

power if the difference between z   and *c is 

large. 

 

Further Concerns for Adaptive SRR Based 

on Conditional Power  

 

Although conditional power-based adaptive 

SSR can save a trial when the original planned 

total sample size is underestimated, never think 

it is without penalty. In fact, it can save the trial 

if the assumed treatment effect slightly 

overestimates the true treatment effect, adding 

more samples can improve the power to certain 

extent. However, for certain situation, the 

uncertainty of the conditional power function 

will actually reduce the efficiency of a well-

designed trial. It was shown in the paper of [29] 

when the expected sample size of a fixed size 

design is equivalent to that of a [26] design, the 

power of the [26] design can be lower than that 

of a fixed size design. It was also pointed out in 

[30], when the true effect size is small, 

recalculate sample size in mid-trial based on an 

interim estimate may lead to an overly large 

price to be paid in average sample size 

compared to the gain in overall power. On the 

other hand, if the assumed treatment effect 

dramatically over-estimates the true value, the 

conditional power at the interim study will be 

too low, no sample size modification will be 

made, and nothing will be gained from the extra 

procedure. Moreover, due to the randomness of 

the conditional power, for small sample size, 

even when the original trial is well designed, 

there will still be a high chance for the adaptive 

SSR to increase the sample size to achieve an 

undesired higher power. It’s better to examine 

the operating characteristics (power and type I 

error) of the entire procedure, which can be 

done, for example, by simulating the adaptive 

design under different values of δ in the range 

of interest, through such simulations that one 

may be able to judge whether the adaptive 

design is worth adopting. 

 

Conclusions and Remarks  

 
There is no doubt that the designs we review in 

this paper may help some underpowered trials 

from failing to find a significant treatment 

benefit, but as it was summarized in each 

section, none of them is a perfect design. Before 

we apply the SSR designs to any real clinical 

trial, it would be better for us to take into 

consideration their potential problems such as 

inflation of type I error rate, inefficiency, 

computation complication, impractical, etc. 
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Moreover, a few additional points are also 

worth to be mentioned. 1) If the population is 

not following normal distribution, most of the 

designs discussed in this paper are using 

asymptotic normal distribution derived from 

central limit theorem to calculate sample size 

and conduct hypothesis testing, thus they are 

only applicable with large sample size at both 

stages. 2) In this paper, we only discuss the SSR 

designs for superiority tests. The designs may 

encounter more problems when they are applied 

to non-inferiority or equivalence hypothesis. 3) 

We assume equal variance for both treatment 

groups at the beginning of this paper, which is 

also the assumption given by most of the papers 

we reviewed. Formulation may be more 

complicated, and efficiency may be 

compromised when the variances are actually 

different. 4) The designs based on conditional 

power function we reviewed in this paper 

assume known variance for both treatment 

groups, thus they don’t have to re-estimate 

variance and they can use simple z-statistic for 

the final test. The formulation will be more 

complicated but also more accurate if the 

variance is re-estimated and t-statistic is used 

for the final test. 5) When we compare different 

SSR designs, besides the basic statistical 

operating characteristics (type I error rate, 

power, etc.), we have plenty of different criteria 

but hard to identify a most important one. We 

need to take good consideration about the 

advantages and disadvantages of each design 

before using it in clinical trials. 
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