### Caught in the act

Massive cluster formation at z=3-7 witness by SPT/ APEX/ALMA



#### Axel Weiss MPIfR SPT collaboration

Miller T.B., Hill R., Cunningham D., Wang, G., Chapman S.C., Hayward, C., D. Vieira, J. Marrone, D., Spilker, J., de Breuck, C.





### PC candidates from the SPT survey







Extended Laboca Sources => PC candidates (in particular if they are multiples)

#### Proto-cluster core SPT2349-56 @ z=4.3



update on Miller T.B., et al. 2018, Nature, 556, 469

19 individual members <sup>3</sup>

### Witnessing BCG formation



Rennehan ea MNRAS 2019 arXiv: 1907.00977

#### SPT2349-56 Environment



5 additonal sources identified in the northern Laboca structure; total 27 confirmed members

## Deep APEX/LABOCA 870µm imaging



# Ongoing ALMA line follow ups

#### SPT0348-62 (z=5.6)



5/7 ALMA detected source are PC members (non-detections could be due to limit v-coverage)

#### SPT2052-56 (z=4.2)







Marrone, D.P., et al., 2018, Nature, 553, 51 7

## Summary



• Discovery of these PCs is only possible due to the synergy between large area surveys and sensitive interferometers in the submm

• SPT-PCs are unique systems to study the earliest phase of massive galaxy and cluster formation. They allow to study the evolution of the most massive DM halos out to z=7!

 BCGs form earlier than expected from most simulations and current observational wisdom (z~3 vs z~1-2)

High-z PCs will allow to study the evolution of the CO, CII and dust luminosity functions in cluster environments to investigate differences in the evolution between cluster and field galaxies.