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i flats l 0.1 pc Introduction — disk-size diversity and protostellar evolution
17" Sl 2 T Tauri disks show radii from 10s to 100s aul'l. This diversity implies that some disks do
, not grow as largely as others 1n the protostellar phase.
16 To approach origins of disk-size diversity, we observed submillimeter condensations 1n a
~ O - . . . . -
8 15 s L | young star forming cluster!?], Serpens Main, using ALMA during Cycle 3 in Band 6.
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13’ Results — two groups of 1.3 mm and >CO emission in Serpens Main
. 0 Regular (Fig. 1): Emission > 1000 au at 1.3 mm and mono/bipolar outflows in ?CO J=2 — 1.
12 © Starless (no figure): no infrared nor associated '“CO emission.
01°11 Compact (Fig. 3): FWHM < 120 au at 1.3 mm and compact >CO outflows.
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Figure 1. Serpens Main at JCMT 850 um (contour) and at Herschel 70 pum (color). Discussion — Evolutionary trends in the regular group
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Blue filled ellipse 1s the JCMT beam ~14. YSO positions are derived by Spitzer!>.. Class 0 protostars (Tbol <60 K & Lbol /Lsubmm < 15) 141,151
1)1.3mmnu (2 =D_ ' ‘  outflow dynamical time (+ possibly wideningl®}: l]) (Flg 2a).

* (180 freeze-out/desorption over the three groups!’): ¢l (Fig. 2b).
* Central compact components (disks) in 4B, S68N, and c1!*! (Fig. 1).

Meanwhile, it is not trivial whether these regular Class 0
protostars will obtain large disks as SMMA4A did (r ~ 240 au)!"l.
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K Bl ST : N ® - 3 Figure 2. Evolutionary indicators of the regular group. 64, and zq,,, are inclination
oo e ' ' D c— corrected. Estimate of X(C!80) assumes 7= 20 K. 4A shows absorption in the C!30 line.
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Figure 1. ALMA results of the regular group. 16 in the continuum images are 0.1 mJy
b~!. Green lines in column (2) denote intensity-weighted mean radii and opening angles.
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= - Al SMM2B g8 I Class I | Discussion — What is the compact group?
- S68Nb2  HFEEE L Jg 12 |- SMM11B | Smaller M,,; < 0.05 Mg than the regular group has (M,
=" ® 1|3 oA Class 0 iR o 12 1 ~0.2-0.4 M), as well as less clear outflows.
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—> Envelopes are dissipated, and thus disks will not
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i | 10 ho = One origin of compact T Tauri disks (r ~ 10s au).
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2 J I ~ 3 j j Possible mechanisms: impact by outflows (SMM2?),
- ], = — 0|2 L A {2 truncation by binary motion (11B/C?), Hall effect, etc.
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Figure 3. ALMA results of the compact group. Their 1.3 mm and '“CO emission are much more
compact than those of the regular group.

Conclusions — diversity of protostellar evolution in Serpens Main
We have revealed evolutionary trends among six Class 0 protostars. Other six protostars appear to be terminating mass accretion before
acquiring large disks (» > 100 au). The difference between Class 0 sources, SMM2A/B (» < 30 au) and SMMA4A ( ~ 240 au), may imply

diversity of evolution toward large or compact disks 1n a protostellar phase as early as the Class 0 phase.
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