HCN laser lines in carbon-rich evolved stars

Ka Tat Wong IRAM ARC node, Grenoble, France

Collaborator

Karl M. Menten (MPIfR)

ALMA2019, Cagliari, Italy 17 October 2019

Circumstellar envelope (CSE)

Circumstellar chemistry

HCN in carbon-rich stars

HCN masers in C-rich stars

- Absence of strong (sub)millimetre SiO, H₂O, OH masers (unlike O-rich stars)
- Strong HCN masers in ground and excited vibrational states

$$v = (v_1, v_2, v_3) = (0, 2^0, 0)$$

$$J = 1 - 0$$

(Guilloteau et al. 1987;1988)

$$v = (0, 1^{1c}, 0) J = 2 - 1$$

$$\sim 400 \text{ Jy in IRC +10216}$$

(Lucas & Cernicharo 1989)

$$v = (0, 0, 0) J = 1 - 0$$

(Izumiura et al. 1995)
Shinnaga et al. (2009) ApJ 698:1924

HCN masers in C-rich stars

- HCN masers exist in a considerable fraction of carbon stars.
- (0, 1^{1c}, 0) + (0, 1^{1d}, 0) 2–1
 11, 4 out of 13 targets
 (Menten et al. 2018)
- (0, 1^{1c}, 0) 3–2 and 4–3
 5/12 and 4/11 targets
 (Bieging 2001)

Far-infrared HCN laser lines

- Rotation-vibration interactions of (1, 1¹, 0) and (0, 4⁰, 0) states
- Strong laboratory lasers (Lide & Maki 1967)

Schilke & Menten (2003) ApJ 583:446

Shinnaga et al. (2009) ApJ 698:1924

Far-infrared HCN laser lines

- (0, 4⁰, 0) 9–8 (Schilke et al. 2000): 804.75 GHz
- (1, 1¹, 0)–(0, 4⁰, 0) 10–9 (Schilke & Menten 2003): 890.76 GHz

Caltech Submillimeter Observatory (CSO) spectra

Far-infrared HCN laser lines

- (0, 4⁰, 0) 9-8 (Schilke et al. 2000): 804.75 GHz
- (1, 1¹, 0)–(0, 4⁰, 0) 10–9 (Schilke & Menten 2003): 890.76 GHz

Pilot ALMA survey on HCN lasers

- Identify more HCN laser-emitting sources
- Self-calibrate Band 10 data with intense HCN laser emission

Target	$v = (0, 4^0, 0) J = 9-8$ 804.75 GHz	$v = (1, 1^1, 0) - (0, 4^0, 0) J = 10 - 9$ 890.76 GHz			
R For	Detected (raw data)	Detected (QA2 SemiPass)			
R Lep	Detected (QA2 SemiPass)	Detected (raw data)			
CQ Pyx	Detected (raw data)	Detected (QA2 Pass)			
IRC +10216	Herschel/HIFI	Detected (QA2 SemiPass)			
X Vel	—	Detected (QA2 SemiPass)			
CIT 6	Herschel/HIFI	Herschel/HIFI			
V Hya	Detected (QA2 Pass)	Detected (QA2 Pass)			
V358 Hya	—	—			
II Lup	Herschel/HIFI	Herschel/HIFI			
X TrA	—	—			

HCN laser at 804.75 GHz in V Hya

HCN laser at 890.76 GHz in V Hya

Self-calibration

HCN laser visibilities

HCN integrated intensity maps

HCN and CO spectra of V Hya

HCN laser at 890.76 GHz in IRC +10216

Relative offset (arcsec)

IRC +10216 LSB spectrum

Continuum subtracted

IRC +10216 USB spectrum

Continuum subtracted

HCN and SiS spectra of IRC +10216

HCN and SiS integrated intensity maps

Self-calibration with HCN laser lines

- Strong, compact laser emission in certain velocity channels
- Potentials for high-frequency, long-baseline observations

Config	Lmax		Band 3	Band 4	Band 5	Band 6	Band 7	Band 8	Band 9	Band 10
	Lmin		100 GHz	150 GHz	183 GHz	230 GHz	345 GHz	460 GHz	650 GHz	870 GHz
7-m	45 m	AR	12.5″	8.4″	6.8″	5.4″	3.6″	2.7"	1.9"	1.4"
Array	9 m	MRS	66.7″	44.5″	36.1″	29.0″	19.3″	14.5″	10.3″	7.7"
C43-1	161 m	AR	3.4″	2.3″	1.8″	1.5″	1.0"	0.74″	0.52″	0.39"
	15 m	MRS	28.5″	19.0″	15.4"	12.4″	8.3″	6.2″	4.4"	3.3″
C43-2	314 m	AR	2.3″	1.5″	1.2″	1.0"	0.67"	0.50"	0.35″	0.26"
	15 m	MRS	22.6″	15.0″	12.2"	9.8″	6.5″	4.9"	3.5″	2.6"
C43-3	500 m	AR	1.4″	0.94″	0.77″	0.62″	0.41"	0.31″	0.22″	0.16"
	15 m	MRS	16.2″	10.8″	8.7″	7.0″	4.7"	3.5″	2.5″	1.9"
C43-4	784 m	AR	0.92″	0.61″	0.50"	0.40″	0.27"	0.20"	0.14″	0.11"
	15 m	MRS	11.2″	7.5″	6.1"	4.9"	3.3″	2.4"	1.7"	1.3″
C43-5	1.4 km	AR	0.54″	0.36″	0.30″	0.24″	0.16″	0.12"	0.084"	0.063"
	15 m	MRS	6.7″	4.5″	3.6″	2.9″	1.9″	1.5″	1.0"	0.77"
C43-6	2.5 km	AR	0.31″	0.20"	0.16″	0.13″	0.089″	0.067"	0.047"	0.035"
	15 m	MRS	4.1″	2.7″	2.2"	1.8″	1.2″	0.89″	0.63″	0.47"
C43-7	3.6 km	AR	0.21″	0.14″	0.11″	0.092″	0.061″	0.046″	0.033″	0.024"
	64 m	MRS	2.6″	1.7″	1.4"	1.1″	0.75″	0.56″	0.40"	0.30"
C43-8	8.5 km	AR	0.096"	0.064"	0.052″	0.042″	0.028"	N/A	N/A	N/A
	110 m	MRS	1.4″	0.95″	0.77″	0.62″	0.41"			
C43-9	13.9 km	AR	0.057"	0.038″	0.031"	0.025″	0.017"	N/A	N/A	N/A
	368 m	MRS	0.81″	0.54″	0.44"	0.35″	0.24"		1	
C43-10	16.2 km	AR	0.042"	0.028″	0.023"	0.018"	0.012"	N/A	N/A	N/A
	244 m	MRS	0.50″	0.33″	0.27″	0.22″	0.14″			

Table A-1: Angular Resolutions (AR) and Maximum Recoverable Scales (MRS) for the Cycle 7 Array configurations

Best possible angular resolution with current infrastructure ~ 5 mas

- Challenging phase calibration
- Lack of nearby, bright-enough quasars

Self-calibration with HCN laser lines

- Achieving angular resolution of <10 mas with ALMA(?)
 - \rightarrow stellar surface tomography, hydrodynamics

Ohnaka et al. (2019) ApJ, 883, 89

NIR image of π^1 Gru with VLBI/PIONIER Paladini et al. (2018) Nature, 553, 310

NIR image of Antares with VLBI/AMBER Ohnaka et al. (2017) Nature, 548, 310

Summary

- HCN laser lines at 804.75 and 890.76 GHz in C-AGBs are imaged for the first time using ALMA.
- Both laser lines are **detected in all observed C-AGBs**:
 - The rovibrational transition (891 GHz) is stronger than the rotational transition (805 GHz).
 - Laser-emitting regions have an extent of ~10–30 AU in V Hya and IRC +10216.
- Intense FIR HCN laser emissions allow amplitude and phase self-calibration with intermediate (~1 km) ALMA baselines.
- High-quality molecular line images are produced in the highest frequency band of ALMA.