

Two types of protostellar evolution in the star forming cluster Serpens Main

<u>Yusuke ASO</u> (ASIAA → KASI), N. Hirano (ASIAA), Y. Aikawa (The Univ. of Tokyo), M. Machida (Kyushu Univ.), N. Ohashi (Subaru), M. Saito (NAOJ), S. Takakuwa (Kagoshima Univ.), H.-W. Yen (ASIAA), J. Williams (Univ. of Hawaii)

Introduction — disk-size diversity and protostellar evolution

T Tauri disks show radii from 10s to 100s au^[1]. This diversity implies that some disks do not grow as largely as others in the protostellar phase.

To approach origins of disk-size diversity, we observed submillimeter condensations in a young star forming cluster^[2], Serpens Main, using ALMA during Cycle 3 in Band 6.

Results — two groups of 1.3 mm and ¹²CO emission in Serpens Main Regular (Fig. 1): Emission > 1000 au at 1.3 mm and mono/bipolar outflows in ¹²CO J = 2 - 1. Starless (no figure): no infrared nor associated ¹²CO emission.

Compact (Fig. 3): FWHM < 120 au at 1.3 mm and compact ¹²CO outflows.

Figure 1. Serpens Main at JCMT 850 μ m (contour) and at Herschel 70 μ m (color). Blue filled ellipse is the JCMT beam ~14". YSO positions are derived by Spitzer^[3].

Discussion — **Evolutionary trends in the regular group** Class 0 protostars ($T_{bol} < 60 \text{ K & } L_{bol}/L_{submm} < 15$)^{[3], [4], [5]}.

- outflow dynamical time (+ possibly widening^{[6], [7]}) (Fig. 2a).
- $C^{18}O$ freeze-out/desorption over the three groups^{[7], [8]} (Fig. 2b).
- Central compact components (disks) in 4B, S68N, and $c1^{[4]}$ (Fig. 1).

Meanwhile, it is not trivial whether these regular Class 0 protostars will obtain large disks as SMM4A did $(r \sim 240 \text{ au})^{[7]}$.

Figure 1. ALMA results of **the regular group**. 1σ in the continuum images are 0.1 mJy b^{-1} . Green lines in column (2) denote intensity-weighted mean radii and opening angles.

Figure 2. Evolutionary indicators of the regular group. θ_{flow} and τ_{flow} are inclination corrected. Estimate of *X*(C¹⁸O) assumes *T* = 20 K^[9]. 4A shows absorption in the C¹⁸O line.

Discussion — What is the compact group? Smaller $M_{gas} < 0.05 M_{\odot}$ than the regular group has $(M_{gas} \sim 0.2-0.4 M_{\odot})$, as well as less clear outflows. → Envelopes are dissipated, and thus disks will not grow anymore ($r \le 60$ au). → One origin of compact T Tauri disks ($r \sim 10$ s au).

Possible mechanisms: impact by outflows (SMM2?), truncation by binary motion (11B/C?), Hall effect, etc.

Figure 3. ALMA results of **the compact group**. Their 1.3 mm and ¹²CO emission are much more compact than those of the regular group.

Conclusions — diversity of protostellar evolution in Serpens Main

We have revealed evolutionary trends among six Class 0 protostars. Other six protostars appear to be terminating mass accretion before acquiring large disks (r > 100 au). The difference between Class 0 sources, SMM2A/B (r < 30 au) and SMM4A ($r \sim 240$ au), may imply diversity of evolution toward large or compact disks in a protostellar phase as early as the Class 0 phase.

References [1] Najita et al. 2018, ApJ, 864, 168 [2] Li et al. 2019, ApJ, 871, 163 [3] Dunham et al. 2015, ApJS, 220, 11 [4] Aso et al. 2018, ApJ, 863, 19 [5] Aso et al. 2017, ApJL, 850, L2 [6] Machida & Hosokawa 2013, MNRAS, 431, 1719 [7] Arce & Sargent, ApJ, 646, 1070 [8] Aikawa et al. 2012, ApJ, 760, 40 [9] Lee et al. 2014, ApJ, 797, 76